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Consider a facility which must divide its services, during the time interval [0, T'], among N streams
of arrivals. The problem treated is that of finding a pattern of service which minimizes total delay to
the members of the streams, taking into account the “dead time’ which begins each service period.
For each stream, it is required that final queue size equal initial size, and that the queue be empty
sometime in [0, T'|. Conditions for feasibility of solutions are given in the case where the instantaneous
service rates are bounded above by known constants. In the event that all streams have constant
arrival rates and are to be served the same number of times, an optimal service pattern is derived using
a recent result of R. Rangarajan and R. M. Oliver.
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1. Problem Statement

This paper presents a further investigation into the type of problem studied in a recent paper
by Rangarajan and Oliver.! The problem pertains to the allocation of servicing times among several
incoming streams which require “processing” of some kind by a single ““server’ capable of handling
only one stream at a time. The server might for example be a switching point or a congestion point
(e.g., a tunnel entrance) in a transport network, in which case ‘““serving” a stream simply means
permitting passage to its flow. Or, the server might be a computer handling reservations being
arranged at several points, or exercising control on a real-time basis over operations along several

links.
The time period during which servicing occurs is assumed to be [0, T'], where T > 0. The rate

at which “customers” arrive at stream i is assumed to be the known continuous function ai(t),
while the outflow or service-rate function s;(¢), which will be defined below, is bounded above by the
constant C; > 0, the capacity when servicing stream i. It is further assumed that a;(t) crosses the
level C; at most a finite number of times in [0, T']. That is, a;* (C)) is a set with a finite number of
connected components.

The size of the waiting queue in stream i at time ¢ is designated by Qi(¢), and we let ¢;= Q;(0),
where it is assumed that each ¢; is nonnegative. Then clearly

O,‘(t) :qi‘f—J;l (ai(7) —si(7))dr. (1)

A cumulative waiting time function W;(t) is defined for each i by
t
Wi =" omar,
0
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(1967).
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and a total waiting time function W (t) is defined by

W () =z Wit),

where N is the number of streams.

Since s;(¢) will depend on the times at which servicing actually occurs, it is clear that W; and W
also depend on these variables. Furthermore, W; and W depend on the quantities g;. These func-
tional dependencies may be expressed explicitly when convenient.

Next we define s;(¢). As a preliminary, we further limit the generality of the problemby assum-
ing that a given stream i is serviced, within [0, 7], only during a finite set of closed intervals
{[xij, yij] }7% where m(i) is the total number of such intervals of service to stream i. No two inter-
vals of servicing, for any streams, may overlap except at their endpoints, and the set of all service
intervals for all streams covers [0, T]. (The endpoints of these intervals comprise the switching
pattern.) Furthermore, for some set of positive constants {d;} called the ““dead” times, it is assumed
that x;;+di < yij, for i=1,2, . . ., N,andj=1,2,. . ., m(i).

If stream i is not being serviced at time ¢, then s;(¢) is defined to be 0. If ¢ lies in the service
interval [xij, yij], then s;(¢) is defined by

0: te[xij, xij+di],
Si(t) = C,‘t [E(x,'j‘f‘di, }’ij] and Qi(t) == O’
min (C;, ai(t)): te(xij+di, yi;] and Qi(t) < 0.

Now it is clear from (1) that Q; depends on s;, whereas the above definition states that s; depends
on Q;, at least on the intervals (x;;+d;, vij|. Thus it is necessary to show that there exist unique
functions s; and Q; which satisfy (1) and the equation for s;. This will be detailed in appendix A.

The above definition of s;, together with the fact that ¢; = 0, assures that Qi(¢) = 0 for all t€[0,T],
since if Qi(t) < 0 for some t then there would exist ¢ < such that Qi(t')=0, by the continuity of Q;.
Let ¢, be the greatest such ¢'. Then Q;(r) < 0 for all r such that t; < r=<t, and so a;(r) —si(r) = 0 in
this interval, by the definition of s;. This contradicts the fact that

{
0> Qit)= Qi(tl,i)+f (ai(r)— si(r))dr.

to

The general problem to be considered is that of finding a finite set of intervals [x;j, yij] of serv-
ice, as defined and restricted above, such that the total waiting time W(T) is a minimum, given the
initial values ¢;.

We will consider a variant of the general problem in this paper by introducing the restrictions

(e 2= By o o og M)
qi=Qi(0)=QuT), (2)
Qi(t)=0 for some te[0, T, (3)

and by allowing the minimization not only over the intervals of servicing but also over the param-
eters g; as well. That is, the g; will not be considered fixed but variable, subject to (2) and (3). Con-
straints (2) and (3) are called the feasibility constraints, and a solution is feasible if it satisfies them.

Imposing constraint (2) has the property of making the problem periodic, in the following sense.
If we suppose that a; is defined for all t = 0, rather than for te[0, T'], with ait+ T)= ai(t), and that
the switching pattern is extended in such a way that stream ¢ is being serviced at time ¢+ T if and
only if it is also being serviced at time ¢, then Q;(0)= Qi(T) implies

Qit+T)=0:().
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It is also seen from this that
WiT+t)—Wit)=WuT),
or,
WinT + 0)=nW(T)+ Wi6).
This in turn implies that
W(t)/t— W(T)|T as't = oo,

so that, in a sense, minimizing W (7T) and thus W(T)/T is equivalent to minimizing the “‘long-term
average delay.”” The motivation for this restriction is that the applications we have in mind refer
to ongoing systems rather than isolated occurrences. It seems of little practical use (except for
emergency evacuation operations and the like) to formulate the problem as if what happened after
time T were of no concern. Condition (2), at least for periodic arrival patterns, implies stability in
the sense of “‘repeatability” for the situation, in particular ruling out unbounded growth of queues
over the long run. It might prove worthwhile to investigate the problem variant in which (2) is
replaced by

Qi(T) = Qi(0), (2"

but this version will not be studied here.

2. Feasibility and Consistency Conditions

So far it is not known whether there exist feasible solutions of the problem of section 1. This
section will be devoted to finding necessary and sufficient conditions for the existence of such
solutions.

Since we are considering the problem where not only the points of switching are allowed to
vary, but also the ¢;. the first question which arises is how much freedom the ¢; have, for a given
switching pattern, so that conditions (2) and (3) may still be satisfied. The following two lemmas
answer this.
LEMMA 1. Let Q; and Q[ be the queue-size functions associated with the initial values q; and q;,
respectively, and having the same switching pattern. Then |Qy(t) — Q|(1)| is a nonincreasing function
of t.
ProOOF. First, Qi—Q; does not change sign. For if Qi(a)—Q;](a) >0 and Q:i(b) —Q;(b) <O,
where a < b, then by continuity Qi(¢) =Q;(¢) for some te(a, b). But then Qi(v) =Q/(7) for all
7= t, contradicting Qi(b) < Q/(b).

Now suppose (say) Qi(0) > Q;(0). Then Qi(¢t) —Q;(t) =|Qi(t) —Q'(¢)|, by the above. But

&
Qi(t)—(),f(t):q,-—q{—kf (si(r) —si(r))dr, and since s(r) <s;(7) for all 7€[0, T] because
0

Qi = Q], we have that |Qi(¢) — Q/(t)| is nonincreasing. Similarly if Q;(0) < Q;(0) or Q:(0) =Q;(0).
LEMMA 2. Let Q; and Q] be two queue-size functions associated with the same switching pattern
during [0, T| and both satisfying (2). Then Q; and Q; differ by a constant. Hence there exists at most
one feasible solution for each switching pattern.

PROOF. From lemma 1,

|0i(0)— Q;(0)| = |Qi(t) — Q}(1)] = |Q«T)— Q{(T)|
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for all t€[0, T']. But by (2), |Qi(0) — Q;(0)| = Qi(T) — Q}(T)|. Hence, by the continuity of the queue-
size functions, Q;(¢) —Qi(t) =qi—q; , a constant.

Now if two solutions having the same switching pattern are both feasible, then they satisfy
(3) in addition to (2). But if ¢; > ¢}, for example, then Qi(t) > Q'(t) = 0, by the above, and Q; is not
feasible. Therefore ¢i=g¢; and so Q;=0Q);.

The next question to be treated is which patterns of switching times admit feasible solutions.
THEOREM 3. Suppose that stream i is serviced during successive intervals of length

Lilv Li"’ ey Lim(i)s

and let d; be the dead time for stream i. Then a necessary and sufficient condition that a set of q; exist
for which the given switching pattern produces a feasible solution is
mi) i o
Ciz Lij = a,(t)dt F n]‘l)(,Aidi
0
j=1

for all i.

PROOF. Let the above inequality be satisfied. It is clear that, when g; is sufficiently large, Qi(t) > 0
for all te[0, T]. Then, by definition, si(t) =0 during nonservice intervals and during a part d; of each
service interval, and s;(t)=C; otherwise. Thus for such g;,

T m(i) m(i) T
f si(t)dt=Ci 2 (Lij_di):Ci 2 L,]—sz(l,)d, = j (li(t)dt,
0 j=1 j=1 0

so that
T
()= lh‘*’L (ai(t) = sit))dt < gi.

On the other hand, for ;=0 it is clear that Q;(T) = ¢:. But for a fixed switching pattern, Q;(T) is a
continuous function of g;. (In fact, by lemma 1, |Qi(T) — Q;(T)| < lgi—q]|.) Thus there exists a
qi for which Q;i(T) = q..

Let ¢ be the infimum of all such g; satisfying gi= Qi(T) for the given pattern of switching. Let

b=inf {Qi(1) : €[0. 1], Qi(0) = g2}

If 5=0, then ¢¢ giv s, a feasible solution. But if > 0, then usifig the value ¢i=¢?—b/2 as the
initial queue size, we find that Qi(¢) = b—5/2=05/2 for all te[0, T], by lemma 1. Thus by the defini-
tion of s; we have the same value of s;(t), for each te[0, T], for the two initial values q? and ¢?—b/2.
But this implies that the solution with initial value ¢? — 4/2 also satisfies (2), contradicting the defi-
nition of ¢{.

This proves sufficiency. Necessity follows from (2), noting that

T T m(i)
f (ti(t)dtIJ si(t)dt < C; 2 (Lij_di).
0 0 =

LEMMA 4. Suppose there exist numbers T; > 0 such that

N
Ti = T
i=1
and

CiTi ?fT a,(t)dt SF m(l)Cld,
0
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Then there exists a feasible solution for which stream i is serviced exactly m(i) times (some of which
may be consecutive), and there exists an optimal such solution relative to the particular m(i)’s.
PROOF. By Theorem 3, if {L;;} is a set satisfying

m(i)

2 L=

J=1

where each L;j = d;, then L;j represents a feasible solution. By lemma 2, ¢; is uniquely determined by
the switching pattern. But the vector of switching times is a point of

[0, T]>m®,

a compact set. The conditions (given in Lemma 2) defining those switching patterns which corre-
spond to feasible solutions are linear inequalities in the L;j’s, and so in the switching times them-
selves; thus the minimization is to take place over a closed subset of the compact set.

It will be shown in appendix B that W(T) is continuous in the vector of switching times. Since
this in turn ranges over a compact set, an optimal solution must exist.

The last result permits us to state explicit conditions for the existence of an optimal solution
in the simplest case, namely for constant a;.
COROLLARY 5. Suppose a;(t)= a;, a constant. If {L;;} are the service interval lengths of a switching
pattern such that

m(i)

2 L“ = m(l)d,+ aiT/Ci, (4)
=1

then the patterrn is feasible. Furthermore, if numbers T; > 0 exist such that

3 T,=T

i=1
and
Ti = m(l)d. ar aiT,/Ci,

then an optimal feasible solution exists.
PROOF. From Theorem 3 and Lemma 4.

e
Now let p;=ai/C; and d= E m(i)di. Then we have the following.
=

THEOREM 6. For constant a;, the following conditions are necessary and sufficient for the existence
of a feasible solution with m(i) servicings of stream i which is optimal with respect to the given set

{m()}:

N
>pi<l, (5)
i=1

d

—_— (6)
1- E Pi
i=1

T=

PRrROOF. If {L;;} is feasible, by Lemma 5 it must satisfy (4). Summing (4) over all i, we get

T=S m@)di+T S (alC)=d+T 3 pi @
i i=1 i=1

i=1
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or equivalently
N
T(l—z p,->>d>0‘
=1

N
Since T > 0, we have I—E pi > 0, proving (5), and also

i=1

QU

’

Iz —73—
1—‘2 Pi
i=1

proving (6).
Now suppose (5) and (6) are satisfied. Then (7) is also satisfied. Thus it is possible to find
T; > 0 such that

T:= m(l)d,-f- ail|C;.
The result follows from Corollary 5.

3. Optimal Solutions for Constant Arrival Rates and Equal m(i)’s

This section will deal with the special case in which each «;(¢) is a constant function, and the
m(i) are all equal to some common value m. This case was treated by Rangarajan and Oliver
(see footnote 1), with the further provision that m=1, that is, that each stream was serviced exactly
once.

A method of finding the optimum service period length for each stream was found (see foot-

note 1), and this is the result to be generalized here. It will be shown that an optimum (not neces-
sarily the optimum) switching pattern is obtained for the case m(i) =m, ai constant, when the
interval [0, T'] is broken up into m subintervals of equal length, the switching pattern is optimized
over the first interval [0, 7/m] by the methods of [1] with one servicing per stream, and this pattern
is repeated cyclically for each of the other m—1 subintervals. In addition to this, an auxiliary
result (see footnote 1) will be used to find the optimum value of m.
LEMMA 7. Suppose that in the interval [s, t] the function f(x) is either increasing at a rate p or de-
creasing at a rate —q almost everywhere. Suppose that {(s)={(1)=0 and that f(x) = 0 for xe(s, t).
Suppose further that f increases during (s, s+ A1), decreases during (s+ A,, s+ A, + B,), etc., where
each interval of increase of length A is followed by an interval of decrease of length B; and each
interval of decrease of length B, is followed by an interval of increase of length Aii1, the last inter-
vals being of length A, and B, respectively. Then

t
. PP+ &,
J; f(x)dx = Tq— 2 Aiz.

i=1

PRrRoOOF. The proof is geometric in nature and is by induction on n. First, for n=1 the inequality
reduces to

L’f(x)dx > "(%Q—) A2,

t
Referring to figure 1, we see that f f(x)dx is the area of the triangle whose altitude is 4;p and
whose base is 4, + B,, where
B] :Alp/q
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' +
Thus f f(x)(lx:prz(qu A2, proving the case n=1.

Assume that the lemma has been proved for 1,2, . . ., n—1. Looking at figure 2, we see that

1 + n—1 + n—1
f f(x)dep(l;Tq 2} A%+ Area YWVZX>p—(pq—Q) 2 APAXYZ

n—1 n
p+q) 2A2+p(p+q) Y plp+aq) 3

We now state the following notations to be used during the rest of this section. I;; will denote
the jth interval of service for lane i during [0, 7']. Because of the cyclic character of the problem

we also define
L. = I

where 1<j=<m and £=j (mod m). We denote the length of /;; by L;j. The interval contained
between [;; and /; j; (or the two intervals, if j=m) will be denoted by J;; and its length (respec-
tively, the sum of their lengths) by M;.

f(x)

FIGURE 1.

FIGURE 2.
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LEMMA 8. Let S be a feasible switching pattern for a problem with constant a;. Then

(

PROOF. By definition, W; is the integral of Q;, which is always nonnegative. Thus W; may be thought
of as the area under the curve representing Q;. Since C; > q; in order to satisfy feasibility, Q; is
either rising at a rate a; (when s;=0), falling at a rate — (C;— a;) (when s;=C)), or constant at 0
(when s;=a;). We may represent this as in figure 3. It is also clear that the curve is rising only
during the time that lane i is not being serviced, plus the dead time, that is, during intervals of
length M,‘j+ di.

Now let us group the I;; as follows. By condition (3), there exists t€[0, T such that Q;(z,) =0.
Let I;; be the interval of service to lane i to which ¢y belongs. (Obviously ¢y must lie in some interval
of service.) Let i be the first interval after I;; during which Q;(¢) is again 0. Then the lengths of

the intervals of nonservice to i between [;; and Ik, namely Jij, Ji, j+1, - - . , Ji, k=1, will be M;;,
M i1, . . ., M 1. If we let zj, represent the right endpoint of any interval I;4, then from Lemma
7 we have

[ o= 3@y S Mty

Summing this inequality over all intervals in which Q; becomes 0, we get

aiC;

Wi = [ 0= 52— ﬁ(M,,er)z

This proves the lemma.
THEOREM 9. Suppose that, for constant a;, {l;;} represents an optimal feasible solution, where
m(i=m. Then there exists an optimal feasible solution {I;;} with

m
”_"(l/m)ZLik’ Isisn,
k=1

where L is the length of interval 1;, Ly; the length of ;.

ProoF. Consider the solution defined by L;j= (1/m) Z Lir, where I, , is the first interval and
=1

Q; (t)

/ |
|

/ '
1 .
L

FIGURE 3.
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where interval I is followed by Iy, j for i < n, and interval I,; is followed by I, j+1. Then we have
M,’_,‘:M,', l<sj=<n.
By lemma 8, the waiting time for the original solution satisfies

'C' m
S 5, M

i) i3

Wi(T) =

and the Cauchy-Schwartz inequality yields

" (Mij+di)? = m(My+dy)? 2 (Mij+ di)2.

1 Jj=

F

Thus it suffices to show that the new solution (which by Corollary 5 is feasible) obeys Lemma 8
with equality, i.e., that

Wi(T) fQ(t)dt— (C,C ‘)ﬁ(M,nLd)

From the proofs of Lemmas 7 and 8, it should be apparent that this is equivalent to proving that
Qi is reduced to 0 during each service interval [;;. The condition for this is

(Ci—a)) (Ly—di) = a;i(My+d)), 8)

which will now be demonstrated.
By corollary 5,

_ m
m,L,‘j:E L,’j = md,-+ (I,,'T/C,',

=1

and so

Ci(L—d;) = ai(TIm) = ai(My+ di+ (L;—dy) ),

implying (8) as desired.

Note that Theorem 9 merely establishes the form of one optimal solution. It is clear that we
could get a set of optimal solutions by permuting indices. Furthermore, it could probably be shown
that these solutions are the only ones which are optimal, but this would involve solving a set of
simultaneous linear equations relating the M;; and Lj; and this is not considered here to be worth
the trouble.

Also, nothing is said about the case where m(i) # m(k). This seems to be a much harder
case to analyze generally. However, if N=2 the above proof may be modified so that this problem
is completely solved. For in that case it is obvious that m(1) =m(2), since otherwise two servic-
ings of some lane would be consecutive, giving a higher value for W than that obtained by merging
the two consecutive servicings into one. Also, Lij= M, j_; and L.;= M;. Thus the condition M;;=M
is equivalent to Ljj= L.

Finally, we shall discuss the optimum value of m to choose in the above problem, given T.
Note that if {/;;} denotes an optimal solution on the interval [0, 7] as described above, where each
lane is serviced once during the interval [0, T/m] and this procedure is repeated m times, then
we have
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312-532 O - 68 - 5



mW (T/m)=W(T).

This recalls the work of Rangarajan and Oliver (see footnote 1) in which the function to be mini-
mized is W (T)/T instead of W (T). (Of course, for constant T, minimizing W (T) is equivalent to
minimizing W (T)/T, and the first part (see footnote 1) considers the problem in this way.) We
show how the results can be applied to the above problem.

Suppose that 7" is a variable which is allowed to take on only the discrete set of values 7/m,
m an integer, in the problem where each lane is serviced exactly once during the interval [0, T"].
If W(T")|T" attains its minimum value on this discrete set at the point 7" =T, =T/m,, then W (T)
in the original problem attains its minimum value over all m for m= m,. For we have

W (T|m,) _ W (T|m)
TIm¢ — Tlm °

for m # my; or,
moW (TImy) < mW (T/m).

But by the above remarks, mW(T/m)= W(T) where W(T) is calculated for m cycles of service in the
interval [0, 7], and similarly for moW (T/m).
Thus it is clear that finding my such that W (T'), optimized over all switching patterns, attains
its least value when each stream is serviced my times, is equivalent to finding m, such that W (T/m,)/
(T/my) is a minimum for the optimized solution of the one-cycle case. Now a method is given
(see footnote 1) to optimize W(T")/T" when T" is a continuous variable, and it is shown that W(T")/T"
!

is monotone decreasing to the left of the optimum, 7" =T, and monotone increasing to the right.
Thus if n is an integer such that

T/(n+1) <T,<T/n,

it is clear that the optimum value my sought above must be either n or n+1. In order to deter-
mine which of these values is optimum, it is only necessary to substitute in the expression for the
optimized value of W (T")/T’, also given (see footnote 1). Thus m, is easily determined.

4. Appendix A: Uniqueness of (;

We show here that the s;, and hence the Q;, are well defined by the definition given in the
text. First, it is clear that s;(z) =0 when ¢ is not in some interval of the form (x;;+ d;, v;;). Let us
divide each interval (xij;+d;, yij) into subintervals in which either a;(t) > C; or ai(t) < C; for all
t in the subinterval. It is clear that there will be a finite number of such subintervals, since a;(t)
crosses the value C; at most a finite number of times.

In the subintervals where ai(t) > Cj, it is clear that a;(t) —si(t) > 0, so that Q;(¢) > 0 and
hence we must have s;(¢t) =C;.

Now assume that [b, c] is a subinterval such that a;(¢) < C; for te[b, ¢], and that Q; has been
defined for t€[0, b]. Let

= t
G0 =08+ [ (an —Coar,
and Q;(t) = max (_Q_,(t) »0), for te[b, c]. We will show that this gives the only possible value for Q;.
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For if Q;(¢) > 0 for some te[b, c], then since Q; is changing in [b, t] at a rate at least as great
as ai(7) —Cj, it is clear that Q; 26,-. Thus, s;(t) =C; for such t and so Q,~=(_),-, Now if 6;(1) =0 for
some te[b, cl, since 61‘ is continuous we can find a first point 7 in [b, ¢| where 6,-(1'):(). By the
above argument, Q;(7) =0 also. Since s;(z) = a;(t) in the interval [b, c¢], we must then have that
Qi(t) = 0 for all te[r, c], by the definition of Q;, and so Qi(t) =0, satisfying the above assertion.

5. Appendix B: Continuity of the Objective Function

We next show that the value W (T) associated with a feasible solution defined by a given
switching pattern

{[xij» ¥ii1}
is uniformly continuous in the x;; and ;. Let {[xi, y;;]} and {[xlfj,y,fj] } be two switching patterns
such that, for some stream r, the service intervals for stream r are exactly the same in both patterns

except for one interval endpoint, say x,,. Let Q, and Q, be the respective queue-size functions
yij)}. Suppose that x], < x,,. so that stream r

!
e
is serviced more by the second pattern. Let ¢,=Q,(0) and ¢,=Q.(0).

Construet a new queue-size function (), as the (possibly not feasible) function associated with

for stream r associated with {[xj;, yi;]} and {[x

initial size ¢, and switching pattern {[x};, y;]}. It is clear, by the previous section, that

Qr(1)=Q:(1)

for te[0, x;,]. Also, since
sr(t) = 5,(1)

for te[x}y,, x,p], where s, and s, are the service-rate functions of the two patterns, we have
Q (1) =Q:(2)

for te[x},, xr]. and hence Q,(x,,) < Q,(x,,). Since the two patterns are the same for the rest
of the interval, [x,,, T']. we have by lemma 1 that

0r(t) < Qn(t)
for te[xry, T

Let 5, be the queue-size function defined by

5r(0) =@= 6:'(T)

and having a switching pattern {[xj;, y/;]}. Since Q.(¢) represents a feasible solution, there

exists 7€[0, T'] such that Q,(7) =0. But then
Q+(7) < Qu(7) =0,
implying Q,(7) =0. Now (:),A has the same switching pattern as (—),-. and
ar=0.(T) < Q-(T)=q,
so that (7,-(t) < (Q-(t) for all te[0, T]. and hence

0:(7) < Q.(1) =0,
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implying (:_),(T) =0. Since 6,‘ and Q, have the same switching pattern we may then conclude that

for te[r, T'], and so

Thus 6, is feasible and so Q;.=6,v. by lemma 2.
But {[xi;, vi;]} and {[x}j, yi;]1} differ only on the portion (x},, x,,), as far as stream r is con-
cerned, and so Q, and Q) may differ by at most

Cr(xrp - x;'p)

by the above and by Lemma 1.
Now consider any two feasible switching patterns {[xij, yi;]} and {[x};, y;;]}. and let &; be
the shortest distance between successive intervals of service to the ith stream in either pattern.

That is,

8= min {mjin (=i, j+1—¥ij) » mj_n (xf, ;.1 — 7))

If we have |x;—xj;| < &/3 and [y;;—y};| < &/3 for all j, then
1Qi(2) = Qi ()| < Ci Y, (| — a5+ [yu—j])-
J

For we may find a sequence of feasible switching patterns connecting {[x;, ¥;;]} and [{xj;, y;;]}
such that each two adjacent patterns of the sequence differ in only one coordinate. This is done
by first changing the x;; to xj; and the y;; to y;; so that at each step the interval length Lj; is increased.
When no more such changes are possible, the remaining x;; are changed to xj; and the remaining
¥ij to yj;. Since the sum of interval lengths is not decreased below the smaller of the sum of interval
lengths for the primed and the unprimed patterns during this process, and since no intervals overlap
during the process (because changes in endpoints are smaller than §;/3), all switching patterns
in the sequence are feasible.
Finally, for any two switching patterns {[xy, y;;]} and {[x;, ¥j;]} we assert that

10:(2) =@} ()| < C;'S (Ixy— ] + lyy—v}1)-

J

For it is possible to find a set of intermediate switching patterns
{0y, 991 AL, o413, - { [, 31}

connecting {[xij, ¥;]} and {[x];, ¥{;]} whose interval separations are all at least as great as the
smallest interval separation, &;, of the given pair of patterns. This is done merely by defining

k m—k ,

Toim e L
G Gt %45
1 m m Y
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k m—k
y,~’§-=;l—yu+*—m Yij-

If m is chosen large enough, then we also have that
!xll“}_xll}+l|<81/37 ny)_ys+ll<6l/3s

so that the above inequality for |Q;— Q| follows easily.
This proves uniform continuity of the (); in the switching pattern. A proof of the continuity of
W (T) in the switching pattern follows from elementary calculus.

(Paper 72B3-271)
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