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The problem of interaction in multidimensional contingency tables is investigated from the
viewpoint of information theory as developed by Kullback. The hypothesis of no rth-order interaction
is defined in the sense of an hypothesis of “generalized” independence of classifications with fixed
rth order marginal restraints. For a three-way table, with given cell probabilities 7j, the minimum
discrimination information for a contingency table with marginals pij., p.jx, and pi.. is given by the
set of cell probabilities pfy= aijbjcikmijc where aij, bk, and ci are functions of the given marginal
probabilities, that is, In (pf"jA/n;jk)=ln aij+1n bjr+1In cik, representing no second-order interaction.
The minimum discrimination information statistic, asymptotically distributed as x* with appropriate
degrees of freedom is

ZE;jkx,-jk ln Xijke — ZE;jkxijk ln x:’;,l = 0

where xiji are the observed cell frequencies and x;%, are the “no interaction” cell frequencies uniquely
determined by a simple convergent iteration process of the marginals on 7;j. For lower order marginal
restraints the usual independence hypotheses are generated when i are taken to be the cell proba-
bilities under uniform distribution. It is shown that the set p}, satisfies definitions of no second order
interaction in a 2X2 X2 table given by Bartlett and no interaction in a rXs X ¢ table by Roy and
Kastenbaum, and is also related to that given by Good. Results of application to the analysis of some
“classical” three-dimensional contingency tables are given, together with full details for two four-
dimensional examples.

Key Words: Contingency tables; estimation of cell frequencies from marginals; generalized inde-
pendence; hypothesis testing; information theory; interaction; second-order inter-
action.

Introduction

In the last decade, a series of related papers appeared in various publications on the analysis
of multiway contingency tables. The topic of particular interest was that of the definition and
treatment of higher-order interaction. Among these papers, we cite, for instance, Roy and Kasten-
baum [1956],> Plackett [1962], Darroch [1962], Birch [1963], Good [1963], and Goodman [1964a,

1 Presented by title to the Institute of Mathematical Statistics, Columbus, Ohio 23-25 March 1967 under the title Interaction in Multi-dimensional Contingency

Tables: Abstract in Annals of Mathematical Statistics, Vol. 38, 297 (1967).
2 Supported in part by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under Grant AF-AFOSR 932-65.

* Figures in brackets indicate the literature references at the end of this paper.
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1964b]. Also related were The Estimation of Probabilities by Good [1965], two reports by Bhapkar
and Koch [1965, 1966], and their recent publication in Technometrics [1968].

In these papers, various aspects of the problem were treated and solutions offered. Conse-
quently, results given are usually concerned with individual parts of the problem, depending on

the author’s motivation and interest. We propose to show, that some of these results can be unified
through the use of information theory. The formulation, comparisons, and proofs will be given in

section 2, and applications to the analysis of multidimensional contingency tables in section 3,
following a historical review in section 1. First, however, we shall give a brief description of the
problem ard the notations that will be used.

Consider a random sample of n independent observations, where each observation can be
classified by m criteria of classifications, say: row (R), column (C), and depth (D), for instance.
Suppose there are r categories in the row classification, ¢ categories in the column classification,
and d categories in the depth classification, then there are exactly r X ¢ X d cells in the three dimen-
sional table. Each observation by definition must fall in one of the cells, say, the ijkth cell, with
probability pijr, where i=1,2,. . .,r,j=1,2,. . .,c, k=1,2,. . .,d, are the subscripts relating
the cell to the categories in the row, column, and depth classifications respectively.

Let x;jx represent the observed frequency of the ijkth cell in the sample, so that 2 = n.
Then we have summarized the data in the form of a three-way contingency table with cell proba-
bilities Pijks Zij]fpij]; =1.

Summing over categories over one classification or two classifications, we obtain two-way
and one-way marginal tables respectively, or in symbols:

Xij. = Ekxijk, Xi.o = &jXij. = Ej;\-x,-j;.-,

and the like. Corresponding to these marginals frequency tables, we have similar marginal tables
for the probabilities.

In the analysis of contingency table we are usually interested in the relationship between
one classification and one or more of the other classifications. Suppose the row classification
represents the response of an experiment on animals, the column classification types of treatment,
and the depth classification a distinguishable characteristic of the sampled individuals, sex, for
instance. Then in many respects the hypotheses of interest are analogous to those of independence
and correlation in normal multivariate analysis, e.g.,

1. Response is independent of treatment, or

Hn :Pij.- = Pi--P-j-.

This case corresponds to simple correlation. That is, H, corresponds to the hypothesis that response
and treatment are uncorrelated.
2. Response is independent of treatment and sex, or

Ho:pijk= pi..p-ji.

This case corresponds to multiple correlation.
3. Response is independent of treatment, given the sex, or

__Pi-kP-jk
6y 8 =
ook

This case corresponds to partial correlation.

Of course not all contingency tables can be interpreted in such a straightforward manner.
In some cases all three classifications can be considered as responses; then we may be interested
in the independence or associations among these responses. In other cases a classification may
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be viewed either as a factor or a response. For convenience, we may group all the concepts of
association, dependence, etc., under the general term of interaction. No interaction between
treatment and sex appears to be a more acceptable phrase than independence between treatment
and sex since independence is usually reserved to express the relationship between two random
variables. We may also say that the interaction between response and treatment does not interact
with sex, meaning the degree of association between response and treatment is the same for both
sexes.

Here we come to grips with a concept which gives rise to the idea of second-order interaction
(sometimes called a three-factor interaction when applied to a three-way table). The definition,
method of analysis, and the interpretation of the second-order and higher-order interactions have
been the source of controversy for a number of years. It is probably worthwhile to review the
historical development of the problem and to summarize the various schools of thought on the
subject to gain a proper perspective for the present treatment. A brief account will be given in
the next section.

1. Historical Background.

1.1. Formulation of the No-Interaction Hypothesis

The first use of the “‘no second-order interaction’ hypothesis as relating to a 2 X2 X2 con-
tingency table was due to Bartlett [1935]. The concept remained dormant for a number of years.
Lewis [1962], in his excellent review on the subject, lamented that *. . . there is still no coordi-
nated information available, and the treatment of these tables is still widely neglected in standard
text books.”

Bartlett’s definition was mainly intuitive. Since then, there have been several attempts to
arrive at a logical, consistent, and intuitively acceptable definition that could be derived from
within a wider framework of hypothesis formulation. The main lines of thought can be grouped
into the following classifications:

1. Bartlett’s original definition and its extensions.

2. Simpson, Plackett, and Darroch’s formulations based on symmetrical functions of the
cell probabilities.

3. Good’s definition based on maximum entropy and Goodman’s modification.

1.2. Bartlett’s Definition and lts Extension by Roy and Kastenbaum

Bartlett defined his term, formulated the hypothesis, proposed the statistic and suggested
a method for the solution in less than 25 lines! To use the author’s words, “The testing of inde-
pendence in a 2 X2 table with fixed marginal totals, may be regarded as testing the significance
of the interaction between the two classifications . . .. Corresponding to the hypothesis tc be
tested in an ordinary fourfold table (i.e., a 2 X2 table) of observed numbers n;, n., n;, ny that
piP1+= p2ps, we require to test the hypothesis (of no second-order interaction) that

(1.1) P\PPD7 = P2D3PsPs.
(i.e., pripizepzizpear = prizpiziPiiPese.)

Thus for a 2 X2 table with fixed marginal totals, Bartlett’s definition of no first-order interaction
implies and is implied by independence of the two classifications. Furthermore, he assumed
that the cross-product ratio type of hypothesis can be extended to define second-order interaction
for 2 X2 x 2 tables. It is remarkable that his definition remains the preferred one to this date and
the same hypothesis has been arrived at by others through different approaches.

Bartlett’s definition, however, becomes complicated when the categories within a classification
are more than two—a difficulty acknowledged by him in the latter part of his paper. Proper inter-
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pretation of results of the test also becomes difficult. Moreover, the solution requires lengthy
iterative computation for the solution of (r—1) (c—1) (d—1) simultaneous third degree equations,
where r, ¢, and d are respectively, the number of categories in the row (R), column (C), and depth (D)
classifications.

Norton [1945] extended Bartlett’s definition to 2 X2 X d tables, and devised an iterative pro-
cedure for solving these systems of equations. Roy and Kastenbaum [1956], commenting that
“Bartlett’s and Norton’s papers do not give any indication of the mechanism behind the formula
for the hypothesis of no interaction . . .”, derived a set of ‘“‘no interaction constraints” in an
r X ¢ X d table in the form of

=12, 0. L (r—1)
(1.2) PredPijd _ PrekPik o i—1 2 . (c—1)
PicdPrjd  PickPrjk k=1,2, . .., (d—1).

The set of constraints reduces to (1.1) for a 2 X 2 X 2 table.
The “mechanism” used by Roy and Kastenbaum is based on the fact that the two hypotheses

H] ‘Pi-k = DPi-.P--k

H. : pij. = pi..p-j-
will not usually imply

H:piﬂ;:p,’..p.jk

in a three-way contingency table. The “no interaction” hypothesis is required to generate the
set of constraints such that these constraints, when superimposed on H; N H» should imply H.
The result is the set of constraints in (1.2). In contrast to Bartlett, Roy and Kastenbaum called
(1.2) the hypothesis of “‘no interaction” or “no first-order interaction.” The extension of this
concept to the hypothesis of “no second-order interaction” in a four-way table was only indicated
in their paper. '

1.3. Simpson, Plackett, and Darroch’s Formulation

Simpson [1951] required the definition of “no second-order interaction” to be symmetrical
with respect to the three attributes of a 2 X 2 X 2 table. If some function ¥(pi11, pi21, P211, P221) is
chosen to measure the association of classifications R and C in D, then the function must be such
that the equation

lll(pl 115 P1215 P211, p'lZl) = l!l(pnz, D122, D212, pzzz)

implies and is implied by the equations

lIJ(Pm, 2115 P112, P-_nz) _—'l!f(Pm, D221, Pi122, Pzzz)

and
dI(Pnn P21, P11z, plzz) =l!l(p:11, D221, D212, pzzz)-

He showed that the function w=% or the cross-product ratio used by Bartlett, satisfies this
1110221

requirement. Hence, Bartlett’s definition for a 2X2 X 2 table was accepted. The uniqueness of
this function was not discussed.

In a footnote to Simpson’s paper, the editor suggested that ‘“This paper should be read in
conjunction with the following paper by H. O. Lancaster.” Lancaster [1951] defined the second-
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order interaction by the partition of the chi-square statistic X?; i.e., it is defined as the difference
between the total X2 for testing complete independence of the three classifications, and the sum of
the three components corresponding to tests for independence in each of the three marginal tables.

Plackett [1962] compared Simpson’s definition with Lancaster’s definition [1951] and showed
that the latter does not always satisfy the condition of symmetry. He accepted Roy and Kasten-
baum’s definition given in (1.2) for an r X ¢ X d table, and extended the analysis of log-frequencies
[Woolf 1955] to such tables as an alternative method of analysis which is computationally easier
than the solution of (r—1) (c—1) (d — 1) simultaneous equations of the third degree.

Darroch [1962] made an explicit comparison of the definitions of interaction in multiway con-
tingency tables and in the analysis of variance. He found that there are resemblances between the
two definitions but “that interactions in contingency tables enjoyed only a few of the fortuitously
simple properties of interactions in the analysis of variance.” The main point he made (also made
by Roy and Kastenbaum) was that a natural symmetrical definition of “‘no second-order interaction”
(1.3) __D-jkDi-kPij-

B Di..pP.j.P..k

necessarily imposes constraints on the marginal probabilities pij., p.jk, pi.x, i.e.,

Pij- Pi-kP-jk
Sipijk= Pij. = Sk -
Pij / Di..p.j. Dok
or
s, RikD-jk Div D
D.-k

for all i, j, and the like. This is of course undesirable since the condition for ‘“‘no second-order
interaction™ should relate p;j to any given set of marginal probabilities and should not place restric-
tions on the latter [cf. p. 172 Kullback 1959].

Consequently Darroch defined a “perfect three-way table’” as one for which condition (1.3),
and the resulting restraints on the marginal probabilities, are satisfied exactly. He concluded
further that “in imperfect tables it is not possible to express pijx in terms of simple functions of
pij-» Pi-k» and p.jx when there is no second-order interaction.” The existence and uniqueness of
the set pij as the solution of (1.2) for any given set of mutually consistent marginal probabilities
was conjectured for rXcXd tables and proved for the 2 X2 X2 case. The search for a simple
formulation in terms of parameters which are implicitly defined by the marginal probabilities led
Darroch to define

Pijk= MOiBriyij
where
Zpa=ZiBri=Zjyii=1,
and
MZijeiBriyij= 1;

and showed that

iok . P
, and yj; = —"
- Y pi..
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Since there is no solution in closed form to the maximum likelihood equations for the parameters
under hypothesis of no second-order interaction, unless the observed table happens to be perfect,
Darroch suggested an iterative solution and gave a numerical illustration using the example given
by Kastenbaum and Lamphiear [1959].

It is of interest to note that Darroch suggested the likelihood ratio test based on

Nijk
Zrep=2Zjjknijr In <M—AA)
npeiiVij

which is asymptotically distributed as x> with (r—1) X (¢c—1) X (d—1) degrees of freedom.

Birch [1963] accepted (1.2) as the definition of no second-order interaction in a 3-way table and
discussed maximum likelihood estimation of expected frequencies for many-way tables under
different hypotheses. He also proved the conjecture by Darroch that the expected frequencies in a
three-way table are uniquely given by the marginal totals if the expected frequencies are known to
be positive and to satisfy the hypothesis of no second-order interaction. Thus, given any set of
positive integers nij he showed that there is one and only one set of positive numbers n; that
satisfies the equations

n. =nij., ni;=ni., and n¥ = n.jk,
and also the conditions given by the no second-order interaction hypothesis expressed by (1.2).

1.4. Good’s Formulation

The formulations of the hypothesis of no second-order interaction summarized up to now are
basically extensions of Bartlett’s. Justifications for such formulations are given in a number of
ways: (1) residually as the difference between the independence of one classification (R) with the
other two classifications (CD) and the two independence hypotheses (RXC) and (R XD);
(2) by symmetry requirements; (3) by analogy with analysis of variance. Lancaster [1951] also pro-
posed a formulation based strictly on the analogy of the partition of x> to the analysis of variance.
The shortcomings of his method were discussed by Lewis [1962] and Plackett [1961] and will not
be repeated here.

Good [1963] proposed to use the principle of maximum entropy as a heuristic principle for the
generation of null hypotheses, with main application to m-dimensional contingency tables. Three
versions of this principle are given in his paper. We quote here his Principle of Minimal Discrimi-
nability: “Let X be a random variable whose distribution is subject to some set of restraints. Sup-
pose that, before the restraints were known, there was some distribution that seemed reasonable
to entertain as a null hypothesis, called an initially ausgezeichnet hypothesis. This hypothesis is
perhaps refuted by the constraints. Then, in view of the restraints, entertain the null hypothesis
that, if true, can be discriminated from the ausgezeichnet hypothesis at the minimum rate, i.e.,
for which the expected weight of evidence per observation is least.”

Numerous examples and theorems are given in Good’s paper. By using his principle, it is shown
that for an m-dimensional 2X 2 X . . . X2 contingency table (p))=Pi,is . . . im), i1, 02, . . .,in=0,
1, and with all the marginal probabilities down to (m — 1)-way assigned, the null hypothesis to be
tested is

|i| even [i| odd

pPi= Pi

i i

where |i|=i1+i2+. . .+ in. The expression reduces to (1.1) when m= 3.

Good also generalized the definition to that of no rth-order and all higher-order interactions in
an m-dimensional contingency table with a complete set of rth-order restraints by means of discrete
Fourier transforms of the logarithms of probabilities. However, the interactions so defined are
usually complex valued unless the categories within each classification are equal to two. Goodman

164



[1964] followed the definition by Good but proposed a test that yields real valued interactions.
Goodman’s proposed test is based on Wald’s criterion [1943] and unrestricted maximum likelihood
estimates, and is essentially an extension of the tests proposed by Plackett [1962] and Woolf[1955].

While Good’s and Goodman’s formulations and tests of no-interaction hypotheses are entirely
general, physical interpretations of their meanings became extremely difficult, if not impossible,
for interactions higher than the second, in which case these interactions reduce to the ones dis-
cussed before. Bhapkar and Koch [1965, 1966, 1968] outlined the models, tests, and interpretations
of the hypothesis of no interaction in three-dimensional and four-dimensional contingency tables
in great detail, and compared results of using different statistics, all based on Wald’s criterion, for
several numerical examples.

1.5. Conditions Essential to a Definition of Hypothesis of No Interaction in
Multidimensional Contingency Tables

Based on the above review of treatments of higher-order interactions, it appears that several
basic and related concepts are important in the formulation of its definition:

a. The Fixed Marginal Totals

In fact, to talk about the rth-order interaction in an m-way table, the r-way marginals must be
considered fixed: for otherwise we would be considering a less restricted hypothesis which includes
the no-interaction hypothesis as a subhypothesis. This concept was implied in Bartlett’s and Roy’s
definition, and explicitly stated in Good’s definition. Darroch and Birch also assumed fixed mar-
ginals. Goodman and Bhapkar, on the other hand, did not make such a demand on their definitions,
and hence their formulations are less desirable in the sense that their interaction does not measure
the interaction as given by the data, but that possibly for another set of data with somewhat dif-
ferent marginal totals.

b. The Requirements of Symmetry
This requirement is a “‘logically attractive™ condition as stated by Simpson, and demands that
the statistic be invariant upon relabeling of the classifications. This requirement is again satisfied
by all investigations with the exception of Goodman, and Bhapkar and Koch, who maintained that
the symmetry requirement is not necessarily desirable for certain physical interpretations.

c. Unique Set of Cell Probabilities (p; > 0)

The no-interaction hypothesis, which is presumably the last hypothesis to be tested in a hier-
archy of hypotheses, should determine the cell probabilities uniquely. This condition was conjec-
tured by Darroch for his formulation of the no second-order interaction hypothesis and shown to
be true by Birch and Good. A measure of deviations of the data from this set of cell probabilities
would therefore be a measure of interaction.

d. Additivity of the Statistics

The “mechanism™ used by Roy and Kastenbaum in their definition of no interaction demands
that H; (R is independent of C)NH, (R is independent of D)NH, (no interaction) implies H (R is
independent of CD). The same requirement was also discussed by Birch [1963]. In general, if a
more restrictive hypothesis can be considered as the intersection of several less restrictive hy-
potheses, it would be logical and desirable to require the test statistics for the component hypotheses
to sum up to that of the more restrictive hypothesis. This requirement is not fulfilled by the usual
X? statistic except in an asymptotic sense. The additive analysis of component variation, similar
to that of analysis of variance, is a desirable feature of information analysis as noted by Lewis
[1962].
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2. Interaction from the Viewpoint of Information Theory

2.1. The Minimum Discrimination Information Statistic (m.d.i.s.)

In the analysis of contingency table data, two major types of hypotheses are usually postulated
and tested. One is a test of the cell frequencies of an observed sample table against known or given
probabilities of a table of the same size, the other is a test of the structural relationships that seem
reasonable among the classifications, e.g., association or independence among responses, homo-
geneity of response over several categories of a factor, etc.

In Kullback [1959], and two papers by Kullback, Kupperman, and Ku [1962a, 1962b], a number
of useful tests for contingency .tables based on the notion of information theory are given for hy-
potheses which can be expressed explicitly as functions of specified marginal probabilities. The
minimum discrimination information statistic, m.d.i.s., was suggested as the test statistic which, in
its simplest form for a two-way contingency table, can be expressed as
(2.1) 2nl (p:m) =25 ijxi lnnx#

Tij

where 7r; is the probability of an observation from the ith row and jth column of the table under
the null hypothesis, 2;jm;;= 1, x;;jis the observed frequency of occurrence in the corresponding cell,
Sijxij=n, and In is the natural logarithm. 0 In 0 is defined as zero.

Similarly, the m.d.i.s. for the test of independence between the row and column classifications,
i.e., mij=.7.j, is shown to be

(2.2) 20 (p : ) =25 jxi; ln

xj
n

where x;.=3jxj, x.j= 2x;j, are the row and column marginal frequencies of the two-way table.

We may consider either of the two tests given by (2.1) and (2.2) to be a comparison of the ob-
served frequencies against a set of frequencies in a constructed table represented by x np;“j,
where {p5} is the set of cell probablhtles that “most” resembles {7;;} subject to certain marginal
probability restrictions. In fact, the set of {p}} can be obtained by minimizing the discrimination
information

(2.3) 2l(p:m)=22i;pij ln £

subject to these restrictions. For the case considered under (2.1), the minimum value is zero for
pi;=mij, the restriction Zjjnp};=n is always fulfilled. For the case (2.2), the minimum value of (2.3)
is attained for pj;= pi.p.;, with the restriction np;. = xi., and np.;j=x.j, as shown in Kullback et al.
[1962b].

It would clearly be desirable if this concept could be extended to the formulation of second-
order and higher-order interactions. Here, however, we encounter essentially the same difficulties
as discussed by Darroch, i.e., these interaction hypotheses cannot be formulated in terms of ex-
plicit functions of the marginal probabilities such that these functions also satisfy all the fixed
marginal total restraints. To resolve these difficulties, we need to give a number of new results
with information theoretical background due to Ireland and Kullback [1968] in conjunction with
their study of an estimation problem first considered by Deming and Stephan [1940]. We shall
summarize these results in the next section and show how they may be applied to give a unified
approach to the analysis of interactions in multidimensional contingency tables.
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2.2. Summary of Current Results

In the following we shall present a number of current results in the form of three theorems.
Proofs for theorems 2.1 and 2.2 using properties of the minimum discrimination information are
given in Ireland and Kullback [1968], and will not be repeated here. The use and interpretations of
these theorems in our case for the purpose of hypothesis testing, however, are quite different from
that of their paper which essentially treats a problem in estimation. These differences will be
discussed and appropriate modifications to the statement of these theorems incorporated.
THEOREM 2.1. Given a contingency table {m;},i=1,2,. . .,r,j=1,. . ., ¢, m;>0, Zym;=1.
Consider all contingency tables {py;} of the same dimension such that the marginal probabilities
pi. = Z;py; and p.;=Zip;; are given and fixed. Then the minimum value of the discrimination infor-
mation

(2.4) I(p:m)=Zypys In 2

ij

is attained for py;= pj;= abym;; where the a’s and by’s are determined subject to the marginal
probability restrictions.

Deming and Stephan [1940] considered the problem of estimation of cell probabilities from a
sample of observations in an r X ¢ table for which the population marginal probabilities p;. and p.;
are known and fixed. Hence if we use the maximum likelihood estimates of the cell probabilities,
;= nijln, which do not necessarily satisfy these marginal restraints, then the question can be
posed “What is the p;; distribution satisfying these restraints and also ‘closest’ to the observed
sample in some sense?” Deming and Stephan [1940] suggested using estimates that minimized

(2.5) X")2=Zi;(nij— npij)®nij.

Ireland and Kullback [1968] suggested minimizing the discrimination information (2.4) which
generates RBAN estimators, as does Deming and Stephan’s procedure.

We note that 7 is not specified in the theorem. If, instead of letting 7i;=nij/n, we use i; to
represent the cell probabilities of some reasonable hypothesis which we are interested in, or the
ausgezeichnet hypothesis in the sense of Good, then the pj; distribution will represent the distri-
bution that is “closest” to this hypothesized distribution subject to the marginal restraints in the
sense of minimum discrimination information or “minimal discriminability”. For instance, if
;= m.m.j, or the hypothesis of independence of row and column classifications, then by theorem
2.1,

pii= aibjmy;,
pi.=Zjpii= aiZbjmij,
p.j=Zipij=bjZiaimij,

and

w__ P Py . _ pi-p-j I
L) £ 7T,'.Zjbj77.j w.jZia;m. iy (Ejbjw.j)(E,-a,-m.) bebe

since Zjjaibjmij=1.

The hypothesis to be tested is then the independence of the two classifications subject to the

restraints np;. = xi. and np.;=x.j, the fixed marginal totals. '
Theorem 2.1 is stated in terms of a two-way contingency table for notational convenience. For

a three-way contingency table, if mij.= mi..7.;.7..x, then pfjy= aibjcimiji and the hypothesis to be
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tested is pijp=pi..p.;.p..r, following the same derivation as the two-way table exactly. We shall
define all such hypotheses where the one-way marginals are completely specified as the no first-
order interaction hypothesis.

Extending this concept, we shall define no second-order interaction in a three-way contingency
table as represented by the pf distribution when all the two-way marginals are considered as fixed
and for appropriate selection of m;j;. The justification for this formulation will be discussed in
subsection 3.2. Theorem 2.1 can be then restated as

THEOREM 2.1A. Given a contingency table {my},i=1.2, . . .. r,j=1.2, k=1, 2,
d, Sk = 1, where the > 0 represent cell probabilities of some reasonable hypothesis. Consider
all contingency tables {piy} of the same dimension with fixed two-way marginals pi;., p.j. and

Pi-k» then the minimum value of the quantity

— puk
I(p )= Eukp”k In

Tijk
is attained for pix= pj, = aibucicijk. Sikaibcikmiin = 1. where ay;, by, and ¢y are functions of
the given two-way marginal probabilities. Equivalently, the condition may be stated as

(2.7) In —lk Pl _ =In a;+ In by, + In cy,
Tijk

representing no second-order interaction among the three classifications.
To compute the numerical values of p? i We need
THEOREM 2.2. The set of p; in Theorem 2.1 can be computed by an iterative procedure alternatively

satisfying one and then the other marginal restraints. The iteration is given by

i Pi _ Py
(2n—1) — n—2 n) — (2n—1) =1 ¢ =
pi"! _pt’n*’)p( =), phi b i n=1,2_ ..., Py =y
If p{}) represent the value of the cell probabilities after the Nth iteration, then either pi=ty=n,

for some finite N, or p"’*plJ
We shall indicate the first few steps of the iteration process for a two-way table using the

relationship
pi = aibym;, pi. = ai2jbymij, p-= bZiaim;
Let bV =1. then
pi- = a\Vmi., Py = b mij = aVb{Vm;,
i.
p-j= b®Zia "y, Py = 511) Py} = dVbP ;.
)

_ 9 D —_ ll o3) P 2
pi.=a®3 b, pi = e PR = a2,

. ; P
p.j=bPiaPmy, il “J) PP = aPbPm;;,
P’
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i o 2 e U £
[)i-—(l(i")zjb‘;")ﬂij_p(i?" 1)’ I)gn o) = p(gn p p(ln 2) — (l{,-")b}")'”ij-

= pn+ 1Y (). . — p(2n) (2n) — H(2n—1) )h(n+1)
P-j b]. 21(1,- TTij DI, Dij (2n—1)1 a(n b(n mijs

)

ete:
Of course if ;= .7, then after one cycle of iteration on the two marginals, we have

, . pi.
=P oy___ Pi  Pi_
& Im’ pi . T
i
SAk L
Ti.

i
— ' Ppi.T.j

=Dpi.p.j

and the marginal restraints are satisfied exactly. Hence the iteration process terminates and the
solution is exact.

The results of iteration with different sets of specified marginals for a four-way contingency

table i, i=1, . . . ,r,j=1,. .. ,c,k=1,. .. ,d,and [=1,. . . ,t, are given below for

purpose of illustration.
Let the given marginals be

(2.8) Di---, 1Dotbog Dekes [Dsooii
then
(2.9) p,J,\, aibjcrdimiji

Di... = aiZjkibjckdimmijr

p-j.. = biZipaickdimijr

Dok C/\vziﬂ(l,'bj(l[ﬂijk[
D..l— d[Eijk(libjCk’n','jkl

The iterative solution of the system (2.9) cycles through

. () J00 iy (n+2) — Poie ansn)
(2.10) Pijkt Dijxi Dijr ijkl
(4n) (4n+1)
pm pis
pun+;>— 10 )(4;\1I+2> I)MI:IIH)— Dol (inta)
o Pijil ij o Pijki
pig® Py
Let the given marginals be
(2.11) Dieees Dejes and p..x.
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Then the problem is essentially that of a three-way table pijm where m= (k, {) =1, . . .

given p..x determines the marginals p..;. and p...;, that is (2.11)=)(2.8),

Ei';.-l])?‘f In B&Ls S p~>|f In BZLL
TG Tijki v im Tijm
Let the given marginals be
(2.12) D Di-ke » Di- -1 Dejk- » [Drelle D- ki,
then
(2.13) p,ﬂ‘, aijbiccudjrejfrimijri,
Pij-- =(lijzklbikcildjkej(f KITTijkl
[)--kl:fkl2ij(lijbikCil(ljkejﬂTijkl.
and the iterative solution of the system (2.13) cycles through
L) P = e P - e PR

Since the marginals given in (2.12) determine those given in (2.8) and (2.11), i.e.,
(2.12) = (2.11) = (2.8), it follows that
(2.15) I[(p*:m|2.8) < I(p*:m|2.11) < I(p*: m|2.12).

If the given marginals are

(2.16) Pijk- Pij-1» pi-ki and p.jur,
then
(2.17) p,?;,‘., = aijbijicimidikimiji

Pijk- = (lijkzlbijlciI.-ldjkmijkl.

P-jki = (IJI\IE (lul\bulcll\IWIﬂ\I

and the iterative solution of the system (2.17) cycles through

(n+1)— Pk ap (n+d) = PRy
pul\l (4n) uiflo o o o9 I)_)I\I (dn+ 3) P iykt -
11_}’\ ] ki

Since (2.16) =) (2.12) =) (2.11) = (2.8), it follows that
(2.18) I(p*:7|2.8) <I(p*:m|2.11) < I(p*: w|2.12) < I(p* : w|2.16).
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These relationships will be useful in the construction of analysis of information tables to be
described in subsections 3.1 and 3.2. The appropriate choice of 7y will also be deferred for
later discussion.

A third result we shall need is
THEOREM 2.3 The equality

(2.19) Ip:m)=1Ip:p*+1(p*:m)
holds true for p* computed by the procedure stated in Theorem 2.2 where the p*- and p-distribution

have common specified marginals.

This is a special case of a property of the minimum discrimination information and can be
deduced from a theorem in Kullback and Khairat [1966]. We demonstrate the theorem as applied
to a three-way contingency table when all two-way marginals are considered fixed, and where

2D = Zkpijk = pij-»

| J— p—
2Pk = ZjPijk = Di-ks

Eip;;k = 2,‘[),']';.- = P.jk.

We have
*
Pijk
(2.20) Zijwpiye In
= Ziep i In aij+ Zip e In b+ Zijepy In cir
= Z,-,-p,;. In aij+ Ejk[).jk In bjk+2ik])i-k In cix
*
p..k
= Eijk[)ijk ]Il ‘7#;’\
Hence,

il
I(p:m)= Eijkl)ijk In .
Tijk

Pijk P

Zijkpijk In p?cjk‘{"zukp'ﬂ\ In Tijk

=I1(p:p*) +I1(p*:m).

2.3. The No-Interaction Hypothesis as a Form of “Generalized Independence”

The formulation of no second-order interaction given in theorem 2.1 A suggests that all no inter-
action hypotheses can be defined in a similar manner, depending on the marginals which are
considered given and fixed. Since higher-order marginals determine all lower-order marginals,
it is natural to consider the mr-distribution as the uniform distribution, corresponding to the case
where no marginals are specified, as a general form of independence. For the uniform distribution,

* S
Pijit = Tijkl = 7~
3 " red

. in a four-way contingency table. Given all one-way marginals and taking miju
cC
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=—— we obtain

redt

(2.21) Pliii— PiDojo Do sty

i.e., the distribution which ““most resembles’ the uniform distribution subject to the four one-way
marginal restraints. Derivation of (2.21) follows exactly as that of (2.6). Given all two-way mar-
ginals, the distribution that “most resembles” the uniform distribution subject to the six two-way
marginals restraints is the p¥ distribution representing no second-order interaction. Given all
four three-way marginals, we obtain pj corresponding to no third-order interaction.

In this sense the no-interaction hypotheses can be considered as generalized forms of in-
dependence hypotheses, where the “degrees’ of independence that can be realized depend on
the marginal restraints imposed. Each time we add on a restraint, we obtain a p™* distribution cor-
responding to the condition of minimum discrimination information subject to the additional
restraints, and corresponding to the appropriate null hypothesis to be tested given this additional
restraint.

Hence we may state the principle of minimum discrimination information for the generation
of appropriate hypotheses:

“If certain marginal probabilities of a contingency table are considered given or fixed, then
the appropriate interaction hypothesis to be tested, subject to these fixed marginal restraints,
is the hypothesis represented by the unique set of cell probabilities p% | satisfying these restraints
and yielding the minimum value of discrimination information

(222) ](1) H 7T) = Ei_}lrll)ijlrl In Pijkl + In redt

fOF a]l [),'_,'/,-[.”

It can be shown that all the usual “classical’” hypotheses can be generated by the application
of this principle. If complete sets of marginals are considered given in a four-way table, we arrive
at the following sequence.

Marginals considered as fixed No-interaction hypothesis
- w1 zeroth-order
p....=1 i — .
redt (uniform).
. first-order
Pooe o Pejee s Pkl P ..l P

(4-way independence).
Dy Dik- » J2o dllc P-jk- - Bl Dk 2% second-order.
Pijk- Pij-1 Pi-kis D-jkt i third-order.

fourth-order

3
e 2 = Dkt
Pyt Py =Py (no test).

If only part of a complete set of marginals are given, a conditional type of independence is
generated. Some of these hypotheses for which the pfj,, can be explicitly expressed in terms of
the marginals are given in table 2.1. We demonstrate here the generation of the conditional inde-
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pendence in a three-way table when two of the two-way marginals, pij. and p.jx are assumed to
be fixed.

TABLE 2.1. Some explicit expressions for pi”;kl
Marginal restraints Pl
p....=1 1/redt
Direr- pi.../Cdt
Di-.. 5 D-j.- pi.‘.p.j../(lt
Divev s Dejor s Dok Di---D-je-D- k-t
Picev s Dejee s Pecke s Peesl Pi-..D.j--D--k-P...1
Dij- pij--/dt
Pije« s Pkl Pij--P- -kl
Dejee s Pie-ls Pkl DejeDie P kil D1
Dij-- s Di-k- 5 Pi- -l Dij- -Di-k-Di- -1l (pi-..)?
Pij-+ s Pi- -1 D. -kl Pij- .]),'..1])..;,-1/]),'...[)...1
Pij- < » Pi--ls P-jk- no explicit expression

By theorem 2.1A we have
Pk = aijbiiji,
subject to the restraints
E,'[);kjk == [)jkE,‘(lij’lT,'jk = P-jk,
2P = @i ZrbjTrie= pij.-
Hence

Pk PDij.
2'i(lij7Tijl-‘) (Ek‘bjkﬂijk)

CMijk*

(2.23) Pik= (

If we let 7Tjjk:i. then

red

P-jkPij- __P-jkPij-
,'kllij[)jk’lT,‘jk P.j.

[}

(2.24) ]),?5,‘.:2

or the conditional independence hypothesis of the row and depth classification given the column
classification.
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It is of interest to note that the same expression for pf in (2.24) is obtained whether we use
(2.25) Tijk = l/rcd
Tijk = Ti..TM.j.T ..k, OT
Tijk = ’ﬂ'[j.ﬂ'.jk/'ﬂ'.j.'
Thus, as long as mjx represent the condition of generalized independence corresponding to mar-

ginal restraints of an order lower or equal to the given marginal restraints, the same set of p?’},\. will
be generated by our procedure. In the present case

given (Pijes Pjk) =) (Dievs Pojos Pok) =) P

A simple proof of this property is as follows. The set of p,?';.k is obtained by minimizing the
discrimination information

Pijk
I(p g 7T) — E,‘jkp,‘jk In 4
ijk
subject to given marginal restraints. Now
(2.26) I(p : m) =Zupijk In pijk — Ziepije In i

and the second term of the expression in the right-hand side of (2.26) reduces to a constant no
matter which form of 7 in (2.25) is used. Hence the same p;';k will give the minimum value of
(2.26). Good [1966] showed that the chains of hypotheses generated by the principle of minimum
discriminability depend only on the increasing sequence of linear constraints, irrespective of
which of the existing hypotheses the new ones are referred to.

2.4. Consistency of Information-Theoretic Definition of No Second-Order Interaction
With Other Formulations

We shall show that the definition of no second-order interaction given in Theorem 2.1A is
consistent with the formulations given by Bartlett, and Roy and Kastenbaum represented by
(1.1) and (1.2). We may remark here also that the p*-distribution’satisfies all the four requirements
in subsection 1.4. The p*-distribution satisfies the requirements of (a) fixed marginal totals (b)
symmetry and (c) unique set of cell probabilities because of the way it is derived. Additivity is a
property of m.d.i.s. [Theorem 2.1, ch. 2, Kullback 1959] which facilitates the construction of analysis
of information tables.

For an r X ¢ table with given set of cell probabilities p;; and ;;, let us find the table with the
same marginals as p;; but minimizing the expression

f(dij) =2ij(pij+dij) In (Pij: -dij)
ij
with

2,-d,-;=2,~d,,~=0.
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Since f(dij) is a convex function, its minimum is given by the d;;’s satisfying the set of equations

af(dij) —0=In pijtdi 1n Piet dic 1o Prit drj+ In Pret dre
ad;; ij Tic Trj Tre

For the values of d;;’s satisfying the above let p;;+dij= p{5, then the set of equations reduces to

* * * *
Tij Tre Tic Trj

and all are satisfied by
pﬂ’i:aibjﬁij.
This procedure is essentially what Bartlett used in getting a solution to the no second-order

interaction hypothesis in a 2X2X2 table. Bartlett specified the condition of no second-order
interaction to be

@ 28) pmpnzzzpznpzzz
: Pi11zPi121 P212P221

For observed cell frequencies x;j:, he solved for A in the equation

(xln +A) (x122+A) — (xzu_A)
(xllz_A)(xlzl_A) (x212+A)

20— A)
21+ A)’

(x
(2.29) x

and computed

. 1
X2 — A-Z,»jk -
Xijk
In fact, Bartlett’s X2 is an approximation to 2n/ given in (3.3). If we let xijk =% = A and expand
xiji In xyj about x5, In x5, by a Taylor series expansion up to A%, we have
ke * * Az ]'
Xijk In Xijk = Xk In x,-j,‘.iA(ln xijl.-+ 1) +7 ===l
X ijk,
Summing over i, j, k=1, 2,
L A AT R Sl e MECTE. SR
ijXijk 1N Xijk = 2ijkXij 10 X5 ijk (=4)(In Xijk ) @ Uk x.’*fl\
ijk

Since the middle term on the right hand side is equal to zero by (2.28),

2nl= 2% jkxiji In fc_"{‘,: = A2 - A8,

ijk Xijk

Also it can be checked readily by substitution that if a mj: distribution satisfies (2.28), then the
pi distribution also satisfies (2.28) when p. = aijbjicivmij. The same is true for the set of con-
ditions of no second-order interaction in an r X ¢ X d table given by Roy and Kastenbaum in eq (1.2).

It is to be noted also that Good’s Principle of Minimal Discriminability is essentially the same
as our Principle of Minimum Discrimination Information. Darroch’s suggested procedure and our
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procedure also share a number of similarities. However, we have demonstrated that many hypoth-
eses of interest for contingency tables can be generated through one unified procedure based
on information theory and the hypothesis of no second-order interaction is no exception. Further-
more, the properties of the minimum discrimination information statistics, convexity and additivity,
allow us to derive and interpret these statistics naturally, and to construct the analysis of informa-
tion tables for an overall comparison between the sample and the nested sequence of hypotheses.

For other related literature dealing with a similar problem but not in the testing of no-inter-
action hypctheses in contingency tables, we cite P. M. Lewis II [1959] and D. T. Brown [1959].
Lewis, on an ad hoc basis, considered approximations to a discrete probability distribution over
the space of binary random variables by distributions which are products of various marginal
distributions of the original one and measured the goodness of fit by the discrimination information
measure. D. T. Brown extended this notion to using an approximating distribution having certain
marginals the same as those of the original distribution. He described an iterative procedure
which is the same as the example following theorem 2.2, and showed that the goodness of the
approximation improves at each step of the iteration using discrimination information as a measure
of goodness. The procedure he described is the special case of an n-way 2X2X . . . X2 table
with initial cell probabilities all equal to 1/2".

3. Analysis of Multidimensional Contingency Tables
and the Interpretation of Results

3.1. The m.d.i.s. for the No-Interaction Hypothesis

In the last section we have shown that the no-interaction hypothesis can be considered as a
hypothesis of generalized independence, subject to fixed marginal restraints. Furthermore, the
unique set of p*-distributions can be computed by a convergent iterative process alternatively
satisfying the given marginals.

Let po represent the cell probabilities under the hypothesis of uniform distribution. We say
that {p*} is the table that most resembles {py} subject to these marginal restraints, or there is
no interaction between {p*} and {py} in the sense that

. p*
L(pt:ipo)=2pn
Po

is a minimum for all p’s consistent with dimension of the table and the given restraints. For any
other table we may write

* s
(3.1) >p lnﬂzzp* ll]p—+{2p lnﬁ—Ep* lnp—}-
Po Po Po Po

Since the first term on the right represents the condition of no interaction, the term in the bracket
*
(3.2) 2p ]nE—Ep* In p—=2p In ﬁq
Po Po P

is then a measure of interaction, or the departure of the p-distribution from the no-interaction
distribution. The equality in (3.2) follows from theorem 2.3.

Given an observed sample with cell frequencies x;j. in a three-way table, and let x;;.,x;.;, and
x.jr be the given marginal restraints, then the m.d.i.s. for testing the hypothesis of no second-order
interaction is
(B 2711([3 2p*) = 22,’»,'/‘-)(,‘]'/; In %

ijk
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where xfir=npi, and p=1xij/n.

The distribution of 2rI (p:p*) is asymptotically chi-squared as shown in Kullback [1959]. Kupper-
man [1957] with (r—1)(¢c—1)(d—1) degrees of freedom. The same result is obtained if we note
that pj’s are RBAN estimators in the sense of Neyman [1949] of the cell probabilities under the

hypothesis of no second-order interaction, or CAN estimators of Rao [1965, p. 288]. The degrees

of freedom are calculated from the general principle of equivalence of degrees of freedom and the
number of independent restraints imposed by the specified marginals. In this case the degrees
of freedom are

(3.4) red—1—(r—1)(c—1)— (r—=1)(d—1)—(c—1)(d—1)—(r—1) —(¢c—1)—(d—1)
= (7=1) (= 1) (@=11))-
For a four-way table, the relationship between various interactions corresponding to com-

pletely specified sets of marginals are given in table 3.1. The following notations are used in the
computation of degrees of freedom:

(3.5  N=rcdt—1=N;+N>+N;+N,
M= (m— = (= SR IS
No=(r—1)(c—1)+ (—1)(d—1)+(r—=1) (=1 +(c—1)(d—1)+ (c—1)(t—1)
+(d=1—1)
Ny=(r=1)(c—1)(d=1)+ (r=D(c=D =1+ (r=1)(d=1) (1)
(@ ()
Ni=(r=1D(c=1(d=1)(t—1).

TABLE 3.1. Analysis of information— four-way table

Information For testing the hypothesis of Degrees of freedom
2nl (p :p3) No third-order interaction N—N,—N>—N3=N,
2nl (pi:p5) Ny
2nl (p :p¥ No second-order interaction N—N;—N.
2nl (p¥:pi) N,
2nl (p :pi) Independence (No first-order interaction) N—N,
2nl (pi*:po) N,
2nl(p :po) Uniformity N

In table 3.1 we have specified a complete set of marginals as fixed for each hypothesis. This
restriction is clearly unnecessary. We shall define the p*-distribution generated by a partial set
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3

of marginals or a mixed set of marginals of different order as the no ‘“mixed-order interaction”
hypothesis. An example of mixed-order interaction is the conditional independence hypothesis
given by (2.24), where only two of the two-way marginals are specified in a three-way table.

To simplify the notation for a step by step analysis of a four-way table, let us denote the
quantity

. zijl-'lp:;kl In P?;A-l
by H( ) where the indices within the bracket stand for the marginals that are considered fixed.
If all the two-way marginals are considered fixed, we may write H (given two-way), or other de-

scriptive phrases with defined meanings. The symbol () will be used to denote the difference
between H( ) and H (data).

We note that the “H " notation used here is the notation for entropy. For the case 7;j. = 1/rcdt,
the problem of minimizing I (p:7) in (2.4) subject to certain restraints is equivalent to minimizing
(3.6) Sijk pijie In pijr+ In redt,
or maximizing the entropy
(3.7) —Eijklpijm In DPijkt
subject to the same restraints. The latter problem has been considered by Good [1963, 1965, 1966].

Since higher-order marginals determine all lower marginals, we have, corresponding to (2.18),
the following:

(3.8) H (data) < H (given 3-way)=H;

< H (given 2-way)=H,

< H (given 1-way)=H,

< H (uniform)  =H,=In redt.
Hence,
(3.9) I (given 1-way)=H, — H (data)
=[H,—H (data)]+ (H,—H>)
=] (given 2-way)
(3.10) I (given 2-way)=H,— H (data)

=[Hs;—H (data)] + (H.—H3)

=] (given 3-way)= 0.

In table 3.2 the two-way marginals are added one by one to the four one-way marginals until
all six are specified; then the three-way marginals are added one by one to the complete set of
two-way marginals until all four are specified. The components of information are expressed in
terms of the differences in entropies, and when possible, also in terms of the form that can be
obtained through the convexity property of m.d.i.s.
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TABLE 3.2.

Interactions in a four-way table

Marginal restraints
added

3
Pijri

Information

Form obtained by
convexity property

d.f.

DPicees Dejeoy Deckos Peesl

DiceeDejosPeckoPessl

H(i,j, k,1)— H(data)

Dijki
Di...DejePecpP...l

SijrPijke In

redt—1—(r—1)—(c—1)
—(d—1)—(t—1)=N-—N,

Jeno0 Dafiod Dooik]

H(i,j, k,1)—H(,j, kl)

A

a P--kl . _
=H(k,1)—H(kl) Tl — (d=1)(t—1)
H(i,j, kl) — H(data) A Diik
2 ijkiDijkt lnp;...ﬁ.;l.‘.lp..,;l N—N,—(d—1)(t—1)
‘  Di-tD--ki H(i,j, kl)—H(j, kL, il) . Pi--1
Pi--t e =H(i,!)— H(il) Zadt s L=
H(j, kL, il) — H(dat —N.—(d— _
(. kL, il) ata) S pn In Dijwt WS =)
Peje-(peeriPiet Do 1) —(r—1)(t—1)
N Pij--P--klPi--1 HU, kl, il) _H(kl» il, l]) 2 ﬁij--
2 Do = H(i.j) — (i S el
H(kL,il, ij) — H(dat —N.— (d— _
( 12 l]) (data) EijA»[ﬁij/.-[ I DPijki N N| (d 1)(t 1)
Pij--P--kiDi- -1 —(r—=1)(t—1)
Di-eiDeuul —(r—=1)(c—1)
Dok H (KL, il, ij) — H (kL il, i, jk) |, In—Poite (c—1)(d—1)
zi,p,‘j..p..f,-1p,‘..1
Di---P...1

H(kl,il,ij, jk) — H(data)

N—N—(d—1)(t—1)
—(r—1)(t—1)
= (=1 e=1)
—(c—1)(d—1)
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TABLE 3.2. [Interactions in a four-way table — Continued

Marginal restraints

added

%
Pijkrt

Information

Form obtained by
convexity property

d.f.

H(kL,il, i, jk) —H (kL il,

Iteration on indicated two-

(r—1)(d—1)

Di-k- iy, jk, ik) way marginals
H (kL. il, i, jk, ik) — H(data) N—N,—(d—-1)(t—1)
— (=11
—(r—1)(c—1)
—(c—1)(—1)
—(r—1)(d—1)
D-j-1 H(kl,il, i, jk,ik) — H(given o= i)
two-way)
Second-order inter- H(kL,il, i, jk, ik, jl) — H(data) N—N,—N,
action i
Six two-way marginals H(given two-way)— H(data) N¥N, —N»

H(given two-way)— H(il, jl,

Dijk-
: —1 —1)(d—1
kL, ijk) (drifferlr(lf’,e . :

H(il, jl, kL, ijk) — H(data)

Dij-1 H (il,jl, kL, ijk) — H (ijk, ijl) (r=1)(c—1)(t—1)
H (ijk, ijl) — H(data) difference

Di-ki H (ijk, ijl,) — H (ijk, ijl, ikl) (r—=1)(d—1)(¢t—1)
H (ijk, ijl, ikl) — H(data) difference

Third-order interaction

three-way)
H(given three-way)— H(data)

N—N;—N,—N3
= (=1)(e=1){@d=N)(E=1)
=N,




We note in table 3.2 that the addition of each two-way marginal restraint generates a hypothesis
of two-way independence of the corresponding marginal table, or the conditional two-way inde-
pendence given one or more marginals. Beginning with the fourth marginal restraint, however,
these hypotheses can no longer be expressed in an explicit closed form and the respective p*-
distributions will have to be generated by the iteration procedure.

3.2. Some Typical Second-Order No-Interaction Hypotheses

In many practical applications, the hypothesis of interest is usually suggested by the physical
relationship involved in the problem, and the result of the test admits natural interpretations.
The no second-order interaction in a three-way table originated in this manner, i.e., it is a test
of the sameness of the measure of association between R and C classifications over categories
of D [Simpson 1951].

With the addition of another dimension in a four-way table, there are a number of mixed
second-order interactions to which there are no corresponding ones in a three-way table. Some
of the typical ones are described below.

The interaction of a one-way by two-way interaction over the fourth classification is a mixed
second-order interaction. There are six such second-order interactions, corresponding to the six
three-way tables with different marginal probabilities, and possibly different dimensions. that
can be constructed from a four-way table. Since symmetry is a property of our procedure, these
interactions could also be considered as the interaction of one-way by one-way interaction over
categories of the two remaining classifications. For example, the second-order interaction
(DT X R)(C) is the same as the second-order interaction (R X C) (DT).

The analysis of information table for these second-order interactions is given in table 3.3,
using the convexity property of the m.d.i.s. to indicate:

(1) how this second-order interaction can be derived, and

(2) the particular marginals which must be specified for the iteration procedure, viz., pij..,
p.jri, and pi. ;. in this case.

We note that if we consider

() — Pij--P-jkl

ikt :
! D-j--
then
pt!zlzl_)i")_‘" Pl
K 0 R
. P
_Pij--D-jkt Pi-ki
b
p.j-- Pij--D-jkl
3

P-j..

which is exactly the denominator appearing in the expression for second-order interaction. Hence
the convexity property of the m.d.i.s. is useful in giving an explicit expression for the pj;,, value
after the first iteration. This agreement is not surprising since we are utilizing two distinct but con-
sistent properties of the m.d.i.s.

Viewing the four-way table in another perspective, there are four distinct second-order inter-
actions defined as the interaction of the three-way interaction over the fourth classification. The
analysis for (R X DX T) (C) is shown in table 3.4. The marginals to be considered as specified are

Dijers Pejies Pje1s and pi.p.

181



TABLE 3.3. Mixed-order interactions in a four-way table

Component due to Information d.f.
(DTX R}(C) 22,1,‘;.-117,‘1'/\4 In - - 2k - (c—-l)(r—l)(dt—_l)
Second-order interaction 2 RilaPegre - Phit

P.je 5 Pije-Pejpl
J Peje-

(DT, R) (C) 23 ikDi- Kt IHL (r—1)(dt—1)
Three-way marginals DY 'Il“—'p’—“
interaction with column P-j-

DT X R|C 2% ijkipijrr In % cr—1)(dt—1)
Two-way by one-way RUSERN
interaction, given column

a Form shown is the second-order interaction after first iteration.

Conceptually a third-order interaction in a four-way table may be defined as the interaction
of the second-order interactions of the three classifications over categories of the fourth classi-
fication. The analysis following this line of thought is given in table 3.5, showing the marginals to

be specified are

Dijk-s Pi-kls Pij-1> and p.ji.

It is clear that we do not have a direct counterpart of third-order interaction in the classical
hypotheses. The interpretation of no third-order interaction also becomes obscure in the conven-
tional sense. We propose, therefore, to consider a hypothesis represented by the p*-distribution
as that of a generalized independence (generalized no interaction, no association) among the clas-
sifications with given fixed marginals, and give a unified interpretation in the following subsection.

TABLE 3.4. Mixed-order interactions in a four-way table

Component due to Information d.f.
(RXDXT)C) 23 iikipijk In — - _ L P (c—1)(rdt
Second-order inter- p”'(f:)"f"")’:”" . . £ e —r—d—t+2)
action @ s )Y ———p”"p'ﬂ"'f)"'l

P.j--F
(R, D, T)(C) 25 jpioe In ——LEEL rdt—r—d
Three-way marginals 3, —p”(—pﬂ's_{)—’—[ —t+2
interaction with column P-j--
RXDXT|C 23 ijppijrt In — pij.“ : crdt—r—d
Three-way interaction, p"—(g%“ —t+2)
given column =0

2 Form shown is the second-order interaction after the first iteration.
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TABLE 3.5. Third-order interaction derived from the convexity property
Component
ineto Information d.f.
(RXT)(D)(C) 23 iikipijit In — S 0 Dot (r—1)(c—1)(d—1)(t—1)
Third-order interaction _— : Do Dl
E,Pijk-P-jm_ DPi-kt s Pijk-P-jkl  D-jk-
J K
P-jk- s Pijk-P-jkt P-jk-
"
D-ji-
(R, D, T)(C) 28 i In ——— DL (r—1)(d—1)(t—1)
Three-way marginals > p”A'P'J“' p".]" .
interaction with column P-jk- 2k Pijk-P-jkt
P-jk-
(R X T)D)|C 25, ekt In ———LHEL_— c(r—1)d—1)t—1)
Second-order interaction, p”"P"’“ _I')”" :
given column 2 P-jke 5, Pijk-P-jkl
P- k-
(R, T)(D)|C 23 yipy.t In —EL— cr—1)t—1)
Two-way marginals inter- 2 IM
action with depth, given P-jk-
column
RXT|CD 23 ijrpijee In —I)U;’/ cdir—1)¢—1)
One-way by one-way Fulsbshi it
interaction,
given CD

4 Form shown is the second-order interaction after first iteration.

3.3. Logarithmic Additivity and a General Interpretation of the No-Interaction Hypothesis

In theorem 2.1A, we give the p*-distribution for no second-order interaction as

(3.11)

*
Pijk
In——=
Tijk

In

a,-j+ In bj;\~+ In Cik

where a;j, bji and c;; are functions of the three two-way marginals. In this form, the logarithms of
the cell probabilities representing the no second-order interaction hypothesis are seen to be the
sum of a constant and the logarithms of contributions from each of the specified marginals. Simi-
larly, for the test of the hypothesis of uniform distribution, we have

(3.12)

In pf=1In

o)

red

and for the test of the hypothesis of three-way independence,

(3.13)

red

In p=1In

+Inai+1Inb;+In c,.

Hence, if we consider the difference in the logarithms of the cell probabilities between the inde-
pendence hypothesis and the uniform distribution hypothesis as represented by a row effect, a
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column effect, and a depth effect, then the striking similarities between our approach to contin-
gency table analysis and the approach used in analysis of variance become immediately obvious.

To begin with, both analyses deal with multifactor multiresponse data. In the linear hypothesis,
an additive model is assumed; in the analysis of contingency tables, a logarithmic additive model
is assumed. In both cases the appropriate test statistics can be obtained by minimizing the dis-
crimination information [ch. 10, 11, Kullback 1959]. The residuals in the usual linear analysis
represent the difference between the observed values and the values computed from the model
using the estimated values of the parameters; the residuals in our analysis represent the differences
between the observed cell frequencies and the cell frequencies x* computed under each par-
ticular hypothesis. The main effects and the various interactions in the analysis of variance also
find corresponding counterparts in our first-order, second-order, and higher-order interactions.
Darroch [1961], Bhakpar [1961], Lindley [1964], and Mantel [1966] have all suggested some analogy
between the two types of analyses with a view to simplifying the analysis of multidimensional
contingency tables. We remark that the main difference between the two types of analysis is that
the marginal restraints requirements in the contingency table analysis which necessitate the itera-
tion procedure are not present in the analysis of variance.

We may consider the complete sample table to contain all the “information’ available from the
particular experiment. In the process of analysis, we aim to express the sample table in a reduced
number of parameters represented by the marginal totals as expressed in (3.11) to (3.13). In other
words, we are interested in knowing how much of this total information is contained in a summary
consisting of sets of marginal tables.

If there is no first-order interaction, i.e., independence of all classifications, then all the infor-
mation is contained in the first-order marginals in the sense that given these marginals, the complete
table can be constructed to within sampling error. If the first-order interaction is significant, but
there is no second-order interaction, then the set of two-way marginals will be required to sum-
marize the data adequately. The use of two-way tables to summarize multiway classification data
is a rather common practice, and the implied assumption is therefore “no second- and higher-
order interactions.”

A direct consequence of this interpretation is that the analysis can be reduced to that of the set
of marginal tables if there is no interaction of the same order.

We remark that the set of marginal tables must be considered jointly for proper interpretation,
and if one or more of these tables show significant interactions, the results of tests of the remaining
tables could lead to erroneous conclusions. An example of such a case was given in Simpson [1951].

The above interpretation is not restricted to complete sets of marginals. If the p*-distribution
computed from three out of the six two-way marginals in a four-way table is found to be “close
enough” to the p-distribution by our test, the three two-way marginal tables could be considered as
containing essentially all the information in the four-way table. The analysis can therefore be per-
formed on these marginal tables and the complexity of the problem reduced. For example, the
analysis given in table 3.3 for a four-way table may be reduced to that of one two-way and two three-
way tables, and that in table 3.4 to that of three two-way tables and one three-way table, provided
that the corresponding interactions are found to be of no significance.

A useful by-product obtained as a result of our computer routine is that the set of residuals,
x—x*, are computed for each interaction hypothesis. Inspection and analysis of these residuals
may be used as an aid “in assessing the validity or appropriateness of the conventional analysis”
as recommended by Anscombe and Tukey [1963], in view of the indefiniteness and complexity of
objectives of statistical analysis of multiresponse data.

The analysis of categorical data may well follow this general philosophy and take advantage
of some of the developed techniques for the analysis of residuals. In fact, in a goodness-of-fit test,
if the computed X? shows significance, we usually look at the larger discrepancies between the
observed and expected values of the cell frequencies and seek for an explanation. However, this
practice has been restricted mainly to one-way tables. A plausible reason for the lack of such study
in higher-order tables could be that the computation of expected frequencies becomes complicated
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and unmanageable. Consequently, the analysis is considered complete with a formal test of
significance.

With the iterative procedure now available for computing the expected frequencies for each
particular hypothesis, we could examine these residuals for a number of interesting features, such
as:

(a) outliers, or errors in counting and recording,

(b) the physical interpretation of departure from the particular hypothesis,

(c) trend over categories in a classification, particularly if these categories are arranged in a
natural sequence of order of magnitude [Cochran 1954, pp. 434—436], and

(d) the agreement of these residuals, squared and weighted by the inverses of the expected
frequencies, with the corresponding X? distribution.

We have therefore computed and printed these residuals, x —x*, or normalized residuals in
table forms as a by product of our computation procedures to facilitate visual examination.

4. Computer Programs and Examples

4.1. Computation and lteration Programs

The iterative computation process described above for the calculation of cell probabilities,
or cell frequencies, representing that of no interaction when certain marginals are considered
fixed, is ideally suited for electronic computer operation. A program in Fortran V has been pre-
pared.for this purpose.* A brief description of this program is given below.

(1) The program is written in double precision mode for the computation of quantities of the
form 22x In x. These quantities are useful in testing certain hypotheses as illustrated in Kullback,
Kupperman, and Ku [1962a, 1962b|. The quantity 0 In 0 is defined as zero.

(2) Input cards are provided for the specification of:

(a) dimension M of the table, and number of categories within each dimension, with2< M < 4,
and rXcXdXt=10%

(b) maximum number of complete cycles of iterative computation, and the agreement desired
between the original given marginals and the computed marginals. Tentatively the maximum num-
ber of cycles is set at 20 and the agreement optionally at 0.100, 0.010, and 0.001.

(c) the choice of the set of marginals if these marginals are not a complete set of one-, two-, or
three-way marginals. Iterative computation for the complete sets of marginals is automatically
performed.

(3) The data cards for the table are read in by column within each row; row X column within
each depth, and row X column X depth within each level. Title cards for each of the classifications
are provided.

(4) The following notations are used in the output

X(IJKL) original data

Y(IJKL) cell frequencies corresponding to no first-order interaction.

Z(1JKL) cell frequencies corresponding to no second-order interaction.

W(IJKL) cell frequencies corresponding to no third-order interaction.

B;:HEIL;} cell frequencies corresponding to specified marginals.

(5) Outputs of the program for a four-way table are in the order listed below. For two- and
three-way tables, the input cards will adjust the outputs accordingly.

(a) Titles of classifications.

(b) Original table X(IJKL) in the form of two-way tables.

(c) All marginal three-way, two-way, one-way tables and the grand total.

)

(d) All 16 sums of quantities of the form 22X In X.

+ We are indebted to Mrs. Ruth Varner. Statistical Engineering Laboratory, National Bureau of Standards, for the preparation of this program.
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(e) Number of complete cycles of iterations performed and the decimal agreement between
marginals.

(f) Tables of normalized residuals={X(IJKL)— Y(IJKL)}/V Y(IJKL)
22 Y In Y
first-order interaction=23X In X —23Y In Y

xX—y)
Y

chi-squared=3,

(g) Print-outs under (f) are repeated for Z, and W, and for Ul, U2 when specified.
Samples of the output are shown in the appendix for the four-way contingency tables used in
examples 1 and 2.

4.2. Examples

In the literature there are a number of “‘classical” examples which have been used to demon-
strate tests of no second-order interaction in three-way tables. These examples are collected and
listed in table 4.1 where the values of the m.d.i.s. for no second-order interaction are compared with
results obtained by other investigators. A number of interesting features are noted.

(1) The maximum number of complete cycles of iteration used was 10 for the 2 X2 X 12 table
due to Snedecor. For the others, 6 to 7 cycles are sufficient for agreement of specified marginals
to the third decimal place.

(2) The values of 2I for no second-order interaction agrees very well with the values of X*
computed through the solutions of systems of simultaneous equations of third degree, i.e., solutions
with 2-way marginals considered as fixed. Solutions based on unrestricted maximum likelihood
estimates are, however, somewhat lower than our values.

(3) None of the second-order interactions computed reached the 5-percent level of signifi-

cance. By the interpretation given in subsection 3.3, conclusions drawn from analysis of the
three 2-way marginal tables are valid for the 3-way table.
ExAMPLE 1. Ries and Smith [1963] reported an experiment comparing two detergents, a new prod-
uct X and a standard product M. The three classifications were water softness, at three levels,
temperature, at two levels, and a factor corresponding to previous experience and no previous
experience with detergent M. This isa 2 X 2 X 2 X 3 experiment with

R: preference i=1 X
2 M

C: water temperature j=1 low
2 high

D: previous use k=1 nonuser
2 user

T: water softness (=1 hard
2 medium
3 soft

Ries and Smith used a series of chi-squared tests in their paper; Cox and Lauh [1967] reexamined
the data recently employing a graphical approach. The data and computations are shown in the
print-out sample A in the appendix.
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TABLE 4.1.

Comparison of results— second-order interaction in three-way tables

Value of 2] with marginal agreement to

Example Other results
0.10 0.01 0.001
Bartlett [1935] 2.357(4)2 | 2.296(6) 2.294(7) 2.27 |X? | Bartlett.
2X2X2 2.298 |21 | Computed from Bartlett’s solution.
1.93 [X? | Goodman [1964b].
2.26 |Y? | Goodman [1964b].
2.27 |Z? | Goodman [1964b].
8.89 |X2 | Koch [1968].
0.083 |X3 | Koch [1968] different model.
7.603 |21 | Kullback [1959, without iteration].
Kastenbaum and Lamphiear [1959] 3.1838(2) | 3.1592(4) 3.158 | X* | Kastenbaum [1959] Darroch [1962].
5X3X2 3.1660(4) | 3.1600(5) 3.640 |2/ | KKK [1962b, without iteration].
3X2X5 3.1609(3) 3.1591(4) 3.1588(7) 3.13 |Y? | Goodman [1964b].
2843045 2.8 Y2 | Goodman [1964b|.
3.12 | X? | Plackett [1962].
Snedecor, as quoted on p. 184, Kullback [1959] 7.7157(10) 12.608 |27 | Kullback (without iteration).
2X2Xx12 15.492 | 2] | Kullback (without iteration).
7.59 | X? | Norton [1945].
7.45 |X? | Goodman [1964b].
7.37 |Y? | Goodman [1964b].
5.18 |Z? | Goodman [1964b].
Kullback [1959], prob. 13.10, p. 188 0.007(5) 0 Theoretical.
2X2X2
Kullback [1959], table 12.2, p. 180 7.584(2) 7.570 | 2] | Kullback (algebraic).
2X4X2
Kilkberg, Narragon and Campbell [1964] 0.0704(5) | 0.071 | X7 | Koch [1968|.
Bhapkar and Koch 0.04306) | 0.0435| X2 | Koch [1968].
2X2X2 3.5710(6) | 3.3917| X2 | Koch [1968].
Schotz [1966] 10.511(7) 7.22 2| Koch [1968, using index of order

Bhapkar and Koch
2X2X%X4

association].

2 Number of complete cycles of iteration.



The analysis of information table corresponding to table 3.1 is shown in table 4.2 below.

TABLE 4.2
Components of information Information d.f.
Third-order interaction 0.739 D
2nl(pi : p¥) 9.108 7
Second-order interaction 9.847 9
2nl(p5 :pi) 33.081 9
Four-way independence 42.928 18

Neither the third-order nor the second-order interactions reached significance at a«=0.10.
Hence we conclude that the analysis of the six two-way tables will yield the desired information.
The numerical values of these six interactions are computed in two ways for comparison in table
4.3. The first set is computed directly from the six two-way tables. The second set is computed
by using the analysis 2nl(p%:pi) =22;Xij.. In ajj+. . .+22uX. .0 In fiz. The sum of the first
set, 33.763, should equal the component 2nl(p¥:p?¥) in table 4.2. The difference between the
two sums represents the effect of the marginal restraints.

TABLE 4.3
Components of information Information d.f.
Preference and water temp. (R X C).....ooooovviviiiiinininn. .. 4.361 4.393 1
Preference and previous use (R X D)..........coiiiiiiiiinnin... 20.581 19.920 1
Preference and water softness (R X T)......coooiivieeiinniniin, .395 424 2
Water temp. and previous use (C X D).......oocoooviiiiiiiiii... 1.252 1.314 1
Water temp. and water softness (C X T)...............coooeiini. 6.099 6.089 2
Previous use and water softness (DX T).........cccccovviini... 1.075 943 2
32865 33.083 9

The main conclusion here is that preference is highly dependent on previous use, and to a
certain extent dependent on the water temperature. The water temperature effect depends some-
what on degree of softness of water. The nonsignificance of (C X D) and (D X T) shows that the
samples of previous user and nonprevious user of M are not biased with respect to water tem-
perature and water softness.

We also include here analysis of information tables 4.4 and 4.5 corresponding to tables 3.3

and 3.4 respectively.
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TABLE 4.4

Components Information d.f.
(CTXR)D) 8.059 5
(CT, R)D) 4.185 5
CTXR|D | 12.244 10
TABLE 4.5
Components Information d.f.
(RXCXT)D) 9:725 7
(R, C, TYD) 10.294 7
RXCXT|D 20.019 14

Since none of these components of information reached significance at «=0.10, we conclude
that the interaction between preference and water temperature-water softness are not different
for the previous user and nonuser groups. If this conclusion is accepted, then separate analyses
of previous user group and nonuser group appear to be unnecessary.

EXAMPLE 2.

For the second sample we use the survey results as reported by Hoyt, Krishnaiah, and Tor-
rance [1959], analyzed also in Kullback, Kupperman and Ku [1962a] for nine hypotheses of in-
dependence and conditional independence. The four classifications are:

Categories
D: high school ranks 8
C: post high school status 4
T: sex 2
R: father’s occupational level 7

The data (sample B, appendix) showed considerable heterogeneity and all the nine hypotheses
tested in the above analysis gave highly significant results. We continue the analysis in table 4.6.
All the interactions are again highly significant excepting the third-order interaction for which
p = 0.15.

Since the second-order interaction is highly significant, we analyze the difference between
second-order and third-order interaction into its component parts in table 4.7, the second set in
accordance with the second part of table 3.2. These four components represent second-order
interactions in the four three-way tables subject to the three-way marginal restraints. The first
set corresponds to the analysis 2nl (p*:p*) =22, X k. In aijr+. . .+ 220X i In djr.

We note that all the second-order interactions are significant when the R classification is
involved, i.e., the interactions C X D, C X T, and D X T are different for different occupational levels
of fathers” occupations. These results, and the fact that there is an unusually larger number of
girls than boys for the third level of fathers’ occupation as shown in table for X(I**L), suggest that
the counts for this level may be suspect. '
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TABLE 4.6

Components of information Information d.f.
2nl(p : p¥) 44.793 36
2nl (p¥ : p¥) 127.464 72
2nl(p : p¥) 172.257 108
2nl (p5 : pY) 3320.858 47
2nl (p : pt) 3493.115 155
TABLE 4.7
Marginal restraints added Information d.f.
All two-way marginals 172.257 | 172.257 108
RCD 53.841 52.267 36
119.990 72
RCT 45.161 44.630 18
75.360 54
RDT 25.477 27.588 12
47.772 42
CDT 2.985 2.979 6
All three-way marginals 44.793 44.793 36
TABLE 4.8
All two-way marginals 109.521 91
RCD 29.521 30
80.000 61
RCT 27.738 15
52.262 46
RDT 11.986 10
‘ 40.276 36
CDT .673 6
All three-way marginals 39.603 30
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Table 4.8 is an analysis of the data with the third level of fathers’ occupation deleted. The
second-order interaction is still significant at «= 0.10, but not at = 0.05. Of the components of
second-order interaction, however, only RCT remains significant. The interpretation that the
interactions between post high school status and sex are different for different levels of fathers’
occupational level appears to be a reasonable one.

We would suggest, therefore, that the data for the third level of fathers’ occupation be re-
checked.

5. Summary

Using the basic notions of -information theory, we have developed in the above sections a
unified approach to the analysis of multiway contingency tables. Under this approach the prin-
ciple of minimum discrimination information is proposed and used to generate hypotheses of
interest. It is shown that all classical hypotheses for contingency tables can be generated through
the use of this principle when certain marginals are considered fixed.

For each set of fixed marginals, a unique set of cell probabilities {p*} is generated by min-
imizing the discrimination information. The set of {p*} corresponds to the cell probabilities rep-
resenting no-interaction, and typically can be expressed in a logarithmic linear form:

In p% = const.+In a;;+In b+ In cir,

where ajj, bji, and ¢y are functions of cell probabilities of the corresponding fixed two-way mar-
ginal tables. The difference between the set of cell probabilities estimated from data and {p*} is
therefore a measure of interaction.

If the complete set of one-way marginals are considered fixed, the set of {p¥} represents
cell probabilities under the independence hypothesis. If the complete set of two-way marginals
are considered fixed, the set of {p5} are the cell probabilities representing no second-order inter-
action. In this sense the higher-order no-interaction hypotheses can be considered as hypotheses
of ““generalized” independence, a concept which unifies the many attempts in the formulation of
second-order interaction described in brief in the introductory section.

The relationship between minimum discrimination information and maximum entropy is
examined and the analogy between the proposed analysis and the analysis of variance using least
squares theory is noted. An interpretation of the no-interaction hypothesis as equivalent to that
“the given marginal tables are sufficient and contain all the information of the full table” reduces
the dimension of the table, and hence also the complexity of the analysis.

The expression for p* for given marginals is given in theorem 2.1 and the convergence of the
iterative computation.procedure to the unique set of {p*} in theorem 2.2.

Analysis of information tables for four-way tables are given for first-, second-, and third-order
interactions, and also for selected mixed-order interactions. A Fortran program to aid in the
computation has been prepared.

Two illustrative examples in the analysis of four-way tables are included.

6. Appendix. Samples of Selected rortions of Computer Print-Out

SAMPLE A EXAMPLE 1 (Tables of residuals suppressed)

R PREFERENCE M OR X I=1, 2
C WATER TEMPERATURE J=1, 2
D PREVIOUS USER OR NONUSER OF M  K=1, 2
T WATER SOFTNESS L=1, 3
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ORIGINAL TABLES

1008
PRINT OF SUMS

SUM 2X(1JKL)LNX(IJKL)=.7653768886020237 + 004
SUM 2X(IJK*)LNX(IJK*)=.9853563803650491 + 004
SUM 2X(*JKL)LNX(*JKL)=.9018264486617197 + 004
SUM 2X(IJ*L)LNX(IJ*L)=.9017229799353486 + 004

SUM 2X(I*KL)LNX(I*KL)= .8962284823389048 + 004
192

X(1J11) X(1J12) X(1J13)
68 42 66 33 63 29
42 30 50 23 53 200
X(1J21) X(1J22) X(1J23)
37 24 47 23 57 19
52 43 55 47 49 29
MARGINAL TABLES
THREE-WAY TABLES
X(1J1%) X(*J1L) X(1J*L) X(I*1L)
197 104 110 116 116 105 113 120 110 99 92
145 80 72 56 56 66 56 48 72 73 80
X(1J2%*) X(*J2L) X(2J*L) X(I*2L)
141 66 89 102 106 94 105 102 61 70 76
156 119 67 70 48 73 70 56 95 102 78
TWO-WAY TABLES
X(1J**) X(I*K*) X(I**L)
338 170 301 207 171 169 168
301 199 225 275 167 175 158
X(*JK*) X(*J*L) X(**KL)
342 297 199 218 20 182 172 172
184 185 139 126 104 156 172 154
ONE-WAY TABLES
508 500 639 369 526 482 338 344 326
TOTAL



SUM 2X(IJ**)LNX(IJ**)= .1122496619356278 + 005
SUM 2X(I*K*)LNX(I*K*)=.1116989524449928 + 005
SUM 2X(I**L)LNX(I**L)=.1033087165370435 + 005
SUM 2X(*JK*)LNX(*JK*)=.1122371544867871 + 005
SUM 2X(*J*L)LNX(*J*L)=.1040972402615119 + 005

SUM 2X(**KL)LNX(**KL)=.1033340920997269 + 005

SUM 2XfI***)LNX(I***)= .1254477724916192 + 005
SUM 2X(*J**)LNX(*J**)=.1261792581599639 + 005
SUM 2X(**K*)LNX(**K*)=.1254663500174484 + 005
SUM 2X(***L)LNX(***L)=.1172779757827051 + 005

2N LN N=.1394209847244072+ 005

2Y LN Y=.7610840227851502 + 004
FIRST-ORDER INTERACTION = .4292865816 + 002
CHI-SQUARED = .4390224840 + 002

27 LN Z=.1643922243020641 + 004
SECOND-ORDER INTERACTION = .9846642999 + 001
CHI-SQUARED= .9870614978 + 001

2W LN W=.7653029670355177 + 004
THIRD-ORDER INTERACTION =.7392156650 + 000
CHI-SQUARED= .7379092751 + 000

SPECIFIED MARGINALS [*K* *JKL
NO. OF ITERATIONS=1 CYCLE
AGREEMENT BETWEEN MARGINALS TO .100-01

2(U1) LN (U1)=.7641524729371637 + 004
INTERACTIONS (U1)=.1224415664 + 002
CHI-SQUARED=.1220141783 + 002

SPECIFIED MARGINALS I*K* *JKL IJ*L
NO. OF ITERATIONS=3 CYCLES
AGREEMENT BETWEEN MARGINALS TO .100-01

2(U2) LN (U2)=.7645709639307871 + 004
INTERACTIONS (U2)=.8059246712+ 001
CHI-SQUARED = .8054468429 + 001

SPECIFIED MARGINALS I*K* *JK* **KL
NO. OF ITERATIONS=1 CYCLE
AGREEMENT BETWEEN MARGINALS TO .100-01

193



87
72
52
88
32
14
20

53
36
52
48
12

140
108
104
136
44
23
29

2(U3) LN (U3)=.7633749899660993 + 004
INTERACTIONS (U3)=.2001898635 + 002
CHI-SQUARED. = .2069489400 + 002

SPECIFIED MARGINALS I*K* *JK* **KL 1J*L
NO. OF ITERATIONS=3 CYCLES
AGREEMENT BETWEEN MARGINALS TO .100-01
2(U4) LN (U4)=.7644043799921927 + 004
INTERACTIONS (U4)=.9725086098 + 001
CHI-SQUARED=.9720352364 + 001

SAMPLE B EXAMPLE 2 (Mixed order interactions not shown)

R FATHER OCCUPATIONAL LEVEL 1I=1, 2,3, 4,5,6,7
C POST HIGH SCHOOL STATUS J=1,2 3,4
D HIGH SCHOOL RANKS K=1, 2, 3
T SEX L=1, 2
ORIGINAL TABLES
X(1J11) X(1J21) X(IJ31)
3 17 105 216 1 14 118 256 2 10
6 18 209 159 14 28 227 176 8 22
17 14 541 119 13 44 578 119 10 33
9 14 328 158 15 36 304 144 12 20
1 12 124 43 5 7 119 42 2 7
2 ) 148 24 6 15 131 24 2 4
3 4 109 41 5 13 88 32 2 4
X(1J12) X(1J22) X(1J32)
7 13 76 163 30 28 118 309 17 38
16 11 111 116 41 53 214 225 49 68
28 49 521 162 64 129 708 243 79 184
18 29 191 130 47 62 305 237 57 63
5 10 101 35 11 37 152 2 20 21
1 15 130 19 13 22 174 42 10 19
1 6 88 25 9 15 158 36 14 19
MARGINAL TABLES
THREE-WAY TABLES
X(1J1%) X(1J2*) X(1J3%)
10 30 181 379 34 42 236 565 19 48
22 29 320 275 55 81 441 401 57 90
45 63 1062 281 77 173 1286 362 89 217
27 43 519 288 62 98 609 381 69 83
6 22 225 78 16 44 271 114 22 28
8 20 278 43 19 37 305 66 12 23
4 10 197 66 14 28 246 68 16 23
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53
95
257
115
56
61
41

89
210
448
219

95
105

93

142
305
705
334
151
166
134



THREE-WAY TABLES — Continued

X(*J1L)
365 213
41 76
84 133
1564 1218
X(1J*L)
559 525
9 54
41 79
276 283
X(4J*L)
390 415
36 122
70 154
747 715
X(I*1L)
212 149
305 174
624 650
439 286
169 128
169 155
136 98
X(1J**)
1084 63 120
784 134 200
747 211 453
805 158 224

236 44 94
132 34 80
157 34 61

X(*JK*)
578 1410
117 277
217 503
2782 33%4

X(*J2L) X(*J3L)
760 650 793 1164
62 215 38 246
157 346 100 412
1565 1829 678 1259
X(2J*L) X(3J*L)
407 377 290 457
28 106 40 171
68 132 91 362
531 535 1376 1677
X(5J*L) X(6J*L) X(7J*L)
117 119 62 70 93 64
8 36 10 24 10 24
26 68 24 56 21 40
299 348 340 409 238 339
X(I*2L) X(I*3L)
352 339 321 453
428 424 301 552
754 1063 419 954
513 544 291 576
174 235 107 208
176 228 91 176
147 207 79 162
TWO-WAY TABLES
X(I*K*) X(I**L)
559 361 691 774 885 941
1066 479 852 853 1034 1150
3053 1274 1817 1373 1797 2667
1462 725 1057 867 1243 1406
647 297 409 315 450 571
749 324 404 267 436 559
577 234 354 241 362 467
X(*J*L) X(**KL)
1957 1918 2027 2054 1640
284 141 537 2544 3040
o12 341 891 1609 3081
1937 3807 4306
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ONE-WAY TABLES

1826 2184 4464 2649 1021 995 829

X(*J**)
3945 678 1232 8113

X(FFK*)
3694 5584 4690

X (¥
6207 7761

TOTAL
X (FHEE)
13968
PRINT OF SUMS
SUM 2X(IJKL)LNX(IJKL)=.1419490011041468 + 006
SUM 2X(IJK*)LNX(IJK*)=.1602167221282754 + 006
SUM 2X(*JKL)LNX(*JKL)=.1900742436081673 + 006
SUM 2X(1J*L)LNX(1J*L)=.1706458462114764 + 006
SUM 2X(I*KL)LNX(I*KL)=.1680009679212620 + 006
SUM 2X(1J**)LNX(1J**)=.1893749331578995 + 006
SUM 2X(I*K*)LNX(I*K*)=.1866950003995916 + 006
SUM 2X(I**L)LNX(I**L)=.1976933167165831 + 006
SUM 2X(*JK*)LNX(*JK*)=.2085192406453136 + 006
SUM 2X(*J*L)LNX(*J*L)=.2189304551608272 + 006
SUM 2X(**KL)LNX(**KL)=.2175298383613909 + 006
SUM 2X(I***)LNX(I***)=.2168255594020366 + 006
SUM 2X(*J**)LNX(*]**) = .2377594145686 747 + 006
SUM 2X(**K*)LNX(**K*)=.2363330848251296 + 006
SUM 2X(***L)LNX(***L)=.2474453182056570 + 006

2N LN N=.2666358302324256 + 006
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TABLE OF NORMALIZED RESIDUALS

RJ11) R1J12)

—1.162 —.213 2.938 —.481 155 113 .552 .616
.671 —.308 1.295 579 277 769 —1.494 —1.404
—1.619 2.262 —2.707 —.476 .664 .178 —.408 1.308
484 —.156 —.868 .881 254 —.385 913 —1.403
1.779 —.916 1.954 —.627 —.734 —.323 —.278 —.060
.116 .062 —.404 —.499 .007 —1.722 1.610 478
1.519 .996 —.029 .108 —2.067 —1.552 —.246 .216

R(1J21) R(1J22)
BII55 —.947 —.548 —.152 —.434 2.540 —.713 .244
.523 .119 LI —.251 —.195 .249 112 —.300
—.835 —.963 —.796 1.344 1.829 —.673 —.580 —.803
—.201 —.207 1.106 .181 —.277 —.329 —.032 —.003
—.139 .523 —1.305 —.402 —1.039 —.831 1.893 728
—.091 1.735 1.771 —.699 —1.064 552 —.345 408
IROD5 1.042 1.940 —2.536 —.863 —.754 —.857 1.736

R(1J31) RJ32)

1.220 | —1.218 —.599 —.225 —.281 —1.242 —.326 .060
—.253 —.737 162 —1.584 —.527 —.227 —.141 2.448
—.889 —.329 —.084 2.053 416 .302 2.438 —2.597

—1.224 595 .004 —.722 1.011 485 —.801 675
—.190 —.337 —.198 .842 373 1.238 —1.661 —.247
.248 134 —.808 1.027 .659 —.404 —1.182 —.355
.800 .092 -.319 —.359 —1.417 724 —.063 .653

27 LN 7Z=.1417767440958978 + 006

CHI-SQUARED=.1724668778 + 003

SECOND-ORDER INTERACTION=.1722570082 + 003
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TABLE OF NORMALIZED RESIDUALS

R(J11) R(1J12)
—.384 .383 1.070 —.079 .520 —.216 —.943 .094
—.524 —.937 .835 .290 .818 763 —.852 —.387

291 1.084 —.593 —.153 —.280 —.694 352 157

.018 —.598 | —1.085 .363 —.024 495 952 —.463

.620 —.773 1.245 —.509 —.848 573 —.978 .594

143 541 —.863 .097 —.170 —.495 .656 —.103

513 491 —.550 —.156 —.953 —.560 .579 177

R1J21) R(1J22)

.023 —.422 —.429 214 —.026 174 332 —.210
—.278 430 —.736 417 .334 —.233 .598 —.418
—.150 —.600 541 .023 131 .299 —.300 —.021

103 —.140 2971 —.141 —.113 .081 —.218 .142

316 1.063 —1.518 132 —.333 —.523 947 —.115

379 —.037 937 —.421 —.392 .025 —.640 .378
—.038 .252 .879 —.324 .049 —.172 —.665 .249

R(1J31) R(J32)
—

.208 .267 —.623 —.201 —.188 —.082 .363 .158

.628 484 210 | —1.009 —.532 —.177 —.116 .732
—.037 —.462 —.179 .190 .026 179 .077 —.142
—.12]1 .824 716 —.369 .095 —.328 —.364 S5
—.777 —.452 750 .608 .655 171 —.362 —.439
—.451 —.339 —.398 493 .367 176 .207 —.358
—.329 —.703 —.656 .786 .329 .356 370 —.479

2W LN W=.1419042077670569 + 006

CHI-SQUARED = .4418652549 + 002

THIRD-ORDER INTERACTION=.4479333708 + 002
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