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The thic kness of a graph C is the minimum numbe r of planar subgraphs whose union is C. A 
t-minimal graph is a graph of thickness t which contains no proper subgraph of thic kness t. In this 
paper, we s how that the complete bipartite gra ph on two sets e ach containing 4t- 5 ve rtices is t-minim al 
for all t "" 2. We also show that if the complete graph on 16 ve rtices has thic kness 4, it is 4·minimal. 
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A graph is a finite se t of points, called vertices, together with a finit e set of line segments, 
calle d edges , suc h that e ac h end point of an edge is a vertex and two edges meet only at an end 
point of each. The end points of an edge are said to be joined by the ed ge. A subgraph H of a 
graph G is a subset of the edges and vertices of G such that the end points of every edge in H 
are also in H. 

A graph is planar if it can be drawn in the plane in such a way that no two distinc t points of 
the graph are mapped to the same point of the plane . The thickness t(G) of a graph G is defined 
[7] 1 as the minimum number of planar subgraphs whose union is G. A thickness-minimal, or 
t-minimal, graph is a graph of thi ckness t which contains no proper subgraph of thickness t. 

A graph is complete if every pair of ve rti ces is joined by an edge; a complete graph with 
n vertice s is denoted by K II • A graph G is bipartite if there is a separation of the vertices of G 
into two di sjoint se ts A and B such that every ed ge of G joins a ve rtex in A with a vertex in B. A 
bipartite gr aph is complete if every vertex in A is joined to e ver y vertex in B; suc h a graph is denoted 
Kill , n , wher e m is the number of vertices in the set A and n is the number of verti ces in the set B. 

In 1930 Kuratowski [6] proved that the only 2-minimal graphs are the homeomorphs of Ko 
and K3 , 3 . In 1963 W . T. Tutte [7] showed that there exists an infinite set of nonhomeomorphic 
t-minimal graphs for each t ;;;' 3. However, the only known t-minimal graph for t;;;' 3 has been 
K9 , which is 3-minimal [1, 7, 8]. 

In this paper we show that K4t- o, 4 / - 0 is t-minimal for all t;;;' 2. We also give an embedding, in 
three plane s , of K 16 less one edge; hence if (as F. Harary suspects [5]) K 16 has thickness 4, then 
it is 4-minimal. 

LEMMA 1: t(K41- 0 ,41 - 0) ;;;. t for all t ;;;. 2. 
This lemma is a consequence of a more general theorem proved by Beineke, Harary, and Moon 

[4]. For comple teness we include a simple proof of our le mma: 
PROOF: Le t HI , . . . , H/_ I be t- l planar subgraphs of K4/ - 0 , 41 - 0 ' each H; containing all 8t-1O 

verti ces in K4t - 5 , 4 / - 5 . Since the s mallest circ uit in a bipartite graph contains at least four edges, 
the number of faces F; in each Hi is related to the number of ed ges Ei in H; by 

4F;:s;: 2E; , 
or 

(1) 

I Figures in b rac ke ts indica te the lite rature refe rences at the end of thi s paper. 
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By Euler's formula for the plane and inequality (1), 

8t-1O-Ei + l/zEi ~ 2, 

or 
Ei :%: 16t-24. 

Summing over all t-1 planar subgraphs Hi, at most 

E' = (t-1) (16t-24) = 16t2 - 40t+ 24 

edges of K4/ - 5 , 41- 5 can be contained in t-1 planar s ubgraphs. But K4/- 5 , 41 - 5 contains 

E =. ( 4t-5 ) 2 = 16t2 - 40t + 25 

edges, and E > E'. QED 
Thus, if we show that K4/ - 5 , 4/ - 5 less one edge can be embedded in t-1 planes, we will have shown 
that it has thickness exactly t and is in fact t·minimal. We shall represent K n , n as the set of vertices 

together with all edges joining a numbered vertex to a lettered vertex. By symmetry, the choice 
of the only edge to be placed in the t'th plane is arbitrary; we shall always use edge (1, AI) ' Since 
the construction of our main theorem is invalid for K7 , 7, we need 

LEMMA 2: K7,7 is 3-minimal. 

FIGURE 1. K7 • 7 less one edge is biplanar. (Edge (1, AI) is missing). 

PROOF: By Lemma 1, K7 , 7 has thickness at least 3. But figure 1 shows that K7 , 7 less the edge 
(1,AI) can be embedded in two planes. QED 

The following theorem is proven by construction; we have made this construction subject 
to the extra condition that the lettered vertices are placed on a circle in the same order in each 
of the planes and no edge of the graph may cross the circle in any plane. 

A numbered vertex in Plane N is said to be simply joined in that plane if it is joined by edges 
to exactly two lettered vertices which are adjacent on the circle. Clearly any number of numbered 
vertices may be simply joined to lettered vertices in any plane without affecting the remaining 
construction. 
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THEOREM: Kt t- 5,4t - 5 is t-minimal for all t ;;. 2. 
PROOF: B y the well known result for K3 , 3 and Lemmas 1 and 2, we need only embed K41- 5 , 41- 5 

less edge (1, Ad in t- 1 planes for each value of t ;;' 4. To begin the construction , illustrated in 
fi gure 2 for K l5 , 15, place the lettered vertices on a circle in each of the t- 1 planes , using the same 
order a round the circle in each of the planes (we have used AI, A 2 , . • . , A41 - 5 in clockwise order) . 

1. Place vertex 1 outside the circle in Plane 1 and join it to the 2t - 2 consecutive lettered 
verti ces A2 , A3 , •• • , A2t- I • Since edge (1 , AI) is excluded from the t-1 planes, we complete 
vertex 1 by simple joins in Planes 2,3, ... , t- 1, joining it to vertices Au and A 2t+ 1 in Plane 2, 
to Au + ~ and AU+:l in Plane 3, .. . , and to A4 r - fi and A4t - 5 in plane t-l. 

Call the region in Plane 1 outside the circle bounded by the portion of the circle having let
tered vertices not joined to vertex 1 and by the two edges (1, A2 ) and (1, A21 - 1 ) the large outside 
region of Plane l. 

2. Place vertex 2 inside the circle in Plane p , p = 2, 3 , ... , t- 1, and join it to verti ces A2P- 3 

and A~P+2 1 -6 in that plane. 
Note that the connections made in ste p 2 split the interior of the circle in each of Pla nes 2 

through t- 1 into two parts. One is bounded by the two edges joined to vertex 2 and a portion of 
circle containing 2t- 2 lettered verti ces; le t us call thi s the small inside region of Plane p. The 
other part of the inte rior is bounded by th e two edges joined to vertex 2 and the remaining part 
of the circle, containing 2t- 1 le ttered vertices ; we call thi s region the Large inside region. 

3. Place vertex 2 inside the circle in Plane 1 and join it to the le ttered verti ces to which it 
was nol connec ted in s te p 2 , na me ly to the lettered verti ces with s ubscript 2, 4, 6, ... , 2t - 4, 
2t -3 , 2t - 1, 2t + 1, .. . , 4t - 7 , 4t -6, and 4t -5. 

Step 3 completes the connection of vertex 2. Define a gap to be a region in Plane 1 bounded 
by a segment of the circle having three consecutive lettered vertices on it , the middle one not 
being connec ted to vertex 2, and by th e edges joining vertex 2 to the other two le ttered verti ces 

FIGURE 2. Plane 1 of K 15 • 15 . 
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on the segment. There are 2 (t - 2) = 2t - 4 gaps in Plane 1. A vertex which is joined to 2t - 2 
lettered vertices in one plane cannot be completed by simple joins in the remaining t - 2 planes, 
since using only simple joins would leave it connected to only 2t -2+ 2(t-2) =4t-6 lettered 
vertices, one short of the required number. We shall use the gaps in Plane 1 to make up the deficit 
during the next few steps. 

4. In Plane p, p = 2, 3, . . ., t - 2, place vertex p + 1 inside the small inside region and join 
it to the 2t - 2 le ttered vertices having subscripts 2p - 3 , 2p - 2, . . . , 2p + 2t - 6 on the boundary 
of that region. 

Note that vertex 2 is joined to vertices A2P- 3 and A ZP+2t-6 in Plane p , so that the lettered ver
tices named really are on the boundary of the small region. 

FIGURE 2. Plane 2 ofK'5. '5. 

5. For p=2 , 3, . .. , t-2, place vertex p+1 inside the gap in Plane 1 which has lettered 
vertices A 2P+2t - 5 , A 2P+2t- 4, and A2P+2t - 3 on its boundary. loin vertex p + 1 to those three lettered 
vertices. 

The gap required by step 5 exists because in step 2 vertex 2 was joined to the lettered vertex 
having subscript 2(p + 1) + 2t - 6 = 2p+2t-4 in Plane p+ 1 for each p = 2, 3, . .. , t-2. 

6. For p=2, 3, ... , t-2, join vertex p+1 to the remaining 2t-6lettered vertices by 
using simple joins in the planes other than 1 and p. 

7. In Plane t-1, place vertex t inside the small region, which has the lettered vertices with 
subscripts 2t - 5 , 2t - 4, . . . , 4t - 8 on its boundary, and join vertex t to those lettered vertices. 

8. Place vertex t in the gap in Plane 1 having lettered vertices with subscripts 4t - 5, 1, and 2 
on its boundary (this gap exists since vertex 2 is joined to vertex A I in Plane 2) and join vertex t to 
those lettered vertices. 

9. In Plane 2, place vertex t between vertices A4t - 7 and A 4t - 6 and join it to those vertices, 
a simple join. 

10. Using simple connections in Planes 3,4, ... , t-2, join vertex t to the remaining 2t-8 
consecutive lettered vertices A 3 , A 4 • .. . , A 2t - 6. 
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FIGURE 2. Plane 3 of K'5 , '5. 

Now we have used t - 2 of the gaps in Plane 1, leaving us with t - 2 more gaps, and we have 
not placed any edges or vertices outside the circle in any of Planes 2, ' , "t-l. 

II. In Plane p, p = 2, . . ., t - 2, place vertex p + t - 1 outside the circle and join it to the 
2t - 2 consecutive lettered vertices having the subscripts 2p + 1, 2p + 2, ... , 2p + 2t - 2. 

Call the region bounded by the rest of the circle and the two edges (p + t -1, A2p+ t ) and 
(p + t - 1, A2p+U - 2 ) the large outside region of Plane p. In step 11 vertex p + t - 1 is joined to the 
2t - 2 lettered vertices immediately following the three lettered vertices on the boundary of the 
still unused gap produced by the connection of vertex 2 to vertex A2p - t in Plane p + 1. Hence the 
following step: 

12. In Plane 1, place vertex p+t-1, p=2, ... , t-2, in the gap having vertices A 2P - 2 , 

A2P- t , and A2P on its boundary, and join vertex p + t -1 to those three lettered vertices. Use simple 
joins to complete the connections of vertex p + t - 1 in the planes other than 1 and p. 

13. In Plane t - 1, place vertex 2t - 2 outside the circle and join it to the 2t - 2 consecutive 
lettered vertices having subscripts 2t, 2t + 1, ... , 4t - 5, 1, and 2. Place vertex 2t - 2 in Plane 1 
in the one remaining unused gap, having vertices AU - 3 , A2t - 2 , and Au - t on its boundary, and 
join vertex 2t - 2 to those lettered vertices. Complete vertex 2t - 2 with simple joins in Planes 2, 
3, .. "t-2. 

Call the region bounded by the rest of the circle in Plane t -1 and by the two edges (2t - 2, 
Au) and (2t - 2, A2) the large outside region of Plane t -1. Now each of the large inside regions 
and large outside regions in Planes 1 through t -1 has 2t - 1 lettered vertices on its boundary. 
A numbered vertex placed in anyone of these regions can be joined to 2t -1 consecutive lettered 
vertices there, leaving only 4t - 5 - (2t -1) = 2t - 4= 2 (t - 2) consecutive lettered vertices to be 
joined to it. These remaining connections can easily be completed by simple joins in the remaining 
planes. Specifically: 
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FIGURE 2. Plane 4 of K,5 • 15. 

14. In Plane p, p = 2, 3, . . ., t - 1, place vertex p + 2t - 3 inside the large inside region and 
join the vertex to the lettered vertices with subscripts 2p + 2t - 6, 2p + 2t - 5, . . ., 4t - 5, 1, 
2, . . ., 2p - 3. Complete vertex p + 2t - 3 in the remaining t - 2 planes with simple joins. 

15. In Plane p, p = 1, 2, . . ., t - 1, place vertex p + 3t - 4 in the large outside region and join 
the vertex to the 2t -1 consecutive lettered vertices on the boundary of the region. Complete 
vertex p + 3t - 4 in the remaining t - 2 planes with simple joins. 

This completes the construction. 
It will be noticed that the connections of vertex 2 play a key role in carrying out the above 

construction. A gap is created in Plane 1 because of the connections of vertex 2 in some Plane 
p + 1, and this gap is used by a vertex whose other non simple joins are in Plane p (or in Plane 
t - 1 for the case of p = 1). It is this interdependence of the connections in three planes at once 
that prevents the use of the above construction for K7 , 7, for which t -1 = 2, and thus requires 
Lemma 2. 

Another possible class of t-minimal graphs is {KII'(o} for some appropriate function cp(t). 
Since K5 is 2-minimal and K9 is 3-minimal, we know the value of cp (t) for t = 2 and 3. The thickness 
of K16 is known to be either 3 or 4. Figure 3 shows that K16 less edge (1, 16) can be embedded in 
three planes; therefore, if K16 has thickness 4, it is 4-minimal. See Beineke and Harary [2 and 3] 
for further results on t(Kn). 

The authors thank Jack Edmonds for his many invaluable suggestions during the preparation 
of this paper. 
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FIGURE 3. Plane 1 of K16 less edge (1, 16). 
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FIGURE 3. Plane 2 ofK'6 less edge (1 , 16). 
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'5 
FIGURE 3. Plane 3 ofK I6 less edge (1,16). 
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