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A nonuniform sheet of ions gene rated at time t = 0 diffuses in a cylindrical ion d iffu sion tube con
taining a nonreac ting ne utral species Rowing with parabolic velocity di s tribution. Calc ulation of the 
on·axis ion density at a point z downstream as a fun ction of time t is reduced to a single numeri ca l inte· 
gration for each (z, t ) involving some fun ctions which have been computed once for all. An example 
is given showing the effec t of the velocity di s tribution compared with a uniform fl ow with the sa me 
flow rat e. The results appear to be corroborated by experiment. 
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1. Introduction 

The analysis presented here is curre ntly being used to predict the be havior of a diffusing ion 
sheet in a flow tube . In the experiment [5],1 an inert buffer gas, us ually helium, is injected into a 
long fl ow tube about 8 cm in diameter. Dis tances along the tube are measured from a point z=O 
downstream at which the fl ow has become essentially laminar, with a mean velocity of 8(10)3 cmls 
and a pressure of 0.4 torr. A thin sheet of ions is generated at z = 0 at time t = 0 by a pulsed beam of 
electrons incident perpendicular to the axis of th e tube. The pulse width is variable, but 100 J-LS 

might be considered characteristic. Th e relatively high press ure in the tube insures that the ions 
created will b e thermalized at gas te mpe rature in a few cen timeters. The ion shee t is carried down
stream by th e flowing gas with a pulse shape de termined by diffusion and the nonuniform veloci ty 
profile. 

The sampling port of a mass spectrome ter is located on the axis at a variable distance z down
stream from the electron gun, where z is of the order of 100 cm. The detector is gated with a gate 
width of 100 J-LS. Thu s the ion arrival s pectrum as a function of delay time between the termination 
of the excitation pulse and the initiation of the detection pulse is measured. Using experime ntally 
measured values for the diffusion coefficient D, the computed arrival spectrum agrees well with the 
actual measured spectrum, indicating no serious errors are present in the formulation and solution 
of the transport equation. 

Letting (r, 8) be coordinates in the cross section of the tube, the problem is to determine the 
time-dependent ion density G(r, 8, z, t) on the axis (r=O) at a give n di stance z downstream 
from the point at which the ions were generated as a thin shee t with given (r, 8)-dependence. 
The background fl ow is ass umed to be laminar and steady, with a parabolic velocity distribu
tion, containing perhaps a ne utral reactant species of uniform density F everywhere. With a 
reaction rate K , G obeys the differe ntial equation: 

aG aG 
-at+v(r) a;=D2 G-KFG, 
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where £' is the Laplacian in cylindrical coordinates. Here vCr) is the parabolic velocity distribution: 

v(r)=2V(1-(~)). (2) 

where V is the mean velocity and a is the tube radius. At the wall of the tube, the ion density is 
assumed to be negligible: 

G(a, e, z, t)=O. (3) 

We shall take for the given initial ion density distribution: 

G(r, e, z, 0) = Per, e)8(z). (4) 

We notice that if KF = 0, the resulting solution Go(r, e, z, t) gives the general solution G for 
KF ,t- 0 as follows: 

G(r, e, z, t) = Go(r, e, z, t)e-KFt , (5) 

so that we may take KF = ° in (1) without loss of generality. 

2. Solution by Integral Transform 

We shall expand G by Laplace transform in t, Fourier transform in z, and an azimuthal expan
sion in e. 

- _1_ I x ih'z _1_ j,C+iOO d st ~ ilioF ( . k ) G(r, e, z , t) - (2)2 dke 2 ' . se L... e n r, ,s, 
7T -XI 'TTl C-I:lO U=-:x;l 

I'" 1" f27T F,I(r; k , s)= dze- ikz dte- st dee- in°G(r, e, z, t). 
-00 0 0 

(6) 

Then 

a2F,,+.!. aFn_[ n2 +k2+s+ikV(r)] F =_l P (r) 
ar2 r ar r D II D II , 

where 

P,,(r) = f7T deP(r, e). (8) 

We introduce the variables 

(9) 

where 

(10) 
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We obtain the inhomogeneous confluent hypergeometric equation [Ia] 

where 

/I I ~ 1 qll (YJ) eT)/2 
YJH II + (l + 2n- YJ)H II - aIlHIl =- 4~D' -'----'-'---

- 'Y YJ" 

~ _ 1 1 [ 2 S + 2ik~ 
all -:- n + "2 + 4'9 k + D -J 

The homogeneous equation has the solutions [Ib, Ic] 

with Wronskian 

w = _e1)r(I+2n). 
YJ' + 211 r( a,.) 

(11) 

(12) 

(13) 

(14) 

As must be expected, only the lowest azimuthal modes, n = 0, contribute to the axial value 
r= 0 of the ion density. The solution satisfying smoothness at YJ = 0 and vanishing at YJ = ya2 is , 
for n = 0: 

where 

On r=O, 

If we write 

and 

for the inverse Laplace transform, (17) gives 

( . k) - a2 r'd -¥ (b) 0/- , {r(~) .I,(~ 1. b) r(~) t/J(llo, 1; b)cf>(ao, 1; bz)} 
X t, - 4D )0 ze qo z cZ (s , t) ao',/, ao, , z - ao cp(ao, 1; b) . 

We put 

4D 
7=-2 t, 

a 

~ _ a2 2 a2V. 
v- 4 k + 2D ~k, 

137 

(15) 

(17) 

(18) 

(19) 

(20) 



and (19) becomes by translation 

The 2'-1 of the first term in the bracket can be found in tables [2aJ , when cf> is replaced by the 
proper Wittaker function , or rr.ay be found by the residue theorem from the poles of reA) at 
A = 0, -1, - 2, .... The second term may be evaluated in two parts. First, the poles of reA) are 
shown in the appendix 1 to give a term which exactly cancels the contribution from the first term 
in the bracket. Second, the zeroes of cf>(A, 1; b), which we shall designate as alll(b); (m= 1, 2, ... ), 

cf>(alll(b), 1; b) = 0, (22) 

give by the residue theorem 

" X(t; k) = e-Vr reb, 7), reb, 7) = L f lll (b,7), 
111 = 1 

f. (b ) = - b -T realll)!jJ(alll, 1; b) u .. bT • ~ (alll)Kb K 
if, (23) 

III ,7 - e A.. A , ( 1. b) e '" L.. (KI)2 of K· 
,+" a,o alii , , K =O. 

The last factor in flll(b, 7) comes from integration with respect to z using the power series for 
cf>(alll, 1; bz): 

(24) 

It is important to note that when we let b --,> ° in the above expression, we find 

using the limiting forms for cf> in terms of Io as b --,> 0, alilb finite: [1dJ 

(
A (ba)) , (;A 

cf> a, 1; -A- ---: Io(2 v bal. 
a .a --,> 00 

(25) 

Ibul < 00 

This also gives the location of zeroes for small b: 

alll(b) --,> - ell /4b, (26) 

where JO(~III) = 0, (m = 1, 2 , 3 , . . . ). Indeed , as b --,> 0, the entire expression (23) becomes 
independent of b, and the inverse Fourier transform involves only the factor e-VT , from which we 
recover the solution corresponding to a uniform velocity v Cr) == 2V. For PoCr) == 27T, this is 

1 (z- 2Vr )"" e- <~Dtl(/ ' 

{ 
C(O, z, t) = , ~ e- --;W;-L /: J (/: )' 

V7TDt ':,111 1 ':,111 
m= l 

vCr) == 2V. (27) 
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For z > 0, the (- ik)I /2 fa~tor in b is to be interpreted as lim ( -l- ik)I /2, (l > 0), so that the 
,l-O· 

path of integration in the k-plane for the inverse Fourier transform passes below the branch at k = 0: 

- 7T :,;;; arg k :,;;; 0_ (28) 

We replace k by b through: 

(29) 

and take the path of integration C in the b-plane to run from ooe- i:J; to the origin, C1 , and out to 

Then with 

we have 

aV 
I' == 2D' 

C(O , z, t) =4~ r dbibf(b , T) e- b2 e -'4) + -dr b<,. 
7Ta'YJc y 

Putting b = ue- i:J; on C1 , b = ue- i ~ on C2 , and noting that C is real , we obtain 

1 ·lx --'- Il'T + iIl 2 ( ' - T!:) • . TT C(0,z, t) =-2-- Real duue (By) ' 4 f(ue- ' 4, T). 
7Ta'Y 0 

(30) 

(31) 

(32) 

In a particular case of interest, (81')2 =3. 7(10)3, ;= 0.3, I;-il :,;;; 0.1. For such values 

expansion methods are not satisfactory, especially in view of the difficulty of -getting any simple 
expressions for the zero-curve a", (b) and f(b , T) . Numerical integration then seems to be necessary. 

3. Numerical Integration 

It is convenient to write 

x 

C(O, z, t) = 2: C",(z , t), (33) 
111 = 1 

where 

1 IX - _ 1_ ,,·,+ill (' - !) . . TT 
C",(z , t) = -2-- Real duue (By)' 4 r",(ue- ' 4, T), 

7Ta'Y () 
(34) 

where the subscript m refers to the terms due the zeroes of c/> (a", (b), 1; ue- i ~) which, as u ~ 0 

are given in (26). For computational purposes , it is convenient to introduce the following function s: 

{
F(U,B) == c/>(B/u, 1; uri~), 

uF,y(u , B) = c/> , A (B/n, 1; ue - i~). 
ao 
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Treating U as a parameter, the complex zero curve for each m, 

!F(U, BII1(u)) =0, 

lam(b) =BIIl(u)/u, 

is found by Newton-Raphson iteration 

B(O)(O)-_1:. 2 i"'
III - 4 ~lI1e 4. 

using the expansions [16] 

where 

. K! 
F(u, B) = L QK(U, B), 

K=O 

Q ( B) _B(B+u) ... (B+(K-l)u) -il5!!. 
K u, - (K!)2 e 4, 

(36) 

(37) 

(38) 

(39) 

with K! chosen to control relative error in F8 at cutoff. Curves BIII(u) for m= 1,2,3 were computed 
for O:s; u :s; 17 for a set of Gaussian quadrature abscissae on each unit interval in u. 

F fi d h b N f f A-. (B(u) 1 ·7r)··d . I d' d or xe u, t e num er 0 zeroes 0 'I' -u-, ; ue-I 4 IllSl e a ClfC e ra lUS p centere 

on Bo is easily shown to be 

(40) 

Using Gaussian quadrature, it was easily established that no zeroes occur for IBI:s; 10, 
o :s; u :s; 17, other than those continued from BIII(O). 

The remaining functions necessary to compute f(b, T) are found from th~ following: 

-i'7': K! [(Bill) ] glll(u) == - f(alll)t/J(alll, 1; ue 4) = .t:o QK(U, Bill) t/J --;;+ K - 2t/J(l + K) , 

K! .7r 
[III(U; Po) = L QK(U, BIII)~K(ue -14; Po), 

K=O 

(41) 

(42) 

where t/J(z) is the Digamma function [3a] and ~K is defined in (27). t/J(z) is computed by asymptotic 
series for Izl > 4, and for Izl < 4 the recursion relation is used to get z outside this circle. 

Clearly the radial distribution Po(r) occurs only in l/l/(u) via ~K' and does not affect the 
zero-curve location. Then 

.7r .7r In u (u)/ (u'P) f ( - /:t ) _ - / 4" -:r t">111 11/ ~ II 
III ue ,T - e e F ( B ( )) , 

,II U, 11/ U 
(43) 
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and the numerical integration in (32) is carried out by Gaussian quadrature on the unit intervals 
of u. 

From the discussion following (24), the distribution for uniform velocity profile v (r) == 2V is 

1 1'" -_ 1_ U4T+iu 2 (. - .:':.) [C(O, z, t)]uniform = 2-- Real· duue (8y)' 4 rcO; T). 
7Tay 0 

4. Results: Po(r) - 27r 

Detailed calculations have been made only for the uniform radial distribution Po(r) == 27T for 
which (24) is readily evaluated by recursion. (In particular, the results apply to a uniform distribu
tion per, 8) = 1 in (8)). A numerical evaluation for more general Po(r) is readily substituted. For 
typical numbers (T, if, y) of interest, the first term, m = 1 in (33), dominated the second, m = 2, by 
the factor 104 • 

Figure 1 shows Bm(u), the zero-curve, for m= 1,2. Figure 2 shows C(O, z, t) for a = 4 cm, 
D = 1800 cm2/s, z = 42 em, and a mean velocity V = 6800 cm/s for both the parabo]jc and uniform 
velocity profiles. 

Figure 3, taken from a forthcoming publication by Fehsenfeld [5], shows a comparison of 
the experimental profile (solid points) and the calculated profile (open points) for the values a = 4 cm, 
D = 2400 c m2/s, z = 113 cm and V = 6800 cm/s. In this figure, both sets of data are norma]jzed to 
peak values of unity , and the time of the experimental peak is shifted by 0.3 ms. 

Computation of the zero-curve for each m took three minutes, while the curves in figure 1 
took two minutes each on the CDC 3600 with complex arithmetic hardware. A 50-point Gaussian 
integration was used throughout [4]. Fortran programs are available from the author. 

The author wishes to express his thanks to Fred C. Fehsenheld and Arthur 1. Schmeltekopf 
for suggesting the problem and providing experimental verification of the results. 
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FIGURE 1. Z ero curves Bm{u) for m = l , 2 (eq 37). 
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6. Appendix 

We shall show that contributions to the inverse Laplace transform due to the poles of r (A) 
in the two terms in (21) cancel out. 

From well-known relations [I e, 2a] , the first term gives: 

bz 

2;;/, bJ(A)tfJ(A, 1; bz) = 2 - 'e y (bz) - 1/2f(A) W I/2- A, o(bz) 

(AI) 

according to tables [2a]. (Note that in the reference [2a], second column , (! -K-u)t should 
read (! +K-u)t to agree with reference [2bJ and the straightforward residue evaluation.) 
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With regard to the second term, let us put 

<I>(A) = cf>(A, 1; bz), 
cf>(A, 1; b) 

(A2) 

and assume that this factor does not contribute to £>-1. (Its contributions are treated separately 
in the text.) Then for c> 1 (the nonlogarithmic case) [Ie] 

£>Cl,bT)f(A)tjJ(A, 1; b)<I>(A) =Q(t; b, c) 

=_1T_ {£>- I f(A)cf> (A , c; b) <I> (A) 
sm 1TC f (c) f( 1 + A - c) 

-bl-c£>- I cf>(1+A-c, '2-c; b) <I>(A)} (A3) 
f(2-c) , 

by the definition of ",(A, c; b) in terms of two independent solutions cf> (A, c; b) and bl - ecf> (1 + A - c; 
2 - c; b) for noninteger c. The second term on the right of (A3) vanishes due to the regularity of 
the integrand, so that by the residue theorem, the poles of f(A) give : 

1T '" cf>(- m, c; b)e- mbT 
Q(t; b, c) =-.- ~ (_)m 'f( )f(I ) <I>(-m). sm 1TC L.J m. c -m-c 

m= O 

Taking the limit c ~ 1+, 

cf>(-m, c; b) ~ cf>(-m, 1; b), 

f(c) ~ 1, 

(-) "'1T 
sin 1Tcf (1- m - c) ~ --, -, 

m. 

We find then, that c ~ 1+, 

'" 

(c~ 1+). 

Q(t; b, 1) = ~ cf>(- m, 1; b)e- mbT<I>(- m). 
m= O 

Replacing <1>(- m) by (A2), 

Q(t; b, 1) = ! cf>(- m, 1; bz) e-mbT . 
m=O 

(A4) 

(AS) 

By the formula for the generating function for the Laguerre polynomials [3b], 

'" (-bx) ~ cf>(-m,I;b)xm=(l-x) - l exp ~; 
m= O 1 x 

(A7) 

putting x = e- bT , we obtain the equivalence of the expressions (AI) and (A6). 

(Paper 72B2- 267) 
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