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The general family of kinetic equations, whic h in plasma kinetics are called the BBGKY equations, 
are obtained rigorously from basic probabilisti c considerations in order to exhibit explicitly the con­
ditions or assumptions under which they obtain. 
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1. Introduction 

The plasma kinetic equations, referred to as the BBCKY hierarchy, are fundamental in the 
analysis of plasma kinetics. In the following, these equations are derived rigorously in order to 
determine explicitly the conditions or assumptions under which they are valid. The heuristic 
derivations do not clearly indicate the assumptions which are important to both theoretical and 
experimental plasma research. Since the functions in the BBCKY equations are probability density 
functions the following treatment is probabilistic. 

2. Preliminaries 

Consider first Euclidean 6-space £6 in which a point is represented by the 6-tuple of real 
numbers (or coordinates) {ql , qz, qa, PI, pz , P3} and n points are represented by n 6-tuples {qr, 

q~, q~, pf, p~ , pn for s = 1 . _ . n or more concisely for each s = 1 ... n by {q f pf} where i = 1,2,3. 
Equivalently these n points may be represented in Euclidean 6n-space £6n by one point, or 6n-tuple, 
{qt, pO where s = 1 . .. n, i=1, 2,3. 

Consider also a set of 6n elements Ql ... Q3nP I • • _ P3n called observables; the entire 
set QI ... Q3nPl . .. P3n being called the System S of observables. We then make the definition: 
DEFINITION: A (static) state P of the System S is an assignment P : QI ... Q:lnPI ... P3n ~ {q: 
. . . q~, pI ... pn i.e., an assignment of 6n numerical values to the observables or an assignment 
of a point in E6n. The correspondence between the P's and the points {qS;, pn is assumed to be 1:1 
so that we may write P = {q~, pn. 

The statis ti cs of the System (in this static case) are given by a probability distribution F on 
the Borel Field of E6n such that the following assumption holds: 
ASSU MPTION 1: F is absolutely continuous with respect to Lebesgue measure and thus there exists 
a measurable function p = p(qf, pf); i.e., a probability density function, such that for any set B in 
the Borel Field one has: 

F(B) = f8 p(qf, pf)(dq dP)n where (dq dP)n = dql ... dq~ dpl ... dp~. 
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In order to introduce dynamics into this schema, we specify the state concept in the dynamic 
case as follows: 
DEFINITION: A state function P of the System S is a mapping from the direct product S X R #, 

where R # is the real numbers, into E6 11 such that for each tER #, P provides an assignment pet) of a 

point in Esn to the observables in S, that is,for each t, P specifies a (static) state P (t) : QI ... Q3n 
PI ... P:1n ~ {qr(t), pf(t)} which by the preceding convention we may write pet) = {qi(t), pf{t)}. 

We shall also make the following assumptions: 
ASSUMPTION 2: For given t and arbitrary {(if, pnEE6n there exists a state function P such that 

P(t)= {qf(t), pf(t)} = {<if, Pf}. 
ASSUMPTION 3: The dynamics of the System S are given by a Hamiltonianfunction Hn = Hn( {qf, pf}) 
and by a one-parameter group {Ut}, tER #, of contact transformations, differentiable with respect 
to t, so that if P is an arbitrary given state function then for tER #, TER # 

UTP(t) = UT{ qf(t), pi(t)} = {qf(t + T), pi(t + T)} = pet + T). 

The statistics of the dynamical System are now given, for each value of the parameter tER #, 

by. a probabilitI distribution F, which for each tER # satisfies assumption 1 above so that we may 
write: F,(B) = p,(qf , pf) (dq dp)". 

Ii 

DEFINITION: The System S in the state pet) will be said to be in the Borel set B at t if pet) = 
{q~ (t), p~(t)} E B. In these terms F t(B) may be referred to as the probability that at tE R # the System 

will be in a state in B. 
Since the variation of the states P (t) , or of the state function P, with t is given by assumption 3, 

it is possible to describe the related variation of the F, (B) with t as follows. By assumption 3: 
VTP(t) =P(t+T), the states pet) which are in a Borel set B at t will become states P(t+T) in a 
Borel set BT att + T. The set B' is the set of all points {iit, ,on of E 6" which satisfy {ii1 , ,of} = {qf(t + T), 

pf(t + T)} = V,{qf(t), pr(t)} for {qf(t), pf(t)} = {qf , pf}EB. Since the V, are contact transformations 

and since the Poincare Invariants under contact transformations include the Lebesgue measure 
J.L(B) of the Borel sets B c £6", we have J.L (B') = J.L (B). 

For given I and Borel set B with state {qf(t), pf(t)} = {qf, pn EB consider p,(qf, pnJ.L(B) = 

p (qy (t), pf(t), t)J.L (B) and similarly for T and BT with {qf(t + T), pf(t + T)} = {qf, pnEBT consider 

p' +T(qf, jJOJ.L(BT) =p(qf(t+T), pf(t+T) )J.L(B'). 
ASSUMPTION 4: The functions Pt(qj, prJ = p(qf(t), pr(t), t) are differentiable with respect to qi, p~ 

and t and ~ (which exists by assumed differentiability of the contact transformations Ua is uni­

formly continuous over each Borel set B. 
Then for T = I:::..t, sufficiently small, and arbitrary closed bounded Bor~l set f3 C B one can write 

by the law of the Mean: 

p(qf(t + l:::..t), pf(t + I:::..t) , t+l:::..t)J.L(f3llt) =p(qf(t+I:::..t), pf(t+I:::..t), t+l:::..t)J.L(,B) 

dp 
=p(qi(t), pi(t), t)J.L(f3) +I:::..t dt (q~(t+ fJ1l:::..t) , p~(t+ fJ2I:::..t), t+ 8:1!::..t)J.L(f3) 

d · 'f' .. I' dp . an u S ln~ unl (lrm contJl1ulty 0 dt one can wnte 

1 ~ (crt, pi, t)(dq dP)n. 

L ,dF,(B) I I f' I d . k 
ettJl1~ dt represent t le etlan expressIOn we rna ' e 
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ASSUMPTION 5: dF ~~B) O/or all Borel sets B. From this assumption and continuity 0/: we have 

[Liouville's Theorem] 

3. Derivation of BBGKY Equations 

Consider a sllbspace E" c E611 where E" is the subspace of 6<T-tuples {qr', pj"} , W = j" h ... j", 
the jk being <T distinct integers from 1 to n; for purposes of simplicity in notation take w = 1, 2, ... <T. 

For B" a Borel subset of E" let C" be the 6n dimensional "cylinder" on B" i.e., C" = { {ql, pH, 
i = l, 2,3, s = l . .. n; such that for s = l . .. <T {qr, pH c B,,}. We shall write C" = B,, X E~ 

whereE~ = {{qLpn,s = <T+1 , ... n}. 
Since C" is a Borel subset of E611 we have as above 

= JB" [La- PI (qt, PI') (dqp-+ 1 • •• dpf')] (dqi ... dp;"). 

Writing ( ~ ~t) - l (s S)(d"+1 d ll ) P" q" p" - EO-PI qi, Pi qi ... Pi 

then 

The Hamiltonian HI! = H/!( {qL pH) will be of the form in the following assumption: 

ASSUMPTION 6:. Hn =(± ± (pn2)+V({qm 
k = 1 ;= 1 2m 

where 

r 3 J-'/2 with ekl=elk=8(q~, ql) = a symmetric/unction o/q~, qf;/or example: ekl =e2 ~~ (q~-qlr 

and <t>~( {crt}) = potential at kth point (or particle) due to the boundaries (in E6) which are assumed 
to contain the n points (or particles) and 'I'~( {q~}) = potential at the kth point (or particle, or elec­
tron) due to a fixed background electric field (produced by + charges). 

One can then write 

J J c; (qf(t),pf(t), t)(dqdp)" 
B" E:r t 
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f f [ap n (ap (p~') ap (av))] 
= BO" E!r at+k~1 aqt m -ap;' aqf' (dqdp)" 

r a f f 0" (pt) a f f r n 
= JB at E' p+ B L --;;:; aq~ E' p+ B JE' L 

(T (T u 'k = l l a a U. k = U+ l 

ap p/, 
aq7' m 

-f f ~ (~) (~ afh-I+ '" a8mk + a<l>~ aqr~). 
LJ a k LJa k LJa k ak+ak BO" E!r k=O" +1 Pi I>k qj m < k qj qj qi 

In the above and following we omit the (dq, dp) notations whenever they are obvious. 

Since 8 = 8 and ~ a8kl + '" a8mk = ~ a8kl 
kl Lk LJ a k LJ a k LJ a k 

I>k qj m < k qj 1= 1 qi 
I't;k 

the above may be written, using the definition of pO": 

and one can abbreviate the notation for these five integrals as: 
= /(1) -I(2) -/(3) + /(4) -I(5). 

Now in the above notation for EO" = { {qL P7'}; k = 1 . , . o-} letting E(l) = { {qL P7' }; k = l} we 

set ECI , I= EO"+E(I), that is, the minimum subspace containing the subspaces EO", E(I). Also, as 
above , let E~ = the complementary subspace of EO" in E611 consisting of all 6 (n-a}tuples {qL pn 
where k = 0- + 1, 0- + 2, . . . nand i = 1, 2 , 3 and let E~. 1 = the complementary subspace of ECI, 1 

in E6n consisting of a1l6(n-0--l)·tuples {qL pn where k # l, 0-+ 1 ~ k ~ nand i= 1,2,3. Also 

similar to the definition of PO" above we shall let: 

PCI , /(qf, pf , t) =f p(qf , pf, t)(dqdp)~" 
E~ . I 

where (dq dp )~. 1 represents the usual "volume" element in E~. I, 
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Furthermore we now make the following: 
ASSUMPTION 7: p(q~, p~, t) is a function symmetric with respect to the indices s. 

It i clear then that the functions P fH I (qf, pf, t) = PfT , fT + I (qf, pf, t) and pfT. I (qf, pf, t) differ 

only in that the coordinates q'{+ I , p'{+ I occ urring in Pa+ I are replaced by qL p~ in pa, (. Thus 

since 

Suppose now that the states of the System are restricted by: 
ASSUMPTION 8: There exists a closed bounded subset 2, 3n of E3n such that the probability density 
function p(q~, p~ , t) is identically 0 for all (qjs, pf, t) such that {qn s= 1 ... n, i= 1,2,3 is a 

point on the boundary of 2,3n or outside 2,3n • This is equivalent to saying that for any t and any 
Borel set B with B n E 3n in the cLosure of the complement of 2, 3n, the probability, Ft(B), that the 
System is in a state in B is O. 

We shall also take the boundary of 2,3n to be the boundary pertaining to the potential functions 
<I>lt of assumption 6. 

and 

One can then write: 

foe ~ dqt = O by virtue of assumption 8 hence 1(4) =0. 
-00 aqj 

If also one makes: 
ASSUMPTION 9: For any given k = 1 ... n p(qf, pf, t)~ 0 as p~~ ± co 
then / (5) = 0 by the same type of argument. 

Finally from assumption 5 dF+d~Ca) 0 for any CfT hence for any BfT 0=/(1) -/(2) - /(3) 

and since the integrands are assumed continuous we get the BBCKY hierarchy equations: 

= ~ ( - ) f afh,fT+' apfT+1 (driJ+' d fT + I). 
L... n a E(fT+l) aqlf aplf '-l'i P, 
k = 1 ". 
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If one takes the Hamiltonian H u = H u ( {q~, pf} ) s = 1 . . . cr to be 

the n these equations become 

apu+ [ H ] = ~(n-(J)f a(J".,u+lapU+l (d u+ld '!+1) . 
at PfJ U LJ {fJ + i) aq" ap" q, P, 

k = ! E I I 

The conditions under which these BBGKY equations are valid are thus explicitly given by the 
assumptions 1 through 9. 

4. More General Case 

The preceding discussion is conditioned by its restriction to Systems of 6n observables 
Qi , Pi i = 1 ... 3n, that is, to exactly n points (particles) in £6. Therefore the functions 
FT(B) = F(B, t) are, in this sense, conditional probability distributions. A somewhat more general 
situation may be treated as outlined briefly in the following. 

Let Ew be the linear space of all infinite double sequences: 

{qJ, qL q~ , qi, q~, ... PI. p~, p~, PT, p~, ... } = {qf, pf} i = 1,2,3 s= 1,2, 

If E6= {q;, Pi} i = 1,2,3 then Ew may also be regarded as the infinite direct product: 

Similarly writing as above Eu= {{if" pI}; i = 1,2,3; s= 1, 2 .. . cr} and Bu for a Borel subset of Eu 
then for m ~ (J we denote the cylinders C~ in Em and C'(; in Ew by: C~ = Bux E'/)' where 

E:;>' = {{qt, p~}; s= cr+ 1, ... m} and C'(; = BuxE'(;' where E'(;' = {{qf, pfi}; s = u+ 1, ... }. 

If the System may vary stochastically with respect to t we may let P",(t) be the probability 
that, for tER , there are m points (particles) in E6 or equivalently that the System consists of 6m 
observables Qi, Pi. Also let F':)( C,:), t) be the conditional probability that, if there are 6m observables 
in the System, then this System will be in a state P= {qf, pf} such that the 6u-tuple 
{qL P1} s= 1 ... u will be in Bu at t . Then the probability that the System will be in a 

state P = {if" pf} which is in Brr at t is given by: F,(;(C,(;, t)= ~ Pm(t)F~'(C~ , t). 
m~(T 

If for each m the distribution F':) (C,:) , t) is absolutely continuous with respect to Lebesgue 
measure in E"' then there exists as above a measurable function p~' such that 

F~'(C~', t) = 1 p,:)(qt, pf, t) (dq dP)m. 
Cu 

Furthermore F<:;.( 0:;., t) will also be absolutely continuous with respect to the product measure Ew 

andF,(;(Cu,t) = ( p,(;(qf, pf,t)(dqdp)wwherep,(; is a function measurable with respect to the Jcu 

product measure in Ew. 

" Since F<:;.(C':;., t) = ~ Pm(t)F;'(C;', t) the sequence ~ Pm (t)p,:) (qf, pt, t), as n~ 00, con-

verges in measure to p':;.(qf , pf, t) and under proper assumptions on the uniform continuity of the 
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derivatives of the terms of the sequence one may relate the hierarchy equations for the pC;; to the 
above derived corresponding relations for the individual p':) occurring in the terms of the sequence. 

5. Summary 

The preceding derivation of the BBCKY hierarchy equations and the specific assumptions on 
whic h it is based are not restricted to plasma kinetics. As indicated in the introduction the treat­
ment is essentially probabilistic and nearly all the assumptions are probabilistic in nature. The 
excepted non probabilistic assumptions refer to the existence of a Hamiltonian and an associated 
contact transformation group, both of which are more general than the requirements of plasma 
kinetics. 

6. References 

Halmos, P . R. (1950) , Measure Theory (D. Van Nostrand Co., New York, N.Y.). 
Kakutani, S. (1943), Notes on infinite product measure spaces I , Proc. Imp. Acad. Tokyo 19. 
Montgomery, D. c., and D. A. Tidman (1964), Plasma Kinetic Theory (McGraw·Hill Book Co., Inc., New York, N.Y.). 
Zaan en, A. C. (1967), Integration (John Wiley & Sons, Inc. , New York , N.Y.). 
Khin chin , A. 1. (1949), Mathematical Methods of Stati sti ca l Mechanics (Dover Publication s, Inc., New York, N.Y.). 
Liouville, 1. (1838), Journal de Mathematique 3 . 
Loren tz , 1. (1887), Wiener Sitzungsberichte 95 (2). 

(Paper 72B2-266) 

133 

---- --'\ 


	jresv72Bn2p_127
	jresv72Bn2p_128
	jresv72Bn2p_129
	jresv72Bn2p_130
	jresv72Bn2p_131
	jresv72Bn2p_132
	jresv72Bn2p_133
	jresv72Bn2p_134

