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Differentiable Generalized Inverses 

John Z. Hearon* and John W. Evans* 

(March 26, 1968) 

Necessary and sufficient conditions are given for a differentiable matrix to have a differentiable 
generalized inverse. It is shown that when these conditions are met there exist, for several classes 
of generalized inverses, a differentiable generalized inverse which coincides with a prescribed gen
eralized inverse on a particular subset. The relations between the derivative of a matrix and that of a 
differentiable generalized inverse are given. 
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1. Introduction 

If A is a nonsingular matrix the entries of which are differentiable functions of t, then the 
familiar relations between the derivative of A and that of A - I are 

dA dA - l 
-=-A-A 
dt dt 

(1) 

dA - 1 =-A- I dA A- I 
dt dt' 

(2) 

If A is a singular (ei ther rectangular or square with zero dete rminant), differentiable matrix and B 
is a differentiable generalized inverse of A, we inquire what relations analogous to (1) and (2) hold 
between the derivatives of A and B. 

In section 3, necessary and suffi cient conditions are given for the existence of a differentiable 
generalized inverse of a differentiable matrix. When these conditions obtain, we consider, in sec
tion 4, the problem of the existence of a differentiable generalized inverse which coincides with a 
prescribed generalized inverse on some particular subset. Moreover, this problem is considered 
for several classes of generalized inverses. 

In section 5 relations between the derivative of a matrix and that of a differentiable general· 
ized inverse are given. These relations depend upon the class of generalized inverse and reduce, 
in the nonsingular case, to (1) and (2). Further, necessary and sufficient conditions are given such 
that (1) and (2) re main valid in the singular case when A- I is replaced by a differentiable generalized 
inverse. Finally, in section 6, some special cases are considered. 

2. Preliminaries and Definitions 

All matrices are considered to have complex entries. For any matrix M, we denote by p (M) , 
R (M), N(M) and M * the rank, range , null space and conjugate transpose, respectively , of M . If 
a fun ction f is such that its first k derivatives exist and are continuous we write fe rrl\ and the 
interval on which this is true will be clear from the context. If the entries ntij of M are such that 
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mijE'G'\ for all i, j, we write ME'G'h', Iff is a function defined on a subset it of an interval [a, b], a 
function g defined on [a, b] is said to be an extension off to [a , b] if g(t) =/(t) whenever tEit, 
We apply this definition to both scalar-values and matrix-values functions.' 

We deal here with the same classes of generalized inverses previously defined [3] 2 and 
employ the same definition of a stric t generalized inverse of a given class as that given in [3], 

3. Existence of Differentiable Generalized Inverses 

We begin this section with the following lemma. 
LEMMA 1. A continuous projection defined on an interval has constant rank. 
PROOF. Let A (t) be a continuous projection defined on an interval it of the real line, and 

let p(A(t))=r(t). Then clearly the determinant det (A+/) = 2 ,'(t). The left-hand side of this 
equality is continuous. But a continuous integered·valued function on a connected set is constant. 
It follows that p (A (t» is constant. 

If A is a given matrix, it is known [2] that there exist matrices BEC, (A) which commute with 
A if and only if peA) =p(A2) and that when this condition is met there exists a unique C2 ·inverse 
which commutes with A; it is in fact a polynomial in A. The next lemma concerns the differenti· 
ability of this generalized inverse, 

LEMMA 2. Let AE'G' i( on an interval it and have the property that p(A(t» = p(A2(t» = r for each 
tEiF. If B(t), for each tEiF, is the unique C2 -inverse of A(t) whi~h commutes with A(t), then BE'G'k on iF, 

PROOF. From p(A) =p(A2) we have that the Jordan canonical form of A(t) is diag (A,(t), 0), 
where A,(t) is an r-square nonsingular matrix. The characteristic polynomial of A(t) has coef
ficients in 'G'h' and is of the form A"- I!( A), where I( A) is the characteristic polynomial of A, (t). 
From f(A) we can construct a polynomial peA), with coefficients in 'G'k, such that A - , (t) = p (A, (t)). 
Now the matrix B, (t) = peA (t» is, by a known theorem [1] , a C,·inverse of A (t) since the Jordan 
form of AB, is the projection diag (II" 0). The matrix B = B ,AB, is, by Theorem! l lof [3] a C2·inverse 
of A, commutes with A, and clearly BE1i'k. 

We now employ Lemmas 1 and 2 to prove the main result of this section. 
THEOREM 1. Let AE'G'k on an interval iF. II peA) is constant on iF, then the C·inverse of A is 

in 'G'k on it. If peA) is not constant on iF, then no C I-inverse, 1 :s;: i :s;: 4, can be continuous on it. 
PROOF, If P (A) is constant on it, then the Hermitian matrix H = A * A meets the conditions 

of Lemma 2. We are thus assured of a matrix Wet) which is the unique C2·inverse of H(t) which 
commutes with H(t), and WE'G'k on iF. Moreover, W is Hermitian [2], But WH = HW and WEC2(H) 
imply W EC~ (H). By Theorem 1 of [3], B = W A * is the C~-inverse of A and clearly BE'G'k. Now let 
B be any Ci·inverse of A, 1:s;: i :s;: 4. If B is continuous on iF then, by Lemma 1, the continuous 
projection AB has constant rank on it. But by a known theorem [6], p(AB) = p(A), and A has 
constant rank. 

4. Extension of a Given Generalized Inverse to a Differentiable Generalized Inverse 

Suppose that AE'G'h' on [a, b], peA) is constant on [a, b] and that for some subset iF of [a, b] 

there is defined a matrix Hi which is in Ci(A) on iF for some 1 :s;: i :s;: 4. If there is an extension 
of Bi to all of [a, b] which is in 'G'h' and which is a Ci·inverse of A on Cu. b] then evidently each 
entry of Bi has an extension to all of [a, b] which is in 'G'''. The converse of this statement is the 
content of the next theorem, 

THEOREM 2. Let A, Bi, iF and [a, b] be as above. If every entry of I'lj has some extension to all 
of [a, b] which is in 'G'k, then there exists a Bi which is an extension of Bi to [a, b] and such that 
BiE'G'k and BjECi(A) on [a , b]. 

PROOF. For the case i = 4 we have no need for the theorem. For, the C~-inverse is unique and 
is, by Theorem 1, in 'G'k. 

I In what follows we deal with closed interval s. The proofs given go through. with minor modification. for inte rvals which are half-open, open, semi-infinite. 
2 Figures in brac kets indicate the literature references at the end of this paper. 
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Let i = 1. By hypothesis there is an extension 81 of BI and B IE'(5'o. Let B+ be the C4 -inverse 
of A, and let p/{ = AB+ , PI' = 1-B+ A. Then p/{ and PI' are in '(5k and are projections onto R (A) 
and N(A), respectively. If D = BI - B+, then D is, on Iif, the difference between two matrices 
in CI(A). Then BI=B++PovDPH+D(I-P/{) is, by Theorem 2 of [3], a CI-inverse on all of [a, b] 
such that BI =BI on Iif. Clearly BIE'(5k. 

Let i = 2. By what we have proved so far, we may take 82 as an extension of B2 such that 
~ ~ ~ 

B2EC I(A) and B2E'(5'0 on [a, b]. Then, by Theorem 2 of [3], B2=B~B2 is a C2-inverse of A 
on [a, b]. Clearly B2=B2 on Iif and B2E'(5k on [a, b]. 

Let i = 3. By the first part of this proof we may take 83 as an extension of B3 such that B3EC I (A) 
and B3E'(5k on [a, b]. Then, by Theorem 2 of [3], B3=B~B+ , where B+EC4 (A), is a C3-inverse 

of A on [a, b] and B3=B3 on Iif. Evidently B3E'(5k on [a, b]. 
The proof for i = 3' is an obvious parallel of that for i = 3. 
If A is a differentiable EPr matrix we may inquire as to existence of a differentiable EPr 

Ci-inverse of A, where of necessity i ~ 2, for by a known theorem jf BEC I (A) then BECdA) if and 
only if p(B) =p(A) [1,6]. This question is settled by Corollary l. 

COROLLARY 1. Let AE'(5k be an EPr matrix on [a, b] and let B be an EPr C2 -inverse of A 
on a subset Iif of [a, b]. If every entry of B has an extension to [a, b] which is in '(5k, then there 
exists a B which is an extension of B to [a, b] and such that, on [a, b], BE'(5k, BEC2(A) and B is 
EPr. 

PROOF. Let 8EC2 (A) be the extension of B given by Theorem 2. Then by Theorem 3 of 

[3], B = BA*B* is a C2-inverse of A and is EPr on [a, b]. By the same theorem, B = B on Iif. By 
construction, B is clearly in '(5,0. 

It is an easy result from Theorem 1 that if on [a, b] A is a differentiable EPr matrix, then 
the C4 -inverse B of A is a differentiable EPr matrix. For, Theorem 1 shows that BE'(5'o whenever 
AE'(5k and it follows from a known theorem [5] that B is EPr. Further, if A is EPr, then p(A) = p (A2) 
= r [4], and if AE'(5k, A meets the conditions of Lemma 2. But by Lemma 6 of [3], the matrix 
vouched for by Lemma 2 is the C4 -inverse of A. Thus we can so far assert that, trivially, a differ
entiable EPr matrix has a differentiable EPr generalized inverse of every class, for it has a dif
ferentiable EPr C4 -inverse. The question of the existence of differentiable matrices which are 
at some points on [a, b] strict EPr C2·inverses of a differentiable EPr matrix is cared for by Theo
rem 7 of [3], which gives properties of the map I/I(B) =BA*B* (where A is EPr and BEC 2 (A)) 
upon which Corollary 1 is based. 3 

5. The Derivative of a Generalized Inverse 

In this section we denote by M' the derivative of a differentiable matrix M. We assume the 
existence of a differentiable generalized inverse, B, of a differentiable matrix A and study the 
relations which obtain between A' and B'. If B is any generalized inverse of A we define, through
out this section, the projections 

(3) 

(4) 

Then ABA = E IA = AE2 = A shows that E I (E2 ) is a left (right) identity element for A. If BEC2 (A), 
then BAB = B = E2B = BE I shows that E2 (E d is a left (right) identity element for B. Relations 
(1) and (2) stem from the fact that the derivative of AA - I=A - IA=I is zero. In a somewhat analo
gous manner the relations derived in what follows stem from Lemma 3. 

LEMMA 3. If E is a differentiable projection, then EE'E = O. 
PROOF. From E = E2 we have E' = E' E + EE'. Left multiplication of this last equality by E 

gives EE'=EE'E+EE', from which the result follows. 

3 We observe that by the last display oflhe proof of Theorem 5 of [3] and by Theorem 7 of [3]. the set C2 (A) - C:v(A) is e mpty if and only if A is nonsinguiar. 
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The next theorem furnishes an analog of (1) for a differentiable C,-inverse and an analog of 
(2) for a differentiable C2-inverse_ 

THEOREM 3_ If A is differentiable and B is any differentiable C, -inverse of A then 

(5) 

and if B is a differentiable C2 -inverse then also 

(6) 

PROOF_ If BEC,(A) , then E,A = A_ By Lemma 3 we have that E,E;A = E,E;E,A=O. This 
being so, we have, using (3) and (4) E,E;A=E,(A'B+AB')A=EtA'E2 +AB'A=0, from which 
(5) follows. If BEC2 (A), then multiplication of (5) from left and right by B and using E2B = BE, = B 
gives (6). 

We observe that (2) can always be obtained from (1) and conversely. But, as seen from the 
proof of Theorem 3, (6) follows from (5) only if BECz (A), i.e., only if BEC, (A) and AEC 1 (B). 

The next theorem gives conditions under which a differentiable Crinverse of A can be sub
stituted for A - I in (1) and conditions under which a differentiable C2-inverse of A can be sub
stituted for A - , in (2). An example is given in the next section. 

THEOREM 4. If A is differentiable and B is a differentiable C ,-inverse of A, then A' = - AB ' A 
if and only if E;A = AE ~ = o. If B is a differentiable C2-inverse of A, then B' = - BA'B if and 
only ifE~B= BE; = O. 

PROOF. If E;A = AE~= 0, then from A = E,A =AE2 we have A' = E,A' = A'E2. But then (5) 
reads A' = -AB'A. Conversely, if A' = -AB'A, left multiplication by E, shows E,A' =A' and right 
multiplication by E2 shows A'Ez=A'. It now follows from A'=E;A+E,A'=AE~+A'E2 that 
E;A =AE~ = O. Similarly, if B is a C2-inverse of A , then B = E2B = BE, and E~B =BE; = 0 together 
imply B'=E2B' = B'E, and (6) becomes B' = -BA'B. Conversely B'=-BA'B implies B ' =E2B ' 
= B' E, which implies E 2B' = BE; = 0_ 

If A is m X n, then E, and E2 are m-square and n-square respectively. In the event that peA) = m 
we have E, = 1m and Theorem 4 becomes A' = - AB' A if and only if AE~ = 0 when BEC, (A) and 
B '=- BA'B if and only if E~B=O when BEC2(A). Similar statements hold when p(A)=n. The 
nonsingular case (p (A) = m = n , E; = E ~ = 0) is clearly a special case of Theorem 4. 

6. Special Cases 

Let A be a matrix such that P - 1AP = diag (J (t) , Jo) where P is a constant matrix, J (t) is the 
Jordan block corresponding to the nonzero roots of A, Jo is the Jordan block corresponding to the 
zero roots of A. Assume that the structure of the Jordan form remains the same over some t-interval 
over which A is differentiable . It is easily verified that if P - 1 BP= diag (J - l(t), n), where J~ is the 

transpose of Jo, then B is a C2-inverse of A. For, Jo is a direct sum of nilpotent blocks, each block 
having l 's on the subdiagonal and zeroes elsewhere. For any such block N of order k, NTN=diag 
(h - " 0) which is idempoten t and ha s the same rank as N. By a known theorem [1], NT is then a Cz-
inverse of N and hence 1l is a C2-inverse of Jo. Now BA is similar to diag (1, JJj) and by the same 
theorem [1]; B is a C 2-inverse of A . In thi s case then, El =P diag (I , JoJ~)P - l and E 2=P diag 
(I, J~Jo)P - ' are constant matrices and Theorem 4 applies. 

If B is a C2-inverse of A and commutes with A , then El = E2 • Further, since A, B, El and E2 
all have the same rank [1 , 6], it follows that A and B have the same null space and that A* and 
B * have the same null space. Given this , the two conditions E;A = AE~ =O and E~B=BE;=O 
are equivalent. For, the first requires that the columns of E'=E;=E~ be in N(A) and that the 
columns of (E')* be in N(A*); while the second requires that the columns of E' be in N(B) and 
that the columns of (E') * be in N (B*). 
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Thus . if 8ECz(A), is differentiable, and comm utes with A, we have from Theorem 4 that if 
either of the conditions A' = - AB' A and B' = - BA ' B is satisfied the other is also satisfied. 

We have shown in section 4 the existence of a differentiable EPr Cz·inverse of the differentiable 
EPr matrix. It is known [1] that an arbitrary square matrix possesses a Cz·inverse which is EPr. 
The next example shows a matrix which can have no continuous real Cz·inverse which is EPr. 
Let A be 

on the interval i? = [0, 7T]. Then p (A) = 1 on i? and clearly A is differentiable there . Le t 8ECz (A) 
and N(B) =N(B*). We now show that 8 is not continuous. Since [6] p(BA) = p(A) = 1, on i?, we 
have that BA ~ 0, for tEi? and that the first column, b" of B is not zero for tEi? But BA ~ 0 implies 
O=R(A) 'N(B)=R(A) ·N(B*)=R(A) ·R(8) 1. . Then since the vector x, where x*= [l , 0], is a 
basis for R(A), R(A) ·R(B)l. =O implies that if y*=[O, 1], then y¢R(B). Since hi ~ 0, for tEi?, 
is a basis for R (B) we now have that bl1 , the first entry of hi, is never zero for tEi? We also have 
p(AB) = p(B) = 1, on i?, so that C=AB ~ 0, for tEi?, and in particular eJl (t) = b11 (t) cos t+ b21 (t) 
sin t,p 0, for lEi? Now assume that b11 is continuous on i? Then el1(O) and el1(7T) have opposite 
signs, s ince hll cannot change signs on i? But then e ll (t) = 0 for some tEi?, which is a contradiction. 
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