
JOURNAL OF RESEARCH of the Notional Bureau of Standards - B. Mathematical Sciences 
Vol. 72B, No.2, April - June 196B 
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Several classes of generalized inverses of a given m X n matrix are considered. A co llect ion of 
continuous maps is given, each of which maps a class of generalized inverses onto a stronger c lass and 
the elements of the stronger class are the fixed points of the map. For the case of EPr matrices one of 
these maps is studied in more detail. The various classes of generalized inverses are characterized 
as subspaces of the space of all n X m matrices. 
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1. Introduction 

Several classes of generalized inverses of a given In X n matrix A are considered. 
In section 3 it is shown that the ability to construct a generalized inverse of the weakest class 

provides the ability to construct a generalized inverse in anyone of the stronger classes. Then a 
collection of continuous maps is given each of which maps a class of generalized inverses onto a 
stronger class of generalized inverses that remains fixed under the map. In section 4 we charac­
terize these classes of generalized inverses as subspaces of the space of all n X In matrices and 
examine in more detail one of the maps given in section 3. 

2. Preliminaries and Definitions 

We consider only matrices with complex entries. For any matrix M we denote by p (M), R (M), 
N(M) and M* the rank, range, null space and conjugate transpose of M. By I we denote an identity 
matrix the order of which will be clear from the context. By Vk we denote a k-dimensional vector 
space over the complex field. If 5 I and 52 are any two sets we denote by 5 I - 52 the set of all ele­
ments which are in 51 and not in 52; by 51 U 52 the union of 51 and 52; by 51 .52 the intersec tion 
of 5 I and 52; and by 5 I :s; 52 denote that 5 I is a subset of 52. We recall that a homeo morphism is a 
continuous map which is one to one, onto and has a continuous inverse. 

When the matrix A is nonsingular, we denote in the usual way by A - I the inverse of A. For 
generalized inverses we adopt a special terminology as follows: We define five classes of general­
ized inverses. For a given matrix A, CI(A) is the set of all matrices B such that ABA=A; C2 (A) is 
the set of all matrices BECI(A) such that BAB=B; C3 (A) is the set of all matrices BEC2 (A) such 
that A B is Hermitian; C3 , (A) is the set of all matrices such that BECz (A) and BA is Hermitian; and 
C4 (A) is the set of all matrices such that BEC3 (A) and BEC3,(A). We call a matrix BEC;(A), a 
Ci-inverse of A, i = 1,2,3, 3' ,4. This classification of generalized inverses has been used in previous 
work to which we will refer [4, 5, 6] 1 and related there to other systems of nomenclature which 
are in use. We note here that the C3,-inverse is the Goldman-Zelen weak generalized inverse [3] 
and that C4 (A)=C:1(A)· C3,(A) is a single matrix, the unique Moore-Penrose generalized inverse 
[10]. There are many statements regarding a C3-inverse which of necessity hold for the C:I, -inverse 
(see [5], other examples occur in sec. 4). But there are contexts in which the role of ele me nts of 
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C3(A) and C3,(A) are quite different (see Theorem 7). It is clear that C(A) ~ CAA) ~ Cz(A)~CI(A) 
and that C4(A) ~ C3,(A) ~ C2 (A) ~ CI (A). We define four classes of strict generalized inverses 
as follows: A strict C I-inverse of A is any matrix BE( CI (A) - C2 (A)); a strict Cz-inverse of A is any 
matrix BE(Cz(A)-C3(A) U C3,(A)); a strict C3-inverse of A is any matrix BE(C3(A)-C4 (A)) ; a 
strict C3,·inverse of A is any matrix BE( C:l' (A) - C4 (A))_ We will sometimes say BEC; (A) and is 
strict , meaning that B is a strict C;-inverse of A , and when it is clear from the context that B is in a 
given class we will simply say that B is strict when it is a strict member of that class. Consideration 
of strictness leads to alternative characterizations of the classes of generalized inverses defined 
above and studies of this type were first carried out by Rohde [11, 12]. For exam ple, Lemma 1 
below, gives necessary and sufficient conditions for BEC I (A) to be strict. If certain demands 
are made on A, and especially if demands are made on A and a generalized inverse of A, there 
may exist no strict generalized inverses in a certain class. Such cases are known [5] and others 
appear in section 4. 

Finally we recall that a matrix A is called an EP matrix if N(A) =N(A *), in particular if A is 
EP and peA) = r we say that A is an EPr matrix [8], or merely that A is EPr. For ready reference 
we record the following known lemmas (one dealing with EP matrices) to which repeated reference 
will be made. 

LEMMA 1. The matrix B is a C-inverse of A if and only ifBA is a projection and peA) = p(BA) ; 
and if and only if AB is a projection and peA) = p(AB). If BEC 1 (A), then pCB) ~ peA) with strict 
equality if and only if BECz(A). 

The first statement of Lemma 1 is Corollary 1 of [4]. The second statement combines Lemmas 
1 and 2 of [4], both proved in a different way by Rohde [12]. 

LEMMA 2. Let P be an n X m matrix, Q and R be m X n matrices. If PQ is a projection such that 
p(PQ)=p(Q) andN(R)= N(Q), then RPQ= R. 

LEMMA 3. P* = P*QP if and only if QECI(P) and N(P) = N(P*). Further, P* = P*QP if and 

only if P* = PQP*. 
Lemma 2 is Lemma 3 of [4] and Lemma 3 is Corollary 2 of [4]. 

3. Maps and Constructions 

We take for granted the existence of, and known methods for constructing, a Ct -inverse of 
an arbitrary matrix 2 [1, 11]. The first theorem shows that the ability to construct a CI-inverse 
of an arbitrary matrix gives us the ability to construct a matrix in any given class of the five classes 
of generalized inverses which we have defined. 

THEOREM 1. Let A be a given matrix. Define H=A*A, j=AA* and let BIECI(A), KEC(H), 
LEC(1) and MEC3,(H). Then 

(i) Bz=BIABI is in C2(A) and every matrix in Cz(A) can be so expressed for some B,EC,(A). 
(ii) B3 = KA * is in C3(A) and every matrix in CAA) can be so expressed for some KEC,(H). 
(iii) B3, = A *L is in C3,(A) and every matrix in CdA) can be so expressed for some LEC, (1). 
(iv) B4 = MA * is the C4 -inverse of A. 
(v) Let p(A) = peN). Then B = A WA is in C2(A) and commutes with A if and only ifWEC(A3). 
PROOF. (i): That Bz=B,AB, is in C2 (A) is a special case of a known theorem [4]. That every 

matrix in C2 (A) can be so expressed is obvious. (ii): If B3 = KA * we have B~ = KH. Then by Lemma 
1, B~ is a projection, p(B~) =p(H) =p(A) and thus B 3EC,(A). By Lemma 1, P(B3) ~ peA) 
but also P(B;l) = p(KA*) ~ peA). Hence P(B3) = peA) and, by Lemma 1, B3ECz(A). By Lemma 1, 
ABa is a projection with rank peA) and from AB3=AKA* it is clear that N(AB3)=N«AB:J)*) 

and AB3 is Hermi tian. Thus B:lEC:l(A). Conversely if BaEC3 (A) we have B:l=B:1A B:l=B:1B:'iA* 
and we have to show that B:lBJEC, (H). But by Lemma 1, B3A is a projection with rank p(A)=p(H), 
and B3A = BaBJH shows, by Lemma 1, that B:lB :~' EC, (H). (iii): The proof of (iii) parallels that of (ii) 
in an obvious manner. (iv): Let B4=MA* . Then by (ii) we have B4 EC3(A). We now observe that 
B4A = MH is Hermitian and hence B4EC4(A). We note that conversely if B 4EC4(A) we have 
B4=B4BtA*, and B4B4*EC4(H) [10]. (v): If WEC, (A3), then by Lemma 1, WA3=(WA2)A is a projec-

'l See also (i) of Theorem 4. 
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tion with rank p(A3)= peA) and WA2EC, (A). This being the case we have, by Lemma 1,AWA2= BA is 
a projection of rank peA) and BEC,(A). But p(B) ~ peA) and hepce, by Lemma 1, BEC2(A). The 
projections AB = A2WA and BA=AWA 2 clearly both have null space N(A) and range R(A). 
Thus AB = BA. Now assume BEC2(A) and AB=BA. Then A3WA3=A2BA2=A3 shows that WEC1(A3). 
This co mpletes the proof of the theorem. 

REMARK: Goldman and 2elen [3] have proved that B3·=A*N is in C3 .(A) if NEC2 (J), and that 
every matrix in C3· (A) can be so expressed for some NEC2 (J). The above proof of (iii) shows that 
this theorem goes through under the weaker condition NECI (J). However we note that if BEC3 (A), 
then BB* is in fact in C2 (H). For, in the proof of (ii) we have shown BB*EC, (H), and from Lemma 1 
and p (BB *) = p (B) = p(A) = p(H), we have BB *EC2 (H). By the S!lme kind of argument B*BEC2 (J) 
whenever BEC3, (A). 

It is well known that for any matrix A, the C4-inverse of A exists and is unique. The next 
theorem gives a set of mappings which map an arbitrary C,-inverse onto a stronger class of inverse 
and fixes the stronger class of inverse. These maps are continuous and have differentiability proper­
ties of which considerable use is made in a subsequent paper [7]. 

We first give two lemmas which deal with the difference of two C,-inverses . 
LEMMA 4. IfB, and B2 are in C, (A) then A(B, - B2)A = O. Conversely, if ADA = 0, then for any 

B,EC,(A) we have (B , + D)EC(A). 
PROOF. The proof is obvious from the definition of C, (A). 
LEMMA 5. If ADA = O then D = PNDPR + D(I-PR), where P N and PR are any projections onto 

N(A) and R(A), respectively. Conversely, for any D of the form D = P N2, + 2 2(1 - P R), where 2, and 
22 are arbitrary matrices such that the indicated products exist, we have ADA = O. 

PROOF. If ADA = 0, then PNDPn = DPIl . We now have D= DPn+ D(I - Pn)= PNDPn + D(l-Pu) 
and the first statement is proved. The converse is obvious since (I - Pu)A = 0 and each column of 
PNZ, is in N(A) . 

THEOREM 2. Let A be an m X n matrix, B+ the C4 -inverse of A, P N and P u any projections 
onto N(A) and R(A), respectively, and B an n X m matrix. Then 

(i) cpdB) = B+ + P N(B - B+)PR+ (B- B+) (I - P R) is in C, (A) and CPI(B) =B if and only if 
BEC(A). 

(ii) CP2(B) = BAB is in C2 (A) whenever BEC, (A). In this case, CP2(B) = B if and only if BEC2(A). 
( (iii) CP3(B)=BAB + is in C3(A) if and only if BEC,(A). In this case, CP3(B)=B if and only if 

BEC3(A). 
(iv) CP3·(B) = B + AB is in C3·(A) if and only if BEC (A). In this case, CP3 ·(B) = B if and only if 

BEC3·(A). 

PROOF. 
(i) Let C = cp,(B)-B +. Then by the second part of Lemma 5, ACA=O and, by Lemma 4, 

CPt (B) = B+ + C is in C, (A). If BEC, (A), then A (B - B +)A = 0 and, by the first part of Lemma 5, 
we have C=B-B+, but then B++C=cp,(B)=B. Conversely if cp,(B)=B then BEC,(A). 

(ii) If BEC,(A), that CP2(B)EC2 (A) is a special case of a known theorem [4]. If BEC,(A) then 
CP2 (B) = B if and only if BEC2 (A) follows from the definition of C2 (A). 

(iii) If BEC, (A), by a known theorem [4] we have CP3(B)EC2(A). But Acp3(B)=AB+ shows that 
Acp3(B) is Hermitian and hence CP3(B)EC3(A). Conversely, if CP3(B)EC3(A), then CP3(B)A=BA is a 
projection with rank peA), and by Lemma 1, BEC,(A) . If BEC3(A) then the projections AB and 
AB+ are Hermitian and we have N(B)=N(B +)=N(A *). From Lemma 2 it follows that B=BAB +=CP3(B). 

(iv) The proof of (iv) is an obvious parallel of that of (iii). 
It is known that every square matrix of rank r has C2-inverses which are EPr [4]. When A 

is EPr the construction of C2-inverses which are EPr is particularly simple. 

THEOREM 3. Let A be EPr. Then tfJ(B) = BA *B* is in C2 (A) and is EPr whenever BEC 2 (A). In 
that case tfJ(B) = B if and only if B is EPr. 

PROOF. That tfJ(B ) is in C2(A) and is EPr when B is an arbitrary matrix in C2(A) is Le mma 5 
of[4]. If B is EPr, then, since BECz (A) implies AEC2 (B), we can apply Lemma 3 to write B = BA *B* 
= tfJ(B) . 
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4. Subspaces of Generalized Inverses 

In thi s section we will characterize the classes of generalized inverses previously discussed 
as subs paces of the space of all n X m matrices with complex entries viewed as a vector space 
VI/III over the complex numbers. 

THEOREM 4. Let A be an m X n matrix of rank r. Then 
(i) The collection of aLL CI-inverses of A is an affine space in ynm of dimension nm-r2. 
(ii) The collection of aLL C2 -inverses of A is an algebraic variety in ynm which is homeomorphic 

to a linear space of dimension (nm-r2)- (m-r) (n -r). 
(iii) The collection of aLL C3-inverses of A is an affine space ofynm of dimension (nm - r 2) - (n - r) 

r-(n-r) (m-r)= rem -r). 
(iv) The collection of all C3,-inverses of A is an affine space ofynm of dimension r(n - r). 

PROOF: Any matrix A can be written as QMR where Q and R are unitary and M= (Do ~) 
with D diagonal and nonsingular and with p(D) = peA) [2]. It is easily seen that BEC;(A) if and 

only if RBQEC;(M), i= 1, 2, 3, 3', 4. Let RBQ= (~ ~. Then the following may be derived 

directly from the definitions of the types of generalized inverses considered. 
(i) BECI(A) if and only if U=D - I. 
(ii) BEC2 (A) if and only if BECI (A) and X = WDV. 
(iii) BEC3 (A) if and only if BEC2 (A) and V = O. 
(iv) BEC3,(A) if and only if BEC2 (A) and w = o. 

The dimension and nature of the subspaces given in the theorem then follows from the dimension 
of the matrices V, W, and X not fixed by the requirement that B belong to a particular class of 
generalized inverses, and from the nature of the stated relations among them. 

In case A is n X n and is EPr we have the following theorem. 
THEOREM 5. Let A be n X nand EPr. Then the EPr matrices of C2(A) form an algebraic variety 

of yn 2 which is homeomorphic to a linear space of dimension r(n - r). 
PROOF. Since A is EPr it is known [8] that there exists a unitary matrix Q such that 

(
AI 0) 

A = Q 0 0 Q- I 

where A I is r X ,. and nonsingular. It is easily seen that BEC2 (A) if and only if 

where U and V are arbitrary. By applying the map t/J of Theorem 3 we see that BEC2 (A) is EPr 
if and only if 

(
All AlIAiV*) 

Q- 'BQ = . 

V VAiV* 

The theorem follows immediately from equating these two expressions. 
When A is EPr the question of strictness of generalized inverses of A becomes rather special. 

The following lemma shows that when A is EPr, there exists no strict C2-inverse which commutes 
with A, no strict C3-inverse and no strict C3,-inverse. 

LEMMA 6. Let A be EPr. Then the intersection of the set of all EPr C2-inverses of A with Cl(A) 
(or with C3,(A)) is the C4-inverse of A which in this case is the unique C2-inverse of A which commutes 
with A. 
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PROOF. If BEC:J(A) and is EPr then we have that AB is Hermitian and N(AB) = N( B) = N(A). 
Also N(BA) = N(A) and N«BA)*)=N(B). Thus N( BA) =N« BA) *), BA is Hermitian and 
BEC .. (A). An exactly parallel proof shows that if BEC:dA) and is EPr then BEC.,(A). It is known 
that for any G such that p(G)=p(G2) there exists a C2 ·inverse which commutes with G and this 
matrix is uniquely determined by G [5]. If A is EPr, then peA) =p(A2) [8] , and there is a unique 
BECz (A) which commutes with A. By a known theorem [9], a matrix commu tes with its C.,·inverse 
if and only if the matrix is EPr; and, by this very theorem, the C4·inverse of an EPr matrix is itself 
EPr. Thus, since the C4-inverse of A is in C2 (A) and commutes with A, it is the unique BEC2 (A) 
which commutes with A and that unique BEC2 (A) must be EPr. This completes the proof of the 
lemma. 

REMARK. Lemma 6 shows that in Lemma 2 of [5] the condition of normality can be weakened 
to EPr. 

We now use Lemma 6 to study the strictness of the EPr Cz-inverses of an EPr matrix as estab­
lished by the following theorem. 

THEOREM 7. Let A be EPr and let !jJ be the map of Theorem 3. Then !jJ sends all of C3,(A) to 
CiA) and the remainder ofC2(A) into the set of all strict Cz-inverses of A which are EPr. 

PROOF. From Lemma 3 we have 

A!jJ(B) = ABA*B*=A*B* 

!jJ(B)A = BA*B*A =BA. 

Since !jJ(B)ECz(A) and is EPr, by Theorem 3, we have by Lemma 6 that if !jJ(B) is not stric t , the n 
!jJ(B)EC4 (A). It follows from the display that if !jJ(B) is not strict then BEC:J,(A). Conversely if 
BEC:3' (A) then the display shows that !jJ(B)EC(A). Thus!jJ sends all of C:1,(A) and only elements in 
C3,(A) to C4 (A). The remainder of C2 (A) are those elements in Cz(A) which are strict and those 
in C:1 (A) which are strict. We now show that !jJ sends these elements into s tri c t C2-inverses. If 
BECa(A) and is strict, then BA is not Hermitian and the display shows that neither A!jJ(B) nor 
!jJ(B)A is Hermitian and !jJ(B) is strict. Assume that !jJ(B) is not strict. Then, by Lemma 6, !jJ(B)EC4(A). 
But we have shown that !jJ sends only elements of C:l' (A) to C4 (A) and therefore B is not stri ct. 
Thus if BEC2 (A) and is strict, !jJ(B)ECz(A) and is strict. 

We observe that if A is EPr, then by the same kind of proof given for Theorem 3, !jJ1 (B) = B* A * B 
is in C2(A) and is EPr whenever BEC2(A). Moreover, when BEC 2 (A), !jJ1 (B) = B if and only if 
B is EPr. We then have the following parallel of Theorem 7: !jJ, sends all of C:J(A) to C(A) and 
the remainder of C2 (A) into the set of all strict Cz-inverses of A which are EPr. 
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