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Principal Submatrices lll: Linear Inequalities™

R. C. Thompson**

(December 12, 1967)

Let H be an nXn Hermitian matrix with eigenvalues Ay <\, <. . .<\,. Let H(i|i) denote
the principal submatrix of H obtained by deleting row i from H. Let &, <¢&><. . .<¢& ,_: be the
eigenvalues of H(i|i). The famous Cauchy inequalities assert that &, . . ., & .-, interlace Ay, . . .,

n
An. It was recently proved by the present author that, for each fixed j, the arithmetic mean n—! Z &y

i=
of the &; lies between (1—60)\;+ 60\ and O\j+ (1 —6)\;s1, where 6=1/n. In the present paper
the cases of equality in these inequalities for the arithmetic mean of the &; are discussed.

Key Words: Cauchy inequalities, Hermitian matrices, interlacing theorems, matrices, matrix
inequalities, matrix theory, principal submatrices.

1. Introduction

This paper is the third in a series of papers in which the principal submatrices of a matrix
are studied. In the first paper [1]' in this series a large number of inequalities involving the eigen-
values of all of the principal (n—1) X (n—1) submatrices of a normal or Hermitian n X n matrix
H were derived. In the second paper [2] certain of the inequalities obtained in [1] for Hermitian H
were examined for cases of equality. The inequalities studied in [2] involved the eigenvalues of
the principal submatrices in a quadratic fashion, hence we chose to call these inequalities quad-
ratic inequalities. In [1] inequalities involving the eigenvalues of the principal (n—1)-square
submatrices of Hermitian H in a linear fashion were obtained (see (2) below). These are the linear
inequalities referred to in the title of this paper. It is the purpose of this paper to discuss cases
of equality in these linear inequalities. Most of our results are obtained under the assumption that
H has only simple eigenvalues. However, our most important result, Theorem 10, which charac-
terizes those Hermitian H for which every one of our linear inequalities can achieve equality, does
not require the assumption that H has simple eigenvalues. Theorem 10 produces a rather unusual
condition which essentially requires that the eigenvalues of H be roots of a polynomial closely
linked to the Legendre polynomials.

Certain of our results are valid for real symmetric matrices. Our most important tools are
Theorems 1 and 2 of [2]. In general, when our proofs use Theorem 2 of [2] we obtain results valid
for both the Hermitian and the real symmetric situations. When Theorem 1 of [2] is required, we
obtain results valid only in the Hermitian situation.

2. Notation

We assume throughout this paper that H=UDU ! where U is unitary and D= diag (\;, A.,
., An). Except in section 5, we suppose A\; < A2 < . . . < A\,. In section 5, we only require that
M <A< ... <N\, Let H(i]i) be the principal submatrix of H obtained by deleting row i and
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column i of H. Let én<ép< ... <¢& n-1 be the eigenvalues of H(i|i). The famous Cauchy
inequalities assert that

A1$§i1$)\’_’s§i2$- . ,S)\,, l\gz n— l\)\n

We say &;; belongs to the interval [A;, \j;1]. Let

Ajr1=n" E &ij-

In [1] the following inequalities were derived:
(n—l)n“)\j-’rn_‘)\jﬂSjAjH<n*‘)\j+(n—1)n‘1)\j+|, 1Sj<n. (2)

The quantities j4;+, are functions of the unitary matrix U and it is the purpose of this paper to

determine which of the inequalities (2) can become equality as U varies over all unitary matrices.

(Thus H and U are to be variable matrices and only D is constant.) Let U= (ujj)i<i, j<n. The following
fundamental formula was derived both in [1] and [2].

S (X 2 |1l1!| *f(A (3)

Here
f(}\):H (A—N) (4)

is the characteristic polynomial of H and

n—1

foMW =[] A—&y (5)

i=1

is the characteristic polynomial of H (i|7).

We will always let P and Q be permutation matrices. The symbol + denotes direct sum.

3. Individual Cases of Equality

THEOREM 1. Let j be fixed, 1 <j < n. Then unitary U exists such that
Aji1=(n—Dn='\;+ n~ N4, (6)
if and only if
J"(ADf(N) < 0. (7)

ProoOF. We first of all remind the reader of the derivation of (2). From (3) we obtain on setting

A=A\ that
e=2 f:r fl 1 gz_A L §i{_}\‘
=T 3= U] s UL =) :
|| ,HIM— RS vy ,Q.M—M (8)
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(Certain of the factors in (8) are absent if j=1, 2, n—1, or n.) Because of the Cauchy inequalities,
each fraction in (8) lies between zero and one, hence deleting all but one of the fractions in (8)

n
increases the value of the expression. Thus from E |uij|*=1 we obtain
i=1

o N =i
R Y . 1, 9
i:El Aj— N ©)
n §lj >
1. 1
2 o (10)

These inequalities (10), (9) are equivalent, respectively, to the first and second of the inequalities
(2) after rearrangement of the terms.

Now (6) will be true if and only if the inequality (10) is equality. If &;—\; # 0, then equality in
(10) can hold only if each of the fractions deleted from (8) is one. Hence

gil:)\lq .. §:1 = j 1, fz j+l_)\1+’ . §1 n-1= An.

Using (8), it is easy to see that uy=. . .=uwj j1=ui js2=. . .=uin=>0. Thus row i of U is zero
outside columns j and j+ 1. If &;— A; # O for three values of i, say i =1y, is, i3, then rows iy, i2, i3 of
U would behave as 2-tuples, hence would be dependent. This is a contradiction because U is non-
singular. Thus &;— \; # 0 for at most two values of i, and when &;—\; # 0, row i of U is zero except
for wij and (perhaps) wi, ji1.

CASE (i): &j— N\ # 0 for exactly one value of i, say i =i,. In this case we must have |u; | = 1
hence wi,, j+1 =0. Thus U is essentially composed of a 1-square block and an (n — 1) square block.

After passing from H=UDU-"' to PHP-'= (PUQ)Q'DQ)PUQ)", as in [2]|, we may assume
H= )\jf;‘Hz (1)

where H, is (n — 1)-square and has Ay, . . ., Aj_1, Nji1, . . ., A, as eigenvalues. Moreover, we now
have &;—A; # 0 and &;—A;=0 for all ¢ > 1. For ¢ > 1 it follows from the form (11) of H that the
eigenvalues of H(i|i) are

8,’1, 81‘2-,- . 81 j- 81a )\p 81 Jtls o o ey Si.n»l» (]2)
where
Oir, Biz, .+« 8ij2, Oiy Oiju1s -« oy Oi,n—i (13)
interlace Ai, A2, . . ., Aj1, Ajy1, . . ., Au. Here in (12), the terms 8;1, . . ., 8;,j_2, & are absent
when j=1. When j=2 the terms 8;;, . . ., d; j_» are absent but §; is present. When j=n—1, §; is
present but &8; ji1, . . ., 8, n—1 are absent.

We now show that with H in the form (11), the equation (6) for j=1 is valid. For with j=1 we
have &1=A. and &=\, for i >1, and hence (6) holds for j=1.

For j# 1 we require &;;=A\; for all i > 1. From (12) it is clear that this can happen only if
8i < \;. Moreover if 8 < \j and H is in the form (11), the equation (6) is valid, since then &;;= \; for
all i=2, and &;=\j;, (because H(1|1) has eigenvalues i, . . ., Nj—1, Njs1s - - -5 An).

Thus in Case (i) for (6) to hold it is necessary and sufficient that §; < A; for all i = 2 when j # 1.
By an application of [2, Theorem 2] to H, and the interval [\j_i, \j+1], we find that a unitary similarity
of H, exists such that (6) holds if and only if

\j = the root of — ax H (A —\) in interval (\j_1, Aj+1), j#1;
t#_} (14)

no condition if j=1.



Now, by a graphical argument using the fact that Aje(A\j_1, \j+1), (14) holds if and only if

d o ;
sn 2= [ A= Ahey,=—sen [[ A=A)hap 0r 0, j#1;
- & (15)
t#) =)

no condition if j=1.

It is not difficult to see that (15) for j # 1 is equivalent to sgn f"(A\j)=—sgn f"'(\;) or 0, which in turn
is equivalent to (7) for j# 1. For j=1, (15) imposes no condition and (7) is true. This completes
Case (i).

CASE (ii): Here &;— \; # 0 for exactly two values of i, say i =i, and i = i». Thus rows i,, i, of U
are zero outside columns j and j+1, hence U essentially splits into a 2X2 block and an
(n—2) X (n—2) block. If we pass from H to PHP~'= (PUQ) (Q—'DQ) (PUQ)~! as before, we may

(after a change of notation) take H in the form

H = H| ‘;‘ H-_z o (16)
where
a b
Hi=¢ . (17)
has eigenvalues A;j, \j.1, and H> has eigenvalues Ay, . . ., N\j_1, Aji2, . . ., A\y. Moreover, we must

now have &;=\; for all i > 2. Since H; has eigenvalues A;, A\js; we have \; < a, ¢ < \j;; and
at+c= )\j'f’ )\j+|.
With H in the form (16), the eigenvalues of H(i|z) for i > 2 are

Oity « + -y Oi,j—25 8iy Njy Nj+13 i je2s « « -y Oi,n—t, (18)
where &i1, . . ., 8 j-2, 8i, 8i ji2. . . ., & n_1 interlace Ny, . . ., Njoiy Njga, - . oy Mg Forj=1, the
terms &ii, . . ., 8;,j-2, 0; are absent in (18). For j=2. 8§;;, . . ., 8 j—» are absent but §; is present.
Forj=n—1, &, 8i ji2, . . ., 8, n—1 are all absent. For j=n—2, §; is present but &; j+», . . ., 8i, n-1
are all absent.

We now show that with H in the form (16), the equation (6) for j= 1 is valid. This is so because
for j=1 we have &11=c, &a1=a, En= N for i > 1, and ¢+ a= A\ + \..

We note also that if n=2 we are dealing with the case j=1 (since j<n—1). So let n > 2.

We next show that for j # 1 in Case (iz) we must have j# n—1. For if j=n—1 we have from
(18) that &; =&, -1 = Aj+1, contradicting the requirement that &; = \;. So we may suppose j # n— 1.
Forj# 1,j# n—1, it follows from (18) that &;= A;, (i > 2), can hold if and only if 8§ < \;. Moreover,
if we have H in the form (16) and & < A; for all i > 2, then (6) is valid (since &j=c, &j=a, &= \;
for i > 2 and a+c= A+ \j+1). By an application of [2, Theorem 1] to H> for the interval [\j—1, Aj:2],
we find that a unitary similarity of H, exists such that (6) holds if and only if

d . .
\; = the root ofﬁ H (A—\¢) in the interval (\j_1, Aj2),

AL O J#1l, n—1; 19)

no condition if j=1.

The condition (19) is therefore necessary and sufficient for equality (6) to hold in Case (ii).
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We now show that the condition (19) of Case (ii) implies the condition (14) of Case (i). This is
clear for j=1. For j# 1, n—1, we show

the root ()f% H (A=A in interval (Aj_1, Nji2)
45 )1
: (1 n 2 (20)
> the root of 7y H (A—A;) in interval (Aj_i, Nj1).
1=
To see (20) let
gM)=T]A=N), A= (A=)
= o

Then g(A) = (A — Nj+1)h(y). Let y be the root of 2'(\) in the interval (\j_;, Aj+2). Then g'(y) =h(y),
hence sgn g'(y) =sgn h(y) =—sgn g(\;), which (by a graphical argument) forces 7y to lie strictly
between the two roots of g'(A) in the interval (A\;j_;, Aj;2). Thus (20) is proved.

Thus in Case (ii) a condition that implies (7) holds. Hence (7) is the necessary and sufficient
condition.

COROLLARY 1.

(i) Let (7) be satisfied. Then (6) holds when H=P(A\;+ H.)P-! where H, has eigenvalues
Ay o o oy Aoty Njs1s -+ oy A, and (for j # 1) each principal (n—2)-square submatrix of H. has its
eigenvalue belonging to the interval [\j—i, Nj+1] within the smaller interval [\;-1, \j].

(i) For j# n—1, if \; satisfies the condition (19), stronger than (7) when j # 1, then (6) holds
when H=P(H, + H)P~' where H, has eigenvalues \;, \;,, and H, has eigenvalues \,, . . ., \;_1,
Njs2s - - -5 Ay and (for j# 1) each principal (n—3)-square submatrix of H. has its eigenvalue
belonging to interval [\j—i, Nj;2] within the smaller interval [\j-1, \;].

(iii) In no ways other than those described in (i) and (ii) can (6) hold.

An entirely similar argument will establish Theorem 2 and Corollary 2.

THEOREM 2. Let j be fixed 1 <j < n. Then unitary U exists such that

i—1A;=(n — Dn~1A;+n~1\;, ' (21)
if and only if
f'(\E'(N;) = 0. (22)

COROLLARY 2.

(i) Let (22) be satisfied. Then (21) holds when H=P(\;+ Hy)P-!, where H, has eigenvalues
Ay -« oy Nj=15 ANji1s - - ., Ay and (for j# n) each principal (n—2)-square submatrix of Hy has its
eigenvalue belonging to the interval [Nj—1, Nj+1] within the smaller interval [\;, \ji1].

(ii) For j# 2, if \; satisfies the condition

n

d .
\; < the root ofﬁ N—N\y) in interval (A\j—2, \j+1),  j#n

(
w1, (23)
no condition if j=n.

(condition (23) is stronger than (22) when j#n), then (21) holds when H=PH,+ H,)P~' where
H, has eigenvalues \;—1, \;, and H, has eigenvalues A, . . ., Nj—2, A\j+1, . . ., Ay and (for j # n) each
principal (n—3)-square submatrix of Hs has its eigenvalue belonging to the interval [\j-s, Aj+1]
within the smaller interval [\;, \j:1].
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(iii) Other than as described in (i), (ii), the equality (21) does not hold.

4. Simultaneous Equalities

THEOREM 3. Let 1 <j<k <n. Then
1A= (n— Dn="A\ 4 n—"\j_y, (23)
WAgs1= (n— D=1\ + n~\s1, (24)

cannot simultaneously occur.
PROOF. Suppose A\j —¢;, j—1 # 0. Then from (23), as in the proof of Theorems 1 and 2,

=N, . . L& je=Noo, & jo1 FNL EG= N, - - o Ei= Nty - .
Hence &x— Ak # 0 and hence, from (24),
En=10 0 o on GG N0 G -1 = Wil E= 0 o o op @il = Waa 0 o <

We now have the contradiction ¢;=\j; and &;=A;. This proves the theorem.
THEOREM 4. Let j be fixed, 1 <j<n. Then

i—1Aj=(m—1)n"'\j+n- 1\, (25)
jAjH:(n—l)n“)\j+n‘1)\j+,, (26)

can both hold (separately or simultaneously) if and only if {"(\;)= 0.

ProoF. By Theorem 1, (26) can hold for some U if and only if f"(\;)f'(A\;) <0 and by Theorem 2,
(25) can hold for some U if and only if f"(\;)f"(X;) = 0. Since f'(\j) # 0 as the eigenvalues of H are
simple, it follows that f”(A\j)= 0 is the necessary and sufficient for (25) and (26) to occur separately
or simultaneously.

From Corollaries 1 and 2 and Theorem 4 we deduce Corollary 3.

COROLLARY 3. Suppose 1 <j<n, j fixed, and that {'(\;)=0. Then unitary U exists such that
both (25) and (26) hold, and in fact both (25) and (26) hold precisely when

H: P(}\J_;' Hg)PMl.

where H, has engenvalues \i, . . ., Nj—1, Njs1, . . ., Ny and each principal (n —2)-square submatrix
of Hy has \; as an eigenvalue.

Theorem 4 is the k= analogue of Theorem 3. For k=j—1 and n > 2, it cannot, of course,
happen that simultaneously j_;4; and x4+ achieve the values (n —1)n='\; +n~'A\;—; and

(n—1)n" "N +n""Ngs1.

Here Theorem 5 answers the question of when j_14;= A, varies over the maximal permissible

set of values as U varies over all unitary matrices.
THEOREM 5. Let j be fixed, 2 <j<n. Then as U varies over all unitary matrices, ;_1A; varies

over the full interval
[(m—=D)n='A;— +n7 Ay, n7 I\ +(n—1)n"1Ay] (27)
of permissible values allowed by the linear inequalities if and only if
- Df (A1) < 0 and £'(\)E'(A,) = 0. 28)
12



PROOF. Since the roots of a polynomial are continuous functions of the coefficients of the
polynomial, the function ;_;4; is a continuous function from the arcwise connected set of unitary
n X n matrices to the real numbers. Thus j_14; covers the full interval (27) if and only if the end-
points of (27) are achievable. By Theorems 1 and 2, the endpoints of (27) are achievable if and only
if the conditions (28) are satisfied.

Theorem 6 advances further the examination of j_;4; and x4+ for various values of j and £
that was started in Theorem 3 and continued in Theorems 4 and 5.

THEOREM 6. Let k, j be fixed, 1 <k, j<n,j=k~+2. Then

=1A;=m—Dn~I\;+n"1)\_,, (29)
KA1 =0—Dn- A +n"Ngsq, (30)

can simultaneously hold for some U if and only if:

{ = M) — 28" () H'(N) = 0, k#1,
(31)
no condition if k=1;
and
{(}\J_Ak)f,,{)\])_2f/(}\_,)}f,()\1) = 0, _] ?é 14k
(32)
no condition if j=n.

ProoF. From (30) we find, as in the proof of Theorem 1, that & — N\ # 0 for exactly one or two
values of i, and that when fik—}\k # 0 then §,‘1:)\|, 6 oo f,‘, k—1=Ak-1, f,‘, KA1 =ANk+2, « « .y f,‘_ n—1=An,

and upn=. . .=uj r-1=Uj, kr2=. . .= uin=0, wy #0. Similarly A\j— & j—1 #0 for at most two
values of i and when A\;—¢&; j-1 # 0 we have &=\, . . ., & jo=Nj—2,&j= Njs1,y -« «y &0 n—1= An,
and upn=. . .=uij2=uijs1=. . .=un=0, u;j#0. There are four cases to be considered

according as & —A\x and \j— &, j-; are each nonzero for exactly one or two values of i. Moreover
since j—1= k+ 1, it follows from these remarks that when & — A\ # 0 we have \;—¢&;, ;-1 =0 and
when \j—&;, j—1 # 0 we have & — N\ =0.

CASE (i). Let & — A\ # 0 for exactly one value of i and let \;—¢;,j—1 # 0 for exactly one value
of i. We may let &= \x for i # iy and \j=¢&;, j-1 for i # i». Then iy # i, and also wy, =0 for i # iy,
u;=0 for i # i,. Hence |uix| =1, |uiy| =1, so that w,, x:1=0=wi,, j-1. This means that U breaks
down into two 1 X 1 blocks and an (n —2) X (n — 2) block. After passing to

PHP='=(PUQ)(Q'DQ) (PUQ)™!
and changing notation, we may assume
H= M+ N\+H; (33)
where Hj is (n —2)-square with eigenvalues
e (34)
Moreover, we now have &=\ for i # 1, and & j_1=\; for i # 2.
With H in the form (33), the eigenvalues of H(1|1) are Ai, . . ., Mgty Nests « « o0 Njy + = o0 Any

hence &= Ne1 and &, j-1 = \;. The eigenvalues of H(2|2) are A1, . . ., Ak, oy Nty Njsts + -« oy Any
hence &= A, and & ;1= \j_1. For i = 3, the eigenvalues of H(i|i) are

i1, Oi2, . . ., Oi, k—23 Oik, Aks Oi,k+1, - « ., Oij23 Oijy Aj3 Oijr1, - - -y Oi, net. (35)
13



Here the numbers
Oi1, - - -y O, k=2, Oiky Oi, ks - - < Of,j—2, Oify O, j41, « « -5 O, n—1

interlace the eigenvalues (34) of Hs. In (35), the numbers &1, . . ., & k2. 8ix are missing when
k=1, and when k=2, the numbers &;;, . . ., & r—» are missing but d; is present. When j= n, the
numbers &;;, & ji1, . . ., 0i,n—1 are missing, and when j=n—1 the numbers & ji1, . . .. & n-s
are missing but &;; is present. When £+ 1=j—1 the numbers §; r+1, . . ., 8, j-» are missing but
both ;. and 6;; are present.

We now show that with H in the form (33), the equation (30) is valid for £=1. For as computed
above, &1 = \s, &=\ for all i > 1, and this is sufficient to imply (30) when 4= 1. We also show that
with H in the form (33), the equation (29) is valid for j=n. For as computed above, &, ,—1 = Ay,
& n—1=MAn—1, &, n—1= Ny for i > 2, and this is sufficient to imply (29) when j=n.

For k£ # 1, it follows from (35) that &z = i for i > 2 can hold if and only if §; < Ai. Forj # n it
follows from (35) that &; j_;= A;j can hold for i > 2 if and only if §;; = A;. Moreover if we have dix < A
for all i > 2 (when £ # 1) or 8;; = \; for all i > 2 (when j # n), then using the values of & or & ;-
obtained above, we find that (30) or (29) holds, respectively. By [2, Theorem 1] we can make a
unitary similarity of H; such that 8ix < A\ (k # 1) holds for all 7 and/or such that ;= \; (for j # n)
holds for all i, if and only if (36) and/or (37) hold:

n
Ai = the root of H (A—A¢) in interval (Ax_1, Aks1), k#1,

bot> (36)

t#j
no condition if A=1.

n
Aj < the root of [T (A=A in interval (\j—1, Njsr),  j# n,
=1

o (37)

t#j
no condition if j=n.

Thus in Case (i) the conditions (36) and (37) are the necessary and sufficient conditions for (29)
and (30) both to be achievable.

We place here the first part of Corollary 4. Further parts of Corollary 4 will appear as the proof
of Theorem 6 goes forward.

COROLLARY 4. (i) Let A\ and \; satisfy the conditions (36) and (37). Then both (29) and (30)
hold when H=P(\ + \;+ H3s)P~1, where Hy has eigenvalues (34), and each principal (n— 3)-square
submatrix of Hy has its eigenvalues belonging to the intervals [N_1, Neii] (for k# 1), [ N1, N1
(for j # n) within the smaller intervals [ N1, N\]. [Aj, N1, respectively.

CASE (ii). Here we assume that & — A # 0 for exactly two values of i, say i =1, and i =iy,
and that \;—¢; j—1 # 0 for exactly one value of i, say i=1i3. By remarks at the beginning of the
proof, i, i». i3 are three distinct integers. We have |ui,j|=1 as u;=0 for i # iy, hence ui,; =0 for
t #j. Thus U splits up into three nonzero blocks: a 2 X 2 block in rows 1. i» and columns £, &+ 1;
a 1 X1 block at position (i3, j); and (n—3) X (n—3) block in the rows complementary to iy, i», i3
and the columns complementary to k, £+ 1, j. After passing to PHP—'= (PUQ)(Q'DQ) (PUQ)",

and changing notation, we may assume
where H, has eigenvalues A\, Ax+1, and H; has eigenvalues

Wil o o ag Weiln WHYS 6 o on Avi=iln WG o o o Wik (39)
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Moreover we now have &x= A\ for i >2 and &, j_1=\; for i # 3. Let H, be given by (17). Then
A <a, ¢ <A+ and a+c= A+ Ag+1.

Observe that, with H given by (38), we have &iv=c, éax=a, &1, j-1=Nj, &, j-1=Nj, Ee= i,
&3 j-1=ANj—1. For i > 3 the eigenvalues of H(i|i) are

Sit, « - 500 k-2 iy Ny Ak 13 Oi kv2y - o oy &, j—25 Oijy Nj3 O, jr1s - - -5 Oin—1- (40)

Here the numbers

Oity - + 5 Oi k-2, Oy Oikt2, - - -y Oi,j=2, Oijs Oi,j41s + » -, O no1

interlace the numbers (39). When A=1, the numbers 8, . . ., & r_», dix are absent from (40).
When k=2, the numbers 8;, . . ., & r—» are absent from (40) but 8;; is present. When j=n,
the numbers &, &i j1, . . ., 8i,n1 are absent from (40). When j=n—1, the numbers &; j.i,
. . «, 0i n—1 are absent from (40) but §; is present. When j—1 >k + 2 the central set &; 2, . . .,
8i,j—» is present in (40). When j— 1=/ + 2 the central set &, xi2, . . ., 8, j-» are absent but 8§
and §;; are separate entities, both being present (except: 8y: is absent if £=1 and §;; is absent if
j=n). When j—1=£k+1 the central set & x42, . . ., & j_» is absent, and 8;x and 8;; merge into

one entity, 8y = &; being the eigenvalue of H3(i—3|i—3) belonging to the interval [Ae_;, Aj+1]
(except that for k=1 or j=n, 8;x= &; is absent).

We now show that the equation (30) for £=1 is valid when H has the form (38). This follows
from the values &y, &, &1 computed above, the fact that a +c=\, + X, and the fact that (from
(40)), &=\, for all i > 3. We also show that the equation (29) for j= n is valid when H has the form
(38). This follows from the values of & 1, &, 1, &, n—1 computed above, and the fact that (from
(40)) &, n—1= Ay for all 7 > 3.

Now note that when n=3 we in fact have £=1 and j=3=n. This is so since j=k+2. So
assume n > 3.

We now prove (assuming n > 3) that j# k+2. We use (40). If j—1=%k+1 we have: when
k=1, & j—1=E&i»= Ao = \j_ contrary to the requirement &; j_ 1 =A;fori > 3: whenj=n,&y=§& ,»
= Ak+1 contrary to the requirement &;;= Ay for i > 3; when £ # 1 and j# n in order to meet the
requirement &= A; we must have (from (40)) that 8;x =< Ax, and then & j— 1= Ax+1 # \j, thus con-
tradicting &, j-1=A\; for i >3. So we may assume j—1>/k+1 and that §; and §;; are distinct
entities.

For £## 1 it now follows from (40) that in order for &= A; for i > 3 it is necessary and suffi-
cient that 8;x =< \x. For j # n it follows from (40) that in order for & ;= \; for i > 3 it is necessary
and sufficient that §;; = \;. Moreover with H in the form (38) and using values &k, &k, Esk, E1,j-1,
& jo1, &, j-1 obtained above, if &r=N\; for all i >3, (k# 1), we find that (30) is satisfied and if
&ijo1=A\; for all i >3, (j # n), we find that (29) is satisfied. Now by [1, Theorem 1] it follows that
i < A\ (for £ # 1) and/or \; < &;; (for j # n) can be achieved by some matrix unitarily similar to
Hs, if and only if

@ & ..
Ax = the root of:ﬁ H (A=A¢) in interval (Ag—1, Agyo2), k%1,
t#kikﬂ,j (41)

no condition if k=1,

and/or

d n
\j < the root ofa [T(A=x) in interval (A\j_1, Ajs1), j 5 n,

i kg (42)

no condition if j=n.
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We have thus demonstrated that in Case (ii) the conditions (41) and (42), together with j # &£+ 2
for n > 3, are the necessary and sufficient conditions in order that (29) and (30) can both hold.
We now complete the proof in Case (ii) by showing that for £ # 1 and j > k+ 2,

n

d oy
the root of a H (N—\,) in interval (As_i, Axs2)

t#k,k+1,)

n

d ..
> the root ofa E (A—X\¢) in interval (Ag_1, Axs1) (43)
t#k,j

and for j# n and j > k+ 2,

1 n . 3
the root Of(;—)\ H (A—N\¢) in interval (\j—1, Nje1)

t#k, k+1,j

al & -
< the root of ax H (N —Ay) in interval (Nj—q1, Nj+1). (44)

t#k.j

If we can demonstrate (43), (44) then the conditions (41), (42) of Case (ii) imply the conditions
(36) and (37) in Case (i).
Let

g()\):H (A—\o). h(N) = H (A —=\o).
1:\1; r;ékf?'il,j
Then g(A) = (A —Ag+1)h(N). We use the fact that #+2<;—1. Let y be the root of 2'(\) in the
interval (A\x—1, Ags2). Then g (y) =h(y) and so sgn g'(y) =sgn h(y)=—sgn g(\x), which forces
v > root of g'(N) in interval (A\k—1, Ax+1). This proves (43). Let 8 be the root of 2'(\) in the interval
(Aj=1, Ajs1)- Then g'(B) =h(B), hence sgn g’ (B) =sgn h(B)=sgn g(B), which forces B < root of
g (N) in interval (Aj—1, Aj+1). This proves (44) and completes Case (ii).

COROLLARY 4. (ii) Let j > k+2 except k=1, j=3 for n=3. Then the condition (41) for k # 1
is stronger than the condition (36) and the condition (42) for j # n is stronger than the condition
(37). If both (41) and (42) are satisfied then equalities (29) and (30) are both valid when
H=PH, + A+ H;P-'. when H; has eigenvalues A\, A1, Hy has eigenvalues (39), and each
principal (n—4)-square submatrix of Hj has its eigenvalues belonging to the intervals [Ng_i, Nei2]
(for k # 1), [Nj_1, N\ju1] (for j # n) within the smaller intervals [N_i, Nc], [N, \ji1]. respectively.

CASE (iii). Here we assume & — A # 0 for exactly one value of i and \; —&; j—1 # 0 for exactly
two values of i. This case is very similar to Case (ii). One gets H into the form

H:P()\/\ﬁ‘H;JrH%)[’)’l (45)
where H, has eigenvalues \;_;, \; and H; has eigenvalues
A, oo M Ak, - Ao, A, - e .y A 45"

One proves that j > k+ 2 except for k=1, j=3 when n=23. In place of (41) and (42) one obtains

n

d e
A = the root of ax ’H (A—A¢) in interval A\x—_1, Ais1), k#1,

t#k, j—1,j (46)
no condition if A= 1;
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d L £ ;
\j < the root Ofﬁ 1:[1 (A—X) in interval (\j_s, Nj+1),  j #n,

t#k, j—1,j (47)

no condition if j= n;

and in place of (43), (44), one obtains (48) for k # 1 and (49) for j # n:

the root of% H (A—A¢) in interval (Ag—1, Ai+1)
t=1

t#k, j=1,]

@ .
> the root Ofd_)\ ’1:[1 (A—A¢) in interval (Ag_1, Ags1); (48)

t#k, j

n

the root ()f(;—l;\ ’l:[l (A—A;) in interval (N\j—2, Njs1)

t#k, j—1,j

(_1 n
d\ 11

t#k, j

< the root of (A—A¢) in interval (Nj—1, Aji). (49)

COROLLARY 4. (iii) Let j > k+2 except k=1, j=3 for n=23. Then the condition (46) for k # 1
is stronger than the condition (36) and the condition (47) for j # n is stronger than the condition
(37). If both (46) and (47) are satisfied then equalities (29) and (30) both are valid when H has the
form (45), where Hs has eigenvalues \;_i, N;, Hy has eigenvalues (45"), and where each principal
(n—4)-square submatrix of Hy has its eigenvalues belonging to the intervals [Ny 1, N1 (for
k #1). [ANj_2. Njit] (for j# n) within the smaller intervals [ N1, M|, [N, Nji1], respectively.

CASE (iv). In this case we have & — \i # 0 for exactly two values of i and \;—&; ;-1 # 0 for
exactly two values of i. Moreover, as before, when & — A # 0 then A\j — &;, j-1= 0 and when A& -
# 0 then &, —A:=0. So we may find four integers iy, i», i3, is such that & —Ae=0 for ¢ # iy, i»
and \;—¢&i,j-1=0 for i # i3, i;. We then have uj, =0 fort # k, k+1; wiy,=0 fort #k, k+ 1; uiy,=0
fort #j—1, j; uiyu=0 fort #j—1, j. We show: k+1#j—1. Forif k+1=j—1, rows iy, iz, i3, is
of U are zero except for column positions k., £+ 1. j, hence these four rows behave as 3-tuples,
hence are linearly dependent. This contradiction shows that £+ 1 # j—1, hence £+ 1 <j— 1. Now
rows iy, i» of U are zero except for the 2 X 2 submatrix sitting in rows iy, i» and columns k&, £+ 1.
Thus, as U is unitary, columns k., £+ 1 are also zero except for rows i, i». Similarly rows i3, 74 and
columns j—1, j are zero except for the 2 X 2 submatrix sitting at the intersection of these rows and
columns.

Thus we may pass to PHP-'= (PUQ) (Q'DQ)(PUQ)" and so, after a change of notation,

assume

H:Hl‘]'H:‘]’H:; (50)
where: H, has eigenvalues N\i, Aii1: H» has eigenvalues \j_i, Aj; H; has eigenvalues

)\lg .. ey )\k—ls }\k+29 ) )\j~'_’a }\j-fl-. .. -,)\n- (51)

We now have &=\ and & j-1 =\, for i > 4. Let H, be given by (17) and H. by



Assuming H in the form (50), one easily sees that éx=c, &1, j-1=\j, éak=a, &, j—-1=N\j, &= Nk,
&s,j-1=¢, Es=MNi, €1,j-1=a’.
For i > 4, the eigenvalues of H(i|i) are

Si1, « -« .+ Oik—2; Oik, Ak, Akt13 Oi, k42, - . ., 0i,j—35 O3, Nj—1, Aj; O, je1, - . .y O, n—1, (52)
where
Sity -« - 5 Oi k-2, Oik, Oi, k42, « o .y O j—3, Oy Oi ju1, . - -y Oiin—1

interlace the numbers (51). When k=1, the numbers 8;;, . . ., 8. x_2, dix are absent in (52). When
k=2 the numbers &;;, . . ., 8, k-» are absent but 8; is present. When j=n the numbers §;,
8i,j+15 - - .5 8i,n—1 are absent. When j=n—1 the numbers & j+1, . . ., 8 »—; are absent but §;; is
present. When j=k+4 the numbers 8; k+2, . . ., 8 j—3 are absent but §; and §; are present as
separate entities (except: 8;; is absent if £=1 and §;; is absent if j=n). When j=k + 3 the numbers
8i, k+2, - . ., 0i,j—3 are absent and 8;. = d;; appear as a single entity (except that 8;= ;; is absent
if k=1 or j=n).

We now show that when H has the form (50), equation (30) for £ =1 is valid. This follows from
the values of &1, . . ., &u computed above, the fact that a + ¢ = \; + A2, and the fact that &;= A\, for
i >4 (which follows from (52) when k=1). We also show that equation (29) for j=n is valid. This
follows from the values of &1, n—1, . . ., & n—1 computed above, and the fact that a’ +c¢" = X1+ Ay,
and the fact that & ,_; =X\, for i >4 (whlch follows from (52) when j=n).

Observe also that when n=4 we in fact have k=1 and j=4=n, sincej = k+ 3. So assume
n > 4.

We now show that j=£k+ 3 is impossible for n > 4. For letj=k + 3. We use (52). If k=1 then
&i,j-1==¢&i, 3= A3 # A4 contradicting the requirement that & ;= \;fori > 4. If j=nthen =& n_3
= Mk+1 # Ax contradicting the requirement that &= \x for i > 4. If k£ # 1, j # n, then in order that
&ik= A we must have 8 < A\x, and then & j_1=¢& r+2=\j_1 # \j, again a contradiction for i > 4-
+ Thus j = k+4 as claimed, and so 8; and 8; are separate entities in (52).

For £ # 1 we find from (52) that &ix= Ax holds for i > 4 if and only if 8y < \i.. Forj # n we
find from (52) that &; j_;=A; holds for i >4 if and only if 8;; = \;. Moreover, using values of &1z, . . .,
Eary €1,j-1, - . ., &, j—1 obtained above and a+c=MNc+Nes1, @' +c¢"=Nj_1+\j, we find for
k # 1 or for j # n that if 8;x < \x for all i >4 or §; = \; for all i >4, then (30) or (29) are satisfied,
respectively.

Now by an application of [2, Theorem 1] to Hj;, the necessary and sufficient conditions that
H3 be unitarily similar to a matrix for which 8;: < Ax (£ # 1) and/or 8; = \; (j # n) are the follow-
ing conditions (53) and/or (54):

n

d
\r = the root ofﬁ H (A—X¢) in the interval (\x_1, Aii2); k#1,
ity b1 (53)
t#j—1,j

no condition if A=

\j =< the root of dl I I (A—N\;) in the interval (Aj_2, Aj+1); j*n,
A (54)
t#k, k+1
t#j—1,j

no condition if j=n.

Thus the necessary and sufficient conditions in Case (iv) that (29) and (30) can both hold are
(53), (54), together with j=k+4 for n >4 and k=1, j=4 for n=4.
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We now show for j = k+4:

n

d s
the root of — an ,H, (A=) in interval (\x_1, Ags2)

t#k, k+1
t#j—-1,j

I .
> root of (;—)\ (l_ll (N—\¢) in interval (Ax—_1, Aps1); k#1; (55)

t#k, j

root Ofd‘_i\ H (A—A¢) in interval (Nj—s, Aji1)

=
t#k, A+1
t#j-1,j

] - .. )
< root «)fi/\- IJ (A—A;) in interval (\j—i, Aji1), J#n. (56)

t#k, j

Once (55), (56) are demonstrated it will follow that the conditions of Case (iv) imply the condi-
tions (36), (37) of Case (i), and this will complete the demonstration that (36) and (37) are necessary
and sufhcient.

Let

n n

g(A)= H (A—A\s), h(X) = H (A —=N\).
ok, § (o o
t#j—1, j

Then g(N) = (AN—Aes1) (N—=Aj—1)A(N). Let y be the root of A'(N) in the interval (A\y—1, Apyo). If
¥ = Ai+1 then (55) holds. If y < Ai4y then

sgn ()\ Niev1) (N—Nj=1) =—1,

A=Y

hence sgn g'(y) =—sgn /1( ):—stm g(7y), which implies (55). Thus (55) holds. Let 8 be the root
of A"(N\) in the interval (Aj_», Aji1). If 3= A;-; then (56) holds. If 8> \;_; then

sgn - N

¢ ()\ )\I\H)()\ }\j 1)‘ ]a
hence sgn g’ (y)=sgn h(y)=sgn g(y), which implies (56). This completes Case (iv).

COROLLARY 4. (iv) Let j = k+4 except k=1, j=4 for n=4. Then the condition (53) for k # 1
is stronger than the condition (36) and the condition (54) for j # n is stronger than the condition (37).
If both (53) and (54) are satisfied then equalities (29) and (30) both hold when H=P(H,+ H, + H3)P-!,
where Hy has eigenvalues A, N1, Ho has eigenvalues \j—1, \;, Hz has eigenvalues (51), and where
each principal (n—5)-square submatrix of Hy has its eigenvalues belonging to the intervals [Ay_1,
Ai+2] (for k # 1), [Aj—2, Ny 1] (for j # n) within the smaller intervals [\ -1, N, [N, Nj+1], respectively.

(v) Except as described in Corollary 4, (1)-(iv), the equalities (29), (30) do not both hold.

To complete the proof of Theorem 6, we have to show that conditions (36) and (37) are equiva-
Ient to (31) and (32). This proof follows.

By a graphical argument one sees, for k£ # 1, that the condition (36) is equivalent to

) A =M) T = ) ) A=) T A=) 7'} [ aean, <O
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But

{f(")“‘_)‘f)”}"h =T e =2 =/ A= he) A=)

v#j
v#k

Also

o) =n) 1| =23 ] (h—7o)
vt o
MHAK V]
v#k

={2f(M) A =N) (A= N) Y

)\—'—)\k ’
But
{f(A)(A—)\j)“}" = £ (M) =21,

}\=/\k

=L =N (W) =2 (\e) (e —Ny) 2

=Ak_

VO =nm=11

Combining all these facts and using A\ —\; < 0, the equivalence of (36) and (31) follows. Simi-
larly one establishes the equivalence of (37) and (32). This completes the proof of Theorem 6.
COROLLARY 5. Let t # 1, n. If for some s = t+2 we have simultaneously
lAt+l = (n - 1)n_1}\t+ n_lAt+|,
s—1As=m—1)n""N\g+n"\g_, (57)
then for s; <t—2 we never have simultaneously
1A= (n—Dn~\+n A,
s:ASnH:(n_l)n_l)\51+n_l)‘51+19 (58)
If for some s; <t—2 we have (58) simultaneously then for s =t+2 we never have (57) simul-
taneously. If f'(\;) =0 then for no s =t+2 can (57) both hold and for no s, <t—2 can (58)

both hold.
Proor. If both of eqs (57) hold then by Theorem 6 we have

{(A=N)f"(N)=2f" (M) }f' (\) = 0, (59)
and if both of eqgs (58) hold then by Theorem 6 we have
(M= M) ) —2F DI (M) = 0. 60)
If /" (\¢) >0 we obtain the contradiction
0 <2 (A)) (Ae—As) 7L< f"(Ne) <2 (M) (Ae—A5)1< 0

and a similar contradiction is obtained if /' (\;) <O0. If /"(A\¢) =0 it is clear that both (59) and (60)
are false.

20



THEOREM 7. Let 1 <j<k<n. Then
j,,AjZ(n—l)n")\j-F n’l)\j_l, (61)
k‘|Ak:(n_l)n_1)\k+n~1Ak_1 (62)

never happen simultaneously.

Proo¥. If (62) holds then from &; ,—1 # N\ we get &, j-1=A\j_1, hence \;—¢&;, j—1 # 0, hence
from (61) follows &, x—1=Ax. We have a contradiction. This completes the proof.

Similarly one proves Theorem 8.

THEOREM 8. Let 1 <j< k <n. Then

jAj+1:(n~'l)n_l)\j+n71/\j+1, (63)
A= —Dn=\g+n"1\ (64)

never happen simultaneously.

Combining several of our results we have Theorem 9.

THEOREM 9. In the linear inequalities the maximum number of equality signs that can appear
for a given U is two.

PRrROOF. If more than two equality signs appeared in the set of linear inequalities, there would
have to be a pair of the types (61), (62), or a pair of the types (63), (64). This shows the maximum
number of equality signs for any given U is =< 2. Theorem 6 shows that for any given H
we can achieve two equality signs for an appropriate U. In particular we can always achieve
n-1An=(n—1)n"'"Ny+n"'"Ay_yand 1A>= (n—1)n="'A\; + n—'\; simultaneously.

This completes our discussion of simultaneous equalities in the linear inequalities.

5. Conditions Under Which Each ;_;4; Covers Its Full Interval of Permissible
Values as U Varies

In section 5 we do not require that A, . . ., X\, be distinct. The linear inequalities (2) are valid
for matrices with nondistinct eigenvalues.
THEOREM 10. Suppose that, as U varies over all unitary matrices, each interval

[((n—Dn~ A+ n7 A, n'A i+ (n— 1)n— 1A

is completely filled out by ;—1A;,j=2,3,. . ., n. Then

(i) H is scalar; or

(i1) H has eigenvalues a+by;,i=1,2,. . .. n, a, b real constants, where y., ys, . . ., 7y, arethe
roots of the polynomial

d
1 SR

Here P,_i(\) is the Legendre polynomial of degree n—1. Conversely, in each of Case (i), Case (ii),
each interval (65) is completely covered by ;-1 A; as Uwvaries over all unitary matrices,j=2,3,. . ., n.

ProoF. If H=+yl is scalar then each interval (65) consists of the single point y and each
j—14;="1, hence the result is trivial in Case (i). Suppose H has at least two distinct eigenvalues. Let
wi<pe< ... <puswith multiplicities ey, es, . . ., es be the distinct eigenvalues of H. We now use
the notation of [1]. By [1, (19) and (20)],

oias(I-La_fi,afl)/(ﬂa_lo‘«a—l)s @7 L

Oia < (gia_/ia)/(,u'a+l e Ma)q QT
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and 2 ,6,,= e,. Thus by summation we get stronger linear inequalities:

a-14da < (n—ex)n 't ean " -1, aF1, (66)

cilert 2= D (P Gt i a7 n. (67)

Now if the full interval (65) is covered by j_14; for each j, then for some U we achieve
at1Aa=(n—1)n "o+ n"we—1, aF#1 (68)

and for some other U we get

eAar1= (n—1)n " e+ n"pet1, a # n. (69)
Combining (66) and (68) yields (ea— 1)a < (éa— 1)ia—1, a contradiction unless e,=1. Combining
(67) and (69) yields (eq— 1)ta+1 < (ea— 1)ua, again a contradiction except if eo=1. Thus e,=1
for every a. That is, the eigenvalues of H are simple.

Now we are in a position to apply the results of section 4. In the present situation back to back
equalities of the type described in Theorem 4 are possible, hence f”(A\;)= 0 for all j # 1, n. Thus

(A =A1) (A= A)f"(N)= n(n— L)f (). (70)

After translation and change of scale to bring the points Ay, A, to— 1, 1 respectively, the differential
equation (70) becomes

N =Df"N)=n(n—1)f (). (71)

From (71) A2—1 is clearly a factor of f(\) so put f(A\)=(A>—1)g(\). Then the differential equation
for g(\) is

(I—=A2)g"(N\)—4rg'(N\)+ (n—2) (n+ 1)g(A)= 0. (72)
The differential equation for the Legendre polynomial P,_(\) is
(1—=N)P,_ —2\P,_+(n—1)nP,-,=0 (73)

and one easily deduces from (73) that if g=P)_,, then g satisfies (72). Moreover, by method of
Frobenius, (72) has a unique (up to constant factor) polynomial solution. Returning to our original f,
it follows that (ii) holds. For the converse when H has eigenvalues as described in (ii), we have

A=X) A=A)f"N)=n(n—1)f(N)

and hence f(\;)=0 for allj # 1, n. Then Theorems 4 or 5 show that each ;_;4; covers its full interval
of permissible values.
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