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Let H be an n X n Hermitian matrix with eigenvalues Al .;; A2 .;; ... .;; A". Let H (iii) denote 
the principal submatrix of H obtained by deleting row i from H. Let til ';; ti2';; . .. .;; ti, ,, - 1 be the 
eigenvalues of H(i li) . Tne famous Cauchy inequalities assert that til, ... , ti, ,, - 1 interlace AI , ... , 

An. It was recently proved by the present author that , for each fixed j , the arithmetic mean n - 1 i tij 
; :: 1 

of the tij lies between (1- 0) Aj + OAj + 1 and OAj + (J - 0) Aj + 1, where 0 = l in. In the present paper 
the cases of equality in these inequalities for the arithmetic mean of the tij are discussed. 

Key Words: Cauchy inequalities, Hermit ian matrices, inte rlacing theorems, matrices, matrix 
inequalities, matrix theory , principal submatri ces. 

1. Introduction 

This paper is the third in a series of papers in which the principal submatrices of a matrix 
are studied. In the first paper [ljI in this series a large number of in eq ualities involving th e eigen
values of all of the principal (n-I) X (n - I) submatrices of a normal or Hermitian 11 X n matrix 
H were derived. In the seco nd paper [2J cert ain of the inequalities obtained in [1] for Hermitian H 
were examined for cases of eq uality. The inequaliti es studied in [2J involved the eigenvalues of 
the principal submatrices in a quadratic fashion, hence we chose to call these inequalities quad
ratic inequalities. In [IJ inequalities involving the eige nvalues of th e principal (n - I)-square 
suhmatrices of He rmitian H in a linear fashion were obtained (see (2) below). These are the linear 
inequalities referred to in th e title of this paper. It is the purpose of thi s paper to discuss cases 
of equality in these linear inequalities. Most of our res ults are obtained under the assumption that 
H has only simple eigenvalues. However, our most important result, Theore m 10, which charac
terizes those Hermitian H for which everyone of our linear inequalities can achieve equality, does 
not require the assumption that H has simple eigenvalues. Theorem 10 produces a rather unusual 
co ndition which essentially requires that the eigenvalues of H be roots of a polynomial closely 
linked to the Legendre polynomials. 

Certain of our res ults are valid for real symmetric matrices. Our most important tools are 
Theorems 1 and 2 of [2]. In general, when our proofs use Theorem 2 of [2] we obtain results valid 
for both the Hermitian and the real symmetric situations. When Theorem 1 of [2J is required, we 
obtai n results valid only in the Hermitian situation. 

2 . Notation 

We assume throughout this paper that H = UDU - I where U is unitary and D = diag (AI, A2, 
., AlI)' Exce pt in section 5, we suppose Al < A2 < ... < An. In section 5, we only require that 

AI :%; A2:%; ... :%; An. Let H(i!i) be the principal submatrix of H obtained by deleting row i and 

*A n invit ed paper. The preparation of this paper was supported in part by the U.S. Air Force, Office of Scientific Research, under Grant 698- 67. 
** Deparlmenl of Mathe matics. Univers ity of California, Santa Barbara, California 93 106. 
I Figures in brackets indicate the litera ture reference at the end of this I}aper. 
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column i of H. Let ~il ~ ~i2 ~ •.• ~ ~i , n - I be the eigenvalues of HUli). The famous Cauchy 
inequalities assert that 

We say ~ij belongs to the interval [Aj, Aj+l]. Let 

1/ 

jAj + 1 = n- I L ~ij . 
;= 1 

In [lJ the following inequalities were derived: 

1 ~ j < n. (2) 

The quantities jAj + 1 are functions of the unitary matrix U and it is the purpose of this paper to 
determine which of the inequalities (2) can become equality as U varies over all unitary matrices. 
(Thus Hand U are to be variable matrices and only D is constant.) Let U = (Uij)I E i , j E Ii ' The following 
fundamental formula was derived both in [11 and [21. 

1/ 

f(;)(.\) = L IU i,12f(A)/(A - A,). (3) 
' =1 

Here 

II 

f(A) = IT (A - A;) (4) 
;= 1 

is the characteristic polynomial of Hand 

I/ - J 

f(i)(A) = IT (A - ~ij) (5) 
i= 1 

is the characteristic polynomial of H (i Ii). 

We will always let P and Q be permutation matrices. The symbol + denotes direct sum. 

3. Individual Cases of Equality 

THEOREM 1. Let j be fixed, 1 ~ j < n. Then unitary U exists such that 

(6) 

if and only if 

(7) 

PROOF. We first of all remind the reader of the derivation of (2). From (3) we obtain on setting 
A = A) that 

(8) 
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(Certain of the factors in (8) are absent ifj = 1, 2 , n-l , or n.) Because of the Cauchy inequalities, 
each fraction in (8) lies between zero and one, hence deleting all but one of the fractions in (8) 

/I 

increases th e value of the expression. Thus from L luul2 = 1 we obtain 
i = l 

(9) 

(10) 

These inequalities (10), (9) are equivalent, respectively, to the first and second of the inequalities 
(2) after rearrangement of the terms. 

Now (6) will be true if and only if the inequality (10) is equality. If gij - Aj 01= 0, then equality in 
(10) can hold only if each of the fractions deleted from (8) is one. Hence 

Using (8), it is easy to see that Uil = ... = Ui , j - I = Ui , j+Z = .. . = Uin = O. Thus row i of U is zero 
outside colu mns j and j + 1. If tu - Aj 01= 0 for three values of i, say i = iI, i2, i3, the n rows iI, i2, i3 of 
U would behave as 2-tuples, hence would be dependent. This is a co ntradi ction because U is non· 
s ingular. Thus tu - Aj ¥= 0 for at most two values of i, and when tu - Aj 01= 0, row i of U is zero except 
for Uij and (perhaps) Ui ,j+l. 

CASE (i): tu - Aj 01= 0 for exactly one valu e of i, say i = i l • In thi s case we must have I uiJI = 1, 
hence Ui"j+ I = O. Thus U is essentially co mposed of a I·square block and an (n - 1) square block. 
After passing from H = UDU- I to PH p - I = (PUQ)(Q - I DQ)(PUQ)- I , as in [21, we may assume 

(11) 

where H2 is (n -I)-square and has AI , . . . , Aj_l, Aj+J, ... , AI/ as eige nvalues. Moreover, we now 
have tlj - Aj 01= 0 and fu - Aj = 0 for a ll i > 1. For i > 1 it follows from the form (1) of H that the 
eigenvalues of H(ili) are 

(12) 

where 

Oil, Oi2, ... , Oi ,j- 2, Oi, Oi,j+I, ... , 8i , I1 - 1 (13) 

interlace AI , A2, ... , Aj _l, Aj+ I, .. . , An. Here in (12), the terms Oil, . , 8i . j - 2, 8i are absent 
when j = 1. When j =2 the terms 8il , .. . , 8i• j - 2 are absent but 8i is present. Whenj= n-l, 8i is 
present but 0;. j+ I, . . ., 8i , n- I are absent. 

We now show that with H in the form (11), the equation (6) for j = 1 is valid. For withj= 1 we 
have tll = A2 and tit = AI for i > 1, and hence (6) holds for j= 1. 

For j ¥= 1 we require tu= Aj for all i> 1. From (12) it is clear that this can happen only if 
8i ~ Aj. Moreover if Oi ~ Aj and H is in the form (11), the equation (6) is valid , since then tij = Aj for 
all i~2, and tlj=Aj+1 (because HOIl) has eigenvalues At, . . . , Aj _l , Aj+l, ... , A,,). 

Thus in Case (i) for (6) to hold it is necessary and sufficient that 8i ~ Aj for all i ~ 2 when j 01= 1. 
By an application of [2, Theorem 2] to Hz and the interval [Aj- I, Aj+tl, we find that a unitary similarity 
of H2 exists such that (6) holds if and only if 

d /I 

Aj ~ the root of -d IT (A - At) in interval (Aj-I, Aj+l), 
A t= l 

t,oJ 

no condition if j = 1. 

9 

jol=I; 

(14) 



Now, by a graphical argument using the fact that AjE(Aj _ l , Aj +d, (14) holds if and only if 

j 
d It It 

sgn dA IT (A-A/)I>"=>"j=-sgn IT (A-A/)I>"=>"j or 0 , 
~\ ~ \ /oF) toF) 

. no condition if j= 1. 

j r" 1; 
(15) 

It is not diffic ult to see that (15) for j r" 1 is equivalent to sgn f"(Aj) = - sgnf' (Aj) or 0, which in turn 
is e quivalent to (7) for j r" 1. For j = 1, (15) imposes no condition and (7) is true. This completes 
Case (i). 

CASE (ii): Here ~jj - Aj r" 0 for exactly two values of i, say i = i l and i = i2 • Thus rows i l , i 2 of U 
are zero outside columns j and j + 1, he nce U essentially splits into a 2 X 2 block and an 
(n-2) X (n-2) block. If we pass from H to PHP- l = (PUQ) (Q- lDQ) (PUQ) - I as before, we may 
(after a change of notation) take H in the form 

(16) 

where 

(17) 

has eigenvalues Aj , Aj+l, and H z has eigenvalues AI , . . . , Aj_l, Aj+2, . .. , A/I . Moreover, we must 
now have tij = Aj for all i > 2. Since HI has e igenvalues Aj, Aj+1 we have Aj ,;;:; a, c:OS: Aj+1 and 

With H in the form (16), the eigenvalues of H(ili) for i > 2 are 

(18) 

where Oil, ... , O; , j -Z, 0;, O;,j+z, . .. ,0; , 1/ - 1 interlace AI, ... , Aj_l , Aj+2,. "' AI/ _I. Forj = l , the 
te rms Oil, ... , Oi ,j-2, 0; are absent in (18). For j = 2 , 0;1, ... , O; , j- Z are absent but 0; is present. 
For j = n - 1, 0;, 0;,j+2, . .. , 0; , /I _I are all absent. For j = n - 2,0; is present but 0; ,j+2, . .. , 0; , /I - I 
are all absent. 

We now show that with H in the form (16), the equation (6) for j= 1 is valid. This is so because 

for j= 1 we have til = C, tZI = a, til = AI for i > 1, and c+ a= AI + Az. 
W e note also that if n = 2 we are dealing with the case j = 1 (since j :os: n - 1). So let n > 2. 
We nex t s how that for j r" 1 in Case (ii) we must have j r" n - 1. For if j = n - 1 we have from 

(18) th at tij = t; , /I - I = Aj+ l , con tradicting the requirement th at tij = Aj . So we may supposej r" n - 1. 
For j r" 1, j r" n - 1, it follows from (18) that t ij = Aj , (i > 2), can hold if and on ly if 0; :os: Aj. Moreover, 
if we have H in the form (16) and 0; :os: Aj for all i > 2, then (6) is valid (since gl j = C, 6 j= a, tij = Aj 
for i > 2 and a + c = Aj + Aj+ I) ' By an application of [2, Theore m 1] to H z for the interval [Aj_l, Aj+z], 

we find that a unitary similarity of H z exists s uch that (6) holds if and only if 

d /I 
Aj ~ the root of dA IT 

1.=1 toF).)+ 1 

no condition if j = 1. 

(A - At) in the interval (Aj_l , Aj+z), 

j r" I, n-I; 
(19) 

The condition (19) is therefore necessary and suffi cient for equality (6) to hold in Case (ii). 
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We now s how that th e condition (19) of Case (ii) implies the condition (14) of Case (i). This is 

clear for j = 1. For j "" 1, n-l, we s how 

To see (20) le t 

jthe root of:!t.. D (A - A,) in interval (Aj_ l , Aj+z) 

' ¢ j , j + 1 

ci II 

> the root of ciA IT (A- A,) in inte rval (Aj_ l , Aj+I). 

I;,) 

II 

g(A) = IT (A - AI), 
1= ( 
' ¢ j 

n 

h(A) = IT (A - At). 
/.= 1 

l ¢ j,J + I 

(20) 

The n g(A)=(A-Aj + l)h(y). Let y be the root of h'(A) in the inte rval (Aj _ l, Aj +z). The n g'(y) = h(y), 
he nce sgn g'(y) = sgn hey ) =-sgn g( Aj), which (by a graphical argument) forces y to lie s tric tly 

between the two roots of g' (A) in the inte rval (Aj _ l, Aj+ 2). Thus (20) is proved. 

Thus in Case (ii) a condition that implies (7) holds. H e nce (7) is the n ecessary and s ufficie nt 

conditio n. 

COROLLARY 1. 
(i) Let (7) be satisfied. Then (6) holds when H = P(Aj+ H 2)P - I where H2 has eigenvalues 

AI , . . . , Aj_ l, Aj+l, ... , An , and (jar j "" 1) each principal (n-2)-square submatrix ofH2 has its 
eigenvalue belonging to the interval [Aj- I, Aj+l] within the smaller interval [Aj _l , AJl, 

(ii ) For j "" n - 1, if Aj satisfies the condition (19), stronger than (7) when j "" 1, then (6) holds 
when H = P(H I + H z)p- I where HI has eigenvalues Aj, Aj +l and H 2 has eigenvalues AI , ... , Aj _ l, 

Aj+2, . . . , An and (ja r j "" 1) each principal (n - 3)-square submatrix of H z has its eigenvalue 
belonging to interval [Aj _ l , Aj+2] within the smaller interval [Aj- l , AJ 

(iii) In no ways other than those described in (i) and (ii ) can (6) hold. 
A n e ntirely s imilar argum e nt will es tabli s h Theorem 2 and Corollary 2. 
THEOREM 2. Let j be fixed 1 < j ,,;;; n. Then unitary U exists such that 

if and only if 

COROLLARY 2. 

(21) 

(22) 

(i) Let (22) be satisfied. Then (21) holds when H = P(Aj + H2)P - l , where H2 has eigenvalues 
AI , .. . , Aj- I, Aj+l, . .. , An and (jar j "" n) each principal (n - 2)-square submatrix of H2 has its 
eigenvalue belonging to the interval [Aj_l, Aj+ I] within the smaller interval [Aj, Aj+tl· 

(ii) For j "" 2, if Aj satisfies the condition 

Aj ";;; the root of :A fI (A - At) in interval (Aj- Z, Aj+I), j "" n 

t¢ l~ \' j (23) 

no condition if j = n. 

(condition (23) is stronger than (22) when j""n), then (21) holds when H = P(H I +H2)P - 1 where 
HI has eigenvalues Aj_l, Aj, and H z has eigenvalues AI, ... , Aj - 2, Aj +l, . . . , An and (jar j "" n)each 
principal (n - 3)-square submatrix of H z has its eigenvalue belonging to the interval [Aj - 2, Aj +l] 

within the smaLLer interval [Aj, Aj+ I]. 
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(iii) Other than as described in (i), (ii), the equality (21) does not hold. 

4. Simultaneous Equalities 

THEOREM 3. Let 1 < j < k < n. Then 

(23) 

(24) 

cannot simultaneously occur. 
PROOF. Suppose Aj - gi, j- I ¥ O. Then from (23), as in the proof of Theorems 1 and 2, 

Hence gik - Ak ¥ 0 and hence, from (24), 

We now have the contradiction gij = Aj+1 and gij = Aj. This proves the theorem. 
THEOREM 4. Let j be fixed, 1 < j < n. Then 

(25) 

(26) 

can both hold (separately or simultaneously) if and only if f"(Aj) = O. 
PROOF. By Theorem 1, (26) can hold for some U if and only iff"(Aj)f' (Aj) ~ 0 and by Theorem 2, 

(25) can hold for some U if and only if f"(Aj)f' (Aj) ~ O. Since f' (Aj) ¥ 0 as the e igenvalues of Hare 
simple, it follows that f"(Aj) = 0 is the necessary and sufficient for (25) and (26) to occur separately 
or simultaneously. 

From Corollaries 1 and 2 and Theorem 4 we deduce Corollary 3. 
COROLLARY 3. Suppose 1 < j < n , j fixed, and that f'(A;l = O. Then unitary U exists such that 

both (25) and (26) hold, and in fact both (25) and (26) hold precisely when 

H = P(Aj + Hz)p- I, 

where Hz has engenvalues AI , . . ., Aj _l, Aj + I, . . . , An and each principal (n - 2)-square submatrix 
of Hz has Aj as an eigenvalue. 

Theorem 4 is the k = j analogue of Theorem 3. For k = j - 1 and n > 2, it cannot, of course, 
happen that simultaneously j _ IAj and "Ala i achieve the values (n-1)n - 1 Aj + n- IAj_1 and 

Here Theorem 5 answers the question of when j - IAj = kAk+1 varies over the maximal permissible 
set of values as U varies over all unitary matrices. 

THEOREM 5. Let j be fixed, 2 ~ j ~ n. Then as U varies over all unitary matrices, j- 1Aj varies 
over the full interval 

of permissible values allowed by the linear inequalities if and only if 

f'(Aj _l)f'(Aj_l) ~ 0 and f'(Aj)f'(Aj) ~ O. 

12 
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PROOF . S ince the roots of a polynomial are continuous func tions of the coefficients of the 
polynomial, the func tion j _ IAj is a continuous fun c tion from the arcwise connected set of unitary 
n X n matri ces to the real numbers. Thus j _ IA j covers the full interval (27) if and only if the end
points of (27) are achievable. By Theor ems 1 and 2, the endpoints of (27) are achievable if and only 
if th e co nditions (28) are sati sfied. 

Theore m 6 ad vances furth er the examin ation of j _ IA j and hAN I for various values of j a nd k 
tha t was started in Theorem 3 and continued in Theore ms 4 and 5. 

THEOREM 6. Let k, j be fixed , 1 ~ k, j ~ n, j ;;;,: k + 2. Then 

can simultaneously hold for some U if and only if: 

and 

(
{ (Ak - Aj)f'(Ak) - 2f' (Ak)} f' (Ak) ;;;,: 0, 

no conditio n if k = 1; 

(
{ (Aj - Ak)f '(Aj) - 2f' (AJ} f' (Aj) ;;;,: 0, 

no condition ifj = n. 

(29) 

(30) 

k "" 1, 
(31) 

j"" n, 
(32) 

PROOF. From (30) we find , as in the proof of T heore m 1, tha t ~ik - Ak "" 0 fo r exac tly one or two 
values of i , a nd tha t when ~ih'-Ak "" 0 the n ~il = AI , ... , ~i, k - I = Ak- I, ~i , N I = Ak+2, ... , ~ i, It- I = A,., 
and Uil = . .. = Ui , k' - I = Ui, N2 = ... = Ui,. = 0, Uih' 0/= O. Simil arly Aj - ~i , j- I "" 0 for at most two 
values of i a nd whe n Aj-~i , j- I "" 0 we have ~il = AI, ... , ~i , j-2 = Aj-2 ,~ij = Aj + I , . . . , ~i,It- I = A,., 
a nd Ui l = . . . = Ui,j - 2 = U i , j +1 = ... = Ui,. = 0, U ij"" O. T he re are fo ur cases to be considered 
according as ~ik- Ah' a nd Aj-~i , j - I are each nonzero for exac tl y one or two values of i. Moreove r 
sin ce j - 1 ~ k + 1, it fo llows fro m these remarks th a t whe n ~ik - Ak' "" 0 we have Aj - ~i , j - I = 0 a nd 

when Aj - ~i , j - I "" 0 we have ~ik - AI.' = O. 
CASE (i). Le t ~ik - Ak 0/= 0 for exactly one value of i and le t Aj - ~i, j - I 0/= 0 for exac tl y one value 

of i. We may le t ~ik· =Ak· for i"" il a nd Aj=~i , j- I for i "" i2. The n i l 0/= i2 a nd also Ui k'= O fo r i"" i i, 
Uij= O for i ""i2. He nce IUi ,,,·I = I , IUi01 = 1, so that Ui" 1.' + 1 = 0 = U i2, j-J. This means tha t U breaks 
down into two 1 X 1 blocks and a n (n - 2) X (n - 2) block. After passing to 

PHP- I = (PUQ) (Q - IDQ ) (PUQ)- I 

a nd cha ngin g notation, we m ay ass ume 

(33) 

where H3 is (n-2)-squ are with eige nvalues 

AI, .. . , Ak- I, A',+I, ... , Aj _l, Aj+l , ... , A,.. (34) 

Moreove r, we now have ~iI, = Ak' for i 0/= 1, a nd ~i,j- I = Aj for i 0/= 2. 
With H in the fo rm (33), the eigenvalues of H (lI I ) are At, ... , A',_I , Ak+I, . .. , Aj, .. . , A,. , 

he nce ~ I k = A"'+I and ~ I ,j _ 1 = Aj. The eige nvalues of H (2 12) are AI , ... , A", . . . , Aj _t, Aj+t, ... , An, 
he nce ~2k= Air a nd 6.j- 1 = Aj-J. For i;;;,: 3, the eigenvalues of H(i li) are 
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Here the numbers 

Oil, ... , Oi, 1.' - 2 , Oil.' , 0; , /{ +I, ... , 0;,j- 2, Oij, Oi , j+l, ... , Oi , /I - I 

interlace the eigenvalues (34) of H3 • In (35), the numbers Oil, ... , Oi, /; -2, Oi/{ are missing when 
k = 1 , and when k = 2, the numbers Oil, . . ., Oi,I:- 2 are missing but Oik is present. When j = n, the 
numbers Oij , Oi , j+l, ' . . , Oi , n- I are missing, and whenj = n-1 the numbers Oi ,j+1, . .. , Oi , /I - I 
are missing but Oij is present. When k + 1= j-1 the numbers Oi , k + I, . .. , Oi, j- 2 are missing but 
both Oil.- and oij are present. 

We now show that with H in the form (33), the equation (30) is valid for k = 1. For as computed 
above , gil = A2, gil = AI for all i > 1, and this is sufficient to imply (30) when k = 1. We also show that 
with H in the form (33), the equation (29) is valid for j = n. For as computed above , ~I, /I - I = An, 
6, n - I = An - I, gi, II - I = An for i > 2, and this is sufficient to imply (29) when j = n. 

For k =P 1, it follows from (35) that gik = Ak for i > 2 can hold if and only if Oik ,,;:; AI: . For j =P n it 
follows from (35) that gi , j - I = Aj can hold for i > 2 if and only if Ou ~ Aj. Moreover if we have Oik ,,;:; AI.' 
for all i > 2 (when k =P 1) or Oij ~ Aj for all i > 2 '(whenj =P n),. then using the values of gil.' or gi , j - l 
obtained above, we find that (30) or (29) holds, respectively. By [2, Theorem 1] we can make a 
unitary similarity of H3 such that Oik ,,;:; AI: (k -,1= 1) holds for all i and/or such that Oij ~ Aj (for j =P n) 

holds for all i, if and only if (36) and/or (37) hold: 

/I 

( 

AI.' ~ the root of D (A - AI) in interval (Ak- I, AI:+d, 

I""k 
I""j 

no condition if k = 1. 

/I 
Aj";:; the root ofI1 (A-At) in interval (Aj_l, Aj+I), 

1= 1 

I""k 
I""j 

no condition if j = n. 

k =P 1, 

(36) 

j -,1= n, 

(37) 

Thus in Case (i) the conditions (36) and (37) are the necessary and sufficient conditions for (29) 

and (30) both to be achievable. 
We place here the first part of Corollary 4. Further parts of Corollary 4 will appear as the proof 

of Theorem 6 goes forward. 
COROLLARY 4. (i) Let Ak and Aj satisfy the conditions (36) and (37). Then both (29) and (30) 

hold when H = peAk -+ Aj -+ H3)P - I, where H3 has eigenvalues (34), and each principal (n - 3)-square 
submatrix ofH3 has its eigenvalues belonging to the intervals [Ak- I, Ak+l] (for k -,1= 1), [Aj_l, Aj+l] 
(for j =P n) within the smaller intervals [Ak- I, Ak ] , [Aj, Aj+ IJ , respectively. 

CASE (ii). Here we assume that gik - Ak =P 0 for exactly two values of i , say i = ii , and i = i2 , 

and that Aj - gi,j- I -,1= 0 for exactly one value of i , say i = i3 • By remarks at the beginning of the 
proof, ii, i2, i3 are three distinct integers. We have IUi3 j l= 1 as Uij = O for i -,1= i3, hence Ui3t = 0 for 
t =P j. Thus U splits up into three nonzero blocks: a 2 X 2 block in rows ii , i2 and columns k, k + 1; 
a 1 X 1 block at position (i3,j); and (n - 3) X (n-3) block in the rows complementary to ii, i2, i3 
and the columns complementary to k, k + 1,j. After passing to PHP- I = (PUQ) (Q- IDQ) (PUQ) - I, 
and changing notation, we may assume 

(38) 

where H I has eigenvalues AA-, AI:+I, and H3 has eigenvalues 

(39) 
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Moreover we now have gik= Ak for i >2 and gi,j - I = Aj for i¥=3 , Let HI be given by (17). Then 
A" ~ a , c ~ 11.,,+ I and a + c = Ak + 11.,,+ I. 

Observe that, with H given by (38), we have gu,=c, 6,,=a, g ' , j_, = Aj, 6,j- , = Aj, 6,, = 11.1.' , 
6.j- 1 = Aj_l. For i > 3 the eigenvalues of H (ili) are 

H ere the numbers 

Oil, . : ., Oi, 1.' - 2, Oik, 0; , k+2, .. . , Oi , j - 2, Oij, Oi , j+ I, ... , Oi , n- I 

inte rl ace th e numbers (39). Whe n k=l , the numbers Oil , .. . , Oi"'-2, Oi" are abse nt from (40) . 
When k = 2, the numbers Oil , . .. , Oi , "- 2 are absent from (40) but Oil.' is prese nt. Whe n j = n , 
the numbers Oij , Oi ,j+l, ... , Oi , I1 - 1 are absent from (40). When j = n - 1, th e numbers Oi,j+l, 
... , Oi,I1- 1 are abse nt from (40) but Oij is present. Whe n j - 1 > k + 2 the central set Oi , k+2, ... , 
Oi ,j-2 is present in (40). Whe n j - 1= k + 2 the central set Oi ,"+2, ... , Oi , j- 2 are absent but Oi" 
and Oij are separa te e ntiti es, both bein g presen t (exce pt: Oil.' is absent if k = 1 and Oij is abse nt if 
j = n). Whenj - l = k + l the ce ntral set Oi , k+2 , . .. , Oi,j- 2 is a bse nt , and Oil; and Oij me rge into 
one entity, Oi,, = Oij be ing the eigenvalue of H3 (i-3 Ii-3) belonging to th e inte rval [AIH ' Aj+'] 
(exce pt that for k = 1 or j = n, Oik = Oij is absent). 

We now show that the equation (30) for k = 1 is valid whe n H has the form (38). This follows 
fro m the values gil , g21, g31 computed above, the fa c t that a + c = AI + 11.2, a nd the fac t th a t (from 

(40)), gil = AI for all i > 3. W e also show that the equa tion (29) for j = n is valid whe n H has the form 
(38). This follows from the valu es of g l,I1 - I, 6 , 11 - 1, 6, 11 - 1 co mpute d above, and the fact that (from 
(40)) gi, n - I = An for all i > 3. 

No w note tha t whe n n = 3 we in fac t have k=1 andj = 3 = n. This is so since j ;;;.: k+2. So 
assume n > 3. 

We now prove (assuming n > 3) thatj ¥=k+2 . W e use (40). If j-l = k+l we have: wh e n 
k = 1, g;, j _1 = gi2 = 11.2 = Aj _1 contrary to the requirement gi,j - I = Aj for i > 3; whenj = n , gil.' = gi , /1 - 2 
= Ak+1 contrary to the re quirement gil.' = Ak for i > 3; when k ¥= 1 and j ¥= n in orde r to mee t the 
require ment gil.' = Ak we must have (from (40)) that 0;1.' ~ Ak, and then g;.j _1 = 11.",+ I ¥= Aj, thu s con
tradic ting gi , j _ I = Aj for i > 3, So we may assume j - 1 > k + 1 and tha t Oi" and Oij are di s tinc t 
entities. 

For k ¥= 1 it now follow s from (40) that in order for gik = 11.,. for i > 3 it is necessary and s uffi
cie nt that Oik ~ Ak. For j ¥= n it follows from (40) that in order for gi,j - I = Aj for i > 3 it is necessary 
and s uffic ie nt that o ij;;;': Aj . Moreover with H in the form (38) and using values g l," 6k, g :lk, gl ,j - I, 
g2, j- l , 6.j- 1 obtained above, if gik= Ak for all i > 3, (k ¥= 1), we find th at (30) is sati s fi ed and if 
gi,j - I = Aj for all i > 3, (j ¥= n) , we find that (29) is satisfi ed. Now b y [1 , Theor e m 1] it follows that 
Oil.' ~ Ak (for k ¥= 1) and/or Aj ~ OJ} (for j ¥= n) can be achieved by some matrix unitarily similar to 

H3 , if and only if 

( 

d /I 

A" ;;;.: the root of dA D (A-At) in interval (Ak- I, 11.,'+2 ) , k ¥= 1, 

t # k , "+I, j 
no condition if k = 1, 

(41) 

and/or 

d 11 

Aj ~ the root of dA IT(A - At) in interval (Aj_l , Aj+I) , j ¥= n, 
1= 1 

1# 1.', k+I, j 
no condition if j = n . 

(42) 
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We have thus demonstrated that in Case (ii) the conditions (41) and (42), together withj ¥ k+ 2 
for n > 3, are the necessary and sufficient conditions in order that (29) and (30) can both hold. 
We now co mplete the proof in Case (ii) by showing that for k ¥ 1 and j > k + 2, 

d n 

the root of dA IT (A-AI) in interval (Ak- I, A" +2 ) 
1= 1 

l ~ k. k + l ,j 

d Ii 

> the root of dA IT (A-AI) in interval (Ak- t, AA'+ I) (43) 

and for j¥ n andj > k+2, 

d 
the root of dA 

1/ 

IT 
1= 1 

I""k , k + l .j 

d 
< the root of dA 

1= 1 
I "" k,j 

Ii 

IT 
1= 1 

I"" ... j 

(44) 

If we can demonstrate (43), (44) the n the conditions (41), (42) of Case (ii ) imply the co nditions 
(36) and (37) in Case (i). 

Le t 

1/ 

g( A) = IT ( A-AI), 
1= 1 

I""k.j 

1/ 

h (A) = IT (A - AI) . 
( = 1 

I ""k. k + 1 ,j 

Theng(A) = (A-Ak+, )h(A). We use the fact that k + 2 ~ j-l. Let y be the root ofh'(A)in the 
interval (AA'- I, A .. + ~). Th e n ,g'(y) = h(y ) a nd so sgn g'(y) = sgn h (y)=-sgn g( Ak), which forces 
y > root of g'( A) in interval (Ak- I, Ak+tl . This proves (43) . Let f3 be the root of h '( A) in the inte rval 
(Aj _l, Aj+tl· Then g' (f3) = h(f3) , hence sgn g ' (f3 ) = sgn h (f3 ) = sgn g( f3 ), whi ch forces f3 < root of 
g'( A) in interval (Aj_l, Aj+I). This proves (44) and co mple tes Case (ii ). 

COROLLARY 4. (ii) Let j > k + 2 except k = 1, j = 3 for n = 3. Then the condition (41) for k ¥ 1 
is stronger than the condition (36) and the condition (42) for j ¥ n is stronger than the condition 
(37) . If both (41) and (42) are satisfied then equalities (29) and (30) are both valid when 

H = P(H, + Aj+H3 P- ' , when HI has eigenvalues Ak, Ak +l , Hl has eigenvalues (39), and each 
principal (n -4) -square submatrix of Hl has its eigenvalues belonging to the intervals [Ak- I, Ak +~J 

(for k ¥ 1), [Aj_l, Aj+ I] (for j ¥ n ) within the smaller intervals [Ak- I, Ak], [Aj, Aj+ I], reslJectively . 
CASE (iii). Here we assume til>' - Ak ¥ 0 for exactly on e valu e of i and Aj - ti,j - I ¥ 0 for exactly 

two values of i. This c ase is very similar to Case (ii ). One ge ts H into th e form 

H = P (Ak+H~ + H3) P- 1 (45) 

where H2 has eigenvalues Aj_l, Aj and H:l has eigenvalues 

(45') 

One proves that j > k + 2 except for k = 1, .i = 3 when n = 3. In place of (41) and (42) one obtains 

d 
Ak ~ the roo t of dA 

1/ 

IT 
1= 1 

I""k,j- I ,j 

no condition if k = 1; 

k ¥ 1, 

(46) 
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- ------------------

I Aj ~ the root of ddA .Il . (A- A,) in interval (Aj - Z, Aj+I), 

'''''A.) - I,) 

no co ndition if j = n ; 

a nd in place of (43), (44) , one obtains (48) for k =Fe 1 and (49) for j =Fe n: 

d 
the roo t of dA 

1/ 

IT 
' ~ I 

t""k ,j- I ,j 

j =Fe n , 

(47) 

d 1/ 

> th e root of dA IT (A - Ad in interval (Ak- I, Ak+ d; (48) 
' ~ 1 

'''''k , j 

d 
the roo t of dA 

/I 

IT 
' ~ I 

,""k ,j- I , j 

d /I 

< th e root of-d IT ( A- A,) in interval (Aj _l , Aj+I)' (49) 
A ' ~ I 

''''''' .j 

COROLLARY 4. (iii ) Let j > k + 2 except k = 1, j = 3 fo r n = 3. Th en th e condition (46) for k =Fe 1 
is stronger than the condition (36) and the condition (47) for j =Fe n is stronger than the condition 
(37). If both (46) and (47) are satisfied then equalities (29) and (30) both are valid when H has the 
form (45), where Hz has eigenvaLues Aj_l , Aj , H3 has eigenvalues (45 ' ), and where each principal 
(n-4) -square submatrix of H~ has its eigenvalues belonging to th e intervals [Ak- I , Ak+l] Uor 
k =Fe 1), [Aj_Z, AH I] (fo r j =Fe n ) within the smaller intervals [Ak - I , Ak] , [Aj , AH I] , res pectively. 

CASE (iv). In thi s case we have ~ik - Ak =Fe 0 for exac tly two value of i a nd Aj - ~i , j - I =Fe 0 for 
exac tl y two values of i. Moreove r, as before, wh e n ~ik - A" =Fe 0 the n Aj - ~i ,j - I = 0 a nd whe n AJ~i.j- 1 

=Fe 0 the n ~il, - Ak = O. So we may find four integers ii , iz, ia, i.1 s uc h th at ~ik - AA' = 0 for i =Fe i i , iz 
and Aj - ~i , j - I = 0 for i =Fe i:l , i4 • We the n have Ui ,t = 0 for t =Fe k , k + 1; Ui 2'= 0 for t =Fe fr , k + 1; Ui " = 0 
for t =Fe j - 1 , j ; Ui." = 0 for t =Fe j - 1, j . We s how: k + 1 =Fe j - 1. For if k + 1 = j - 1, rows ii , iz, i:1, i4 
of U are zero exce pt for column positions k, k + 1, j, he nce th ese four rows be have as 3· t:uples, 
he nce are linearly dependent. Thi s contradic tion shows that k + 1 =Fe j - 1, he nce k + 1 < j - 1. Now 
rows ii , iz of U are zero except for the 2 X 2 submatrix sittin g in rows ii, i2 a nd column s k, k + 1. 
Thus , as U is unitary , co lumn s k, k + 1 are also zero exce pt for rows it, iz. Similarl y rows i3 , i4 and 
columns j -1 , j are zero except for the 2 X 2 submatrix sitting at the intersec tion of these rows and 
columns. 

Thus we may pass to PHP- ' = (PUQ)( Q- 'DQ) (PUQ)- I and so, after a c ha nge of notation , 
assu me 

(50) 

where : HI has eigenvalu es Ak, Ak+l ; Hz has eige nvalu es Aj _l , Aj; H3 has e igenvalues 

(51) 

We now have ~ik = AA' and ~i , j- I = Aj for i > 4. Let HI be give n by (17) and H2 by 
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Assuming H in the form (50), one easily sees that ~lk=C, ~1 , j - I=Aj, ~2k=a, ~2 , j - I=Aj, ~3k=AI;, 

~3, j - l = C', ~4k=Ak, ~4,j - l=a'. 
For i > 4, the eigenvalues of HCili) are 

(52) 

where 

Oil, ... , Oi,k - 2, Oik, Oi , k+2, .. . , Oi ,j- 3, ou, Oi ,j+l , . .. ,Oi,I1 - 1 

interlace the numbers (51). When k = 1, the numbers Oil, .. . , Oi, k- 2, Oik are absent in (52). When 
k =2 the numbers Oil, ... , Oi ,k- 2 are absent but Oi~ is present. When j = n the numbers Oij, 
Oi,j+ 1, . • ., Oi, n- I are' absent. When j = n - 1 the numbers Oi , j+ I, . . ., Oi , n- I are absent but Oij is 
present. When j= k + 4 the numbers Oi , H2, ... , Oi,j - 3 are absent but Oik and Oij are present as 
separate entities (except: Oik is absent if k = 1 arid Oij is absent if j = n). When j= k + 3 the numbers 
Oi , H2, . . ., Oi,j - 3 are absent and Oik = Oij appear as a single entity (except that Oik = Oij is absent 
if k=lor j=n). 

We now show that when H has the form (50), equation (30) for k = 1 is valid. This follows from 
the values of ~1 1, • • . , ~41 computed above, the fact that a + C = Al + A2 , and the fa ct that ~i1 = Al for 
i > 4 (which follows from (52) when k = 1). We also show that equation (29) for j = n is valid. This 
follows from the valu~s of ~] , n - I, ... , ~4 , n - l computed above, and the fact that a' +c' = An - l +A", 
and the fact that ~i , /1 - \ = An for i > 4 (which follows from (52) when j = n). 

Observe also that when n =4 we in fact have k = 1 andj =4 = n, sincej~k+3. So assume 
n >4. 

We now show that j = k + 3 is impossible for n > 4. For letj = k + 3. We use (52). If k = 1 then 
~i,j- I = ~i , 3 = A3 ¥ A4 contradicting the requirement that ~i ,j - ] = Aj for i > 4. Ifj= n then ~ik = ~i , ,, - 3 
= Ak+] ¥ Ak contradicting the requirement that ~ik = Ak for i > 4. If k ¥ 1, j ¥ n , then in order that 
~ik = Ak we must have Oik ~ Ak, and then ~i , j - I = ~i, k+2 = Aj _1 ¥ Aj, again a contradiction for i > 4 . 

• Thus j ~ k + 4 as claimed, and so Oik and Ou are separate entities in (52). . 
For k ¥ 1 we find from (52) that ~ik = AI; holds for i > 4 if and only if Oik ~ AI.' . For j ¥ n we 

find from (52) that ~i , j _] = Aj holds for i > 4 if and only if Oij ~ Aj. Moreover, using values of ~lA" • • ., 

~4k' ~1 , j - J, ... , ~4 , j - l obtained above and a+c=Ak+Ak+l, a'+c'=Aj_l+Aj, we find for 
k ¥ 1 or for j ¥ n that if Oik ~ Ak for all i > 4 or Ou ~ Aj for all i > 4, then (30) or (29) are satisfied, 
respectively. 

Now by an application of [2, Theorem 1] to H 3 , the necessary and sufficient conditions that 
H3 be unitarily similar to a matrix for which Oik ~ Ak Ck ¥ 1) and/or Oij ~ Aj (j ~ n) are the follow
ing conditions (53) and/or (54): 

d 11 

\ 

A" ~ the root of dA IT 
1= 1 

I""k , k+l 
I""j - l , j 

no condition if k = 1, 

d 
Aj ~ the root of dA 

/I 

IT 
1= 1 

I""h' , k+l 
I""j- l ,j 

no co ndition if j = n. 

k ¥ 1, 
(53) 

j ¥ n , 
(54) 

Thus the necessary and s ufficient conditions in Case (i v) that (29) and (30) can both hold are 
(53), (54), together with j ~ k + 4 for n > 4 and k = 1, j = 4 for n = 4. 
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We now show for j ~ k + 4: 

d 
the roo t of dA 

/I 

I1 
1=1 

d 
root of

dA 

/I 

I .. k, /;+I 
I .. j- I, j 

II 
1=1 

I*k , k+1 
t"j- I, j 

d /I 

> roo t of dA I1 (A-At) in interval (Ali_I, Ak+ I); 
1=1 

I .. k , j 

d /I •• 

< root of d A I1 ( A- AI) In mte rval (Aj_l, Aj+I), 
1=1 

I # , j 

k 7'" 1; (55) 

j 7'" 11. (56) 

Once (55), (56) are de monstra ted it will follow that the co ndition s of Case (iv) impl y th e condi 
tions (36) , (37) of Case (i), a nd thi s will co mple te the demons tration that (36) and (37) are necessary 
and s uffi cien t. 

Let 

/I 

g ( A) = I1 (A - AI ), 
/=1 

I#' , j 

/I 

h ( A) = I1 ( A - AI) . 
/=1 

l .. k , k + 1 I .. j- I,j 

The n g (A) = (A - Ak+I)( A- Aj_l) h(A). Let y be th e roo t of h ' (A) 111 the interval (AIH, A/; +2). If 
y ~ Ak +1 the n (55) holds. If y < Ak+1 then 

he nce sgn g' (y) = - sgn h (y) = - sgn g( y), which implies (55). Th us (55) holds. Let f3 be the root 
of h' (A) in the interval (Aj- 2, Aj+d . If f3 ~ Aj_1 the n (56) holds. If f3 > Aj_1 the n 

hence sgn g' (y)= sgn h(y) = sgn g( y), which implies (56). This comple tes Case (iv). 
COROLLARY 4. (iv) Let j ~ k +4 except k = 1, j = 4 for n = 4. Then the condition (53) for k 7'" 1 

is stronger than the condition (36) and the condition (54) for j 7'" n is stronger than the condition (37). 

If both (53) and (54) are satisfied then equalities (29) and (30) both hold when H = P(H I + H2 + H3)p- l, 
where HI has eigenvalues Ak , Ak +l, H2 has eigenvalues Aj _l, Ai> H3 has eigenvalues (51), and where 
each principal (n - 5)-square submatrix of H:J has its eigenvalues belonging to the intervals [Ak- I, 
Ak +Z] (for k 7'" 1), [Aj - Z, Aj+l] (for j 7'" n) within the smaller intervals [Ak - t, Ak], [Aj, Aj +l], respectively. 

(v) Except as described in Coro llary 4, (i)-(iv), the equalities (29) , (30) do not both hold. 
To co mple te the proof of Theorem 6, we have to show that conditions (36) and (37) are equi va

le nt to (31) and (32). This proof follows. 
By a graphical argume nt one sees, for k 7'" 1, that the condition (36) is equivale nt to 

{{(A) (A - Ak) - I (A - Aj) - I} ' {{(A)(A - Ak) - I (A - Aj) - I} I A=Ak ~ O. 
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But 

Also 

But 

{(A) (A-Aj) - I}' IA =Ak = DI(Ak-A")=f(A)(A-Ak) - I(A-Aj ) - IIA=A
k

' 

v,ry 
lJ'#k 

I 
/I n 

{(A) (A - Aj) - I} " io..= )o..k = 2 ~JI (Ak-Av) 

).I."'j V"').I. 
JJ,.¢K lI#j 

v"'k 

{(A) (A - Aj) - I}' I = /' (Ak) (Ak -Aj)-I , 
A=Ak 

{( A) (A - Aj) - I}" I A= Ak = { (Ak - Aj)1" (Ak) - 2/, (Ak) (Ak - Aj) - 2. 

Combining all these facts and using Ak - Aj < 0, the equivalence of (36) and (31) follows. Simi· 
larly one establishes the equivalence of (37) and (32). This completes the proof of Theorem 6. 

COROLLARY 5. Let t ~ 1, n. If for some s ;;,: t + 2 we have simultaneously 

(57) 

then for SI ~ t - 2 we never have simultaneously 

(58) 

If for some Sl ~ t-2 we have (58) simultaneously then for s;;,: t+2 we never have (57) simul
taneously. If f'(A t ) = 0 then for no s;;,: t + 2 can (57) both hold and for no SI ~ t - 2 can (58) 
both hold. 

PROOF. If both of eqs (57) hold then by Theorem 6 we have 

(59) 

and if hoth of eqs (58) hold then by Theorem 6 we have 

(60) 

If f ' (At) > 0 we obtain the contradiction 

0 < 2/' (11./) (At - As,) - 1 ~f' (11./) ~ 2/, (11./) (11./- As) - 1 < 0 

and a similar contradiction is obtained if /' (11./) < O. If f'(At) = 0 it is clear that both (59) and (60) 
are false. 
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------.------~-----

THEOREM 7. Let 1 < j < k .;;; n. Then 

(61) 

(62) 

never happen simultaneously. 
PROOF. If (62) holds then from gi, k- I "" 'Ak we get gi,j- I = 'Aj- h hence 'Aj- gi, j_1 "" 0, hence 

from (61) follows gi , k - I = 'Ak . We have a contradiction. This completes the proof. 
Similarly one proves Theorem 8. 
THEOREM 8. Let 1 .;;; j < k < n. Then 

never happen simultaneously. 
Combining several of our results we have Theorem 9. 

(63) 

(64) 

THEOREM 9. In the linear inequalities the maximum number of equality signs that can appear 
for a given U is two. 

PROOF. If more than two eq uality signs appeared in th e set of linear inequalities, there would 
have to be a pair of the types (61), (62), or a pair of the types (63), (64). This shows the maximum 
number of equality signs for any give n U is .;;; 2. Theorem 6 shows that for any given H 
we can achieve two equality s igns for an appropriate U. In particular we ca n always achieve 
1I - IA Il = (n - l) n - I 'An + n - I 'A" _ I and I A2 = (11, - 1)n - I 'AI + n - I 'A2 s imultaneo usly. 

This co mple tes our di scussion of s imultaneous eq ualiti es in the linear in eq ualities . 

5. Conditions Under Which Each j - lAj Covers Its Full Interval of Permissible 
Values as U Varies 

In section 5 we do not require that AI, ... , 'An be distinct. The lin ear inequalities (2) are valid 
for matrices with nondi stin ct e ige nvalues. 

THEOREM 10. Suppose that, as U varies over all unitary matrices, each interval 

is completely filled out by j _ 1 Aj, j = 2, 3, . . ., n. Then 
(i) H is scalar; or 
(ii) H has eigenvalues a + b)lh i = 1, 2, ... , n, a, b real constants, where )II, )12, . .. , )In are the 

roots of the polynomial 

Here Pn- I('A) is the Legendre polynomial of degree n - 1. Conversely, in each of Case (i), Case (ii), 
each interval (65) is completely covered by j _ IAj as U varies over all unitary matrices , j = 2 , 3, .. . , n. 

PROOF. If H = )If is scalar then each interval (65) consists of the single point )I and each 
j _ IAj = )I, hence the result is trivial in Case (i). Suppose H has at least two distinct eigenvalues. Let 

1-'-1 < 1-'-2 < ... < I-'-s with multipli cities el, e2, ... , es be the distinct eigenvalues of H. We now use 
the notation of [IJ. By [1, (19) and (20)], 

0' "" 1, 

0' "" n, 
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and ~1~ lei" = e". Thus by summation we get stronger linear inequalities: 

a ~ 1, (66) 

a~n. (67) 

Now if the full interval (65) is covered by j-tAj for each j, then for some U we achieve 

(68) 

and for some other U we get 

a~n. (69) 

Combining (66) and (68) yields (e" -1)fL" ~ (e" -1)fL,,- t , a contradiction unless e" = 1. Combining 
(67) and (69) yields (e,,-I)/-L,,+t ~ (e"-I)fL,,, again a contradiction except if e,,= 1. Thus e,,= 1 
for every a. That is, the eigenvalues of H are simple. 

Now we are in a position to apply the results of section 4. In the present situation back to back 
equalities of the type described in Theorem 4 are possible, hence /"(Aj) = 0 for all j ~ 1, n. Thus 

(A - Ad (A - A,,)/"(A) = n(n - 1)/(A). (70) 

After translation and change of scale to bring the points AI, All to - 1, 1 respecti veJy, the differential 
equation (70) becomes 

(A2 - 1)/"(A) = n(n - 1)/(A). (71) 

From (71) A2 -1 is clearly a factor of /(A) so put /(A) = (A2 - 1)g(A). Then the differential equation 
[or g(A) is 

(1- A2)g'(A) - 4Ag' (A) + (n - 2) (n + l)g(A) = O. (72) 

The differential equation for the Legendre polynomial PII_I(A) is 

(73) 

and one easily deduces from (73) that if g = P;, _I, then g satisfies (72). Moreover, by method of 
Frobenius, (72) has a unique (u p to constant factor) polynomial solution. Returning to our original/, 
it follows that (ii) holds. For the converse when H has eigenvalues as des cribed in (ii), we have 

(A - AI) (A - A,,)/"(A) = n(n - 1)/(A) 

and hence /"(Aj) = 0 for allj ~ 1, n. Then Theorems 4 or 5 show that each j _ IAj covers its full interval 
of permissible values. 
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