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On Taylor's Theorem™

O. Shisha**

(December 12, 1967)

A simple way of looking at and proving Taylor’s theorem.
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Let —0 < a <b <o, n an integer > 1, and f a real function with /" continuous on the closed
interval [a, b]. Consider the number
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Performing the integrations, one obtains
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a Taylor formula with “remainder” I. To obtain the Lagrange form of the remainder, observe
that taking /' (x) = (x —a)"/n!, we have by (1) and (2),
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Returning to our original f, let M—max f""(x m=min f"(x). Then clearly ml, <1< MI,,
asxr<b
and unless £ is constant on [a, b], strlct mequahtles hold. Therefore, there exists a ¢, a <c¢ <b,

such that I/I,=f™(c), and so
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REMARK: The usual proof of Taylor’s theorem using integration by parts gives as the value of

b
the right-hand side of (2) the number f f®™(¢t) (i)n—t)l)
right-hand side of (1). The equality is also evident from the known representation of an iterated
indefinite integral as a single integral.

dt, which must therefore equal the
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