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A mathematical analysis is given for a class of models describing how a “market” (i.e., some
subset of the consuming public) might divide its patronage among p competing products (p > 1). The
analysis is confined to the question of how the respective shares of market change with respect to
changes in the variables describing the competing products. The split fractions which define the
share of market are assumed te be functions of the choice-influencing attributes of all the competing
products. The elasticities of the split fractions with respect to these attributes are assumed to be
functions only of the split fractions themselves. Some functional forms (including the linear case)
leading to self-consistent models are analyzed and their solutions derived.
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1. Introduction

This paper is concerned with a class of mathematical models of how the “market” (i.e., the

consuming public) might divide itself among several competing products

Py, P, ..., Py

where p > 1. Subscripts j, k, m, n, J will be used as “product indices,” taking values between

1 and p inclusive.
The notation

w= (wy, w2, . . ., Wp)
will be used for the vector of split fractions

w;j= fraction of market which selects Pj;

these necessarily satisfy the conditions

w,-?O,

With the further notation

M = total market size,

M;=size of P;’s market share

*Supported by the Office of High-Speed Ground Transportation, Department of Commerce. No official endorsement implied.
**Davidson, Talbird, and McLynn, Bethesda, Md., 4903 Auburn Ave., Bethesda, Maryland 20014.
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we then have
M;=w;M. (1.6)
The attributes of P; which influence the market split are described by a vector
X;j = (X1j, Xaj, + - -, Xng), j)

of real parameters. To clarify the role of the first subscript of x;;, we note that x;; need not have
the same interpretation (e.g., durability) as x;», and might even refer to some quality of P; which
is meaningless for P>. The ensemble of all the x’s (for all products) will be denoted x.

The market share of P;j can depend on the relative attractiveness of the other products, and
so we have w;j(x) and M;(x) rather than w;(x;) and M;(x;). The total market size is not assumed
constant, so that in general M= M (x). We make the smoothness assumption that the functions
wj(x) and M(x) have first-order partial derivatives, so that the same is true of M;(x) as well.

This hypothesis is not made explicit merely for the sake of mathematical rigor; it has substan-
tive content. For example, the equality of right-hand and left-hand derivatives can be interpreted
as ruling out different degrees of “‘stickiness™ associated with gains and with losses in market
share. Also, if P; and P, are “‘strictly comparable” in the sense that x; and x» have the same number
of components and corresponding components have identical interpretations, and if P; is inferior
to P, with respect to each of these components, the smoothness assumption rules out any auto-
matic conclusion of a zero market share for P;. A nonzero market share for P; might seem at first
to represent irrational consumer behavior. However, continuous and nonextreme variation of
market shares seems likely to be typical of real situations, where different consumers appraise
products differently (e.g., may “perceive” different values for the x;;’s), and where all significant
choice-influencing factors are unlikely to be fully represented (or even represented at all) in any
usable model.

Two apparently innocuous model assumptions will be stated next. They assert that the x;’s
have been redefined (if necessary) so that

x5 > 0, (1.7)

and so that increasing x; makes P; less attractive than before (or at least no more attractive),
thus tending to decrease w; and to increase the other wy’s. Formally,

dwjldxi; < 0, (1.8)
dwy/dxi; = 0 for k #J. (1.9)
The only purpose of (1.7) is to permit transformation to new variables
yij=log x;; (1.10)
for subsequent simplifications.

We recall that the elasticity of a function Q(x). with respect to changes in x;;, is defined
(when Q # 0) as

E;(Q) = (0Q/dxij) [ (Qfxiz) = Q~10Q/dyj. (1.11)

i.e., as the (limiting) rate of relative change in Q. dQ/Q. per unit relative change in x;. dxj/x;.
Q might be associated with one of the products P, where either k=] (self-elasticity for P;) or
k # j (cross-elasticity) might hold.
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It is traditional in economics to consider the elasticities Eij(My), and to focus on the M;’s.
From (1.6), however, we have

Eij(My) =Eij(M) + Eij(wy) . (1.12)

This suggests—as does (1.6) itself —a decomposition of effort in which one focuses separately
on M and on w. Such a suggestion is supported by the fact that variables outside x, e.g., level of
institutional advertising by a trade association, or price levels held constant across an industry
by regulatory agencies, may affect M in a way largely irrelevant to the competitive aspects repre-
sented by w. In this paper, we focus attention exclusively on w. It was for this reason that we did
not list, together with (1.8), the analogous

6/1[/6)(,-) < ().

If a satisfactory model dealing with w is arrived at, then at least same information about M(x)
could be inferred from the plausible hypothesis that

().”j/ﬂ,\’,‘j = ().”/()X,’j
which by (1.6) can be written (for w; # 1)
(1 —wjy) ~'owj/ dx; < M—1aM [dxi; < 0. (1.13)

Since we are dealing with a model for w, the following irredundancy hypothesis becomes
innocuous: For each pair (i, j), with 1 =j=<p and 1 =i= n(j), there is at least one product Py
for which

('iu‘;\-/('i.r,-j # (0. (1.14)

(Otherwise the parameter x;; has no influence on the market split, and so can and should be omitted
from the model.) It follows that such a P can be chosen distinct from Pj, for if

(')u';.-/(')xij: 0
for all £ with k& # j, then by (1.3)

dwj/dxij=0 (1 — 2 wi)/9xi;=0

k#j

would hold as well.

The next model assumptions deal with the question of which points in (w;, w.. . . ., w),)-space,
among ‘those satisfying (1.2) and (1.3), are attainable in the sense of arising as w(x) for some x.
For any product Pj, consider the point defined by

wi=1; w,=0 for k # . (1.15)

The first assumption asserts that each of these p points (i.e., forj=1, 2, . . ., p) is in the attainable
region. While we require only that these points be limit points (rather than members) of the attain-
able region, it is convenient not to have to repeat this distinction everywhere. Therefore, we will
speak of points as “in”” the region even when only the weaker condition holds. The intended inter-
pretation is that none of the products has a guaranteed minimum market share, nor is any of them
artificially precluded from coming arbitrarily close to gaining the entire market if its superiority
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would lead to this result. For the second assumption (which actually subsumes the first) consider,
for any distinct products P; and P and any number w with 0 < w <1, the point defined by

wi=w, wg=1—w, wn=20 for m # j, k. (1.16)

The assertion now is that each such point is also a limit point of the attainable region, i.e., any
two products can come arbitrarily close to capturing the entire market and sharing it in a prescribed
ratio. These two assertions will be called the competitiveness hypotheses, since they are most
naturally interpreted as referring to (i) the degree of direct competitive confrontation among the
products, and (ii) the absence of “constraints on competition” which would limit the variety of
market splits possible under changes in the relative merits of the products. The third competi-
tiveness hypothesis, which applies only when p > 2 and which then subsumes the others, makes
the analogous assertion for any triple of distinct products.

For verifying that the models and solutions determined later actually do satisfy the competi-
tiveness hypothesis, we must be more explicit than the limiting (1.7) about the extent of the attain-
able region in x-space. (This region would of course be altered by rescaling or other admissable
transformations of the x’s.) Note that such a region need not be a Cartesian product of regions in
x;j-space for j=1, 2, . . ., p, since for example products might compete as customers for one or
more scarce resources important to their quality. Even with the parameters for all but a single
P; fixed, the resulting attainable region in xj-space need not be a Cartesian product; it may have
a “curved” boundary representing “tradeoffs” among x;;’s “‘at the limits” set by available tech-
nology and resources. Also, parameters x;; may well have bounds, beyond which one would choose
to speak not of P; but rather of a “different”” product perhaps competing in a different market.

There are many assumptions, on the attainable region in x-space, which will permit the desired
verifications to be carried out. The particular hypothesis chosen for definiteness, though fairly
natural mathematically, is perhaps not fully satisfactory in the light of the preceding paragraph. It’s
somewhat complicated statement is deferred to the point in the analysis (near the end of sec. 3)
at which it is invoked.

The final assumption is the one which actually specifies the form of the model. Consider the

p
elasticities Eij(wx). They are (initially unknown) functions of the E n(j) components of x, but it
5 J=1
would clearly be much more convenient if they could be determined by observing only the p split
fractions (the components of w). This suggests examining models of the form

Eij(wi) = Fijr(w),
which by (1.11) is equivalent to the system
w0 yij = Wik iji(w) (1.17)

of partial differential equations.
It is natural to begin with the simple case in which each Fij is linear, so that (1.17) becomes

P
Jw/ dyij = E bijremwiwm (1.18)
m=1

where the b’s are constants. This is no less general than the (possibly) inhomogeneous linear case

F,-j,,-(w) = Qijk Ste 2 b;jkmw""

m

since the latter can be brought into the form of (1.18) by setting
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3 Y ’
bijkm = bijkm + aijk

and appealing to (1.3).
We shall deal with a generalization in which the Fjj; are separable, i.e.,

Fijk(w) = 2 bijkmgm (Wm) s

and in fact with the further generalization given by

»
awk/a;')/ij: 2 bijkmﬁc(wk)gm(wm) (1.19)
m=1
where the functions fx and gx(k=1, 2, . . ., p), defined on 0 <w < 1, satisfy
f1(0) =gx(0)=0 (1.20)

and have continuous derivatives f;. and g;. such that
fi>0, g > 0. (1.21)

We call this “the model,” and will use this term when referring to eqs (1.19) to (1.21). These last
two conditions are of course satisfied for the particular choices

Sre(w) = gr(w) =w

which specialize the model eqs (1.19) to (1.18). It will be clear from the proofs to come that finitely
many points of exception to (1.21) can be permitted.

Our analysis, of the class of models described by (1.19) and the other assumptions listed above,
will be complete in the following sense: Those models in the class which are consistent (i.e., have
at least one solution w(x)) will be identified, and for each of these consistent models the general
solution will be given in explicit form. Those parts of the argument common to the cases p > 2
and p=2 are presented in section 2, but these cases then require separate treatment; section 3
treats situations with three or more competing products, while section 4 deals with the case of
just a pair of competitors.

There are three reasons for passing from the linear model (1.18) to the (possibly) nonlinear
(1.19). One is simply intellectual curiosity as to how the generalization might affect the analysis.
Second, is the possibility that some special insight into the competitive situation at hand will
strongly suggest that linearity is implausible. Third, if it should prove impossible to obtain a satis-
factory “fit” to empirical data using the linear model, then perhaps more parameters (which can
be adjusted to improve the fit) can be smuggled invia the fi’s and gi’s. The conclusions of section 3,
however, show that the second and third of these hopes are in vain when p > 2; the only consistent
models are a subclass of the linear ones given by (1.18). For p= 2, however, the class of consistent
models is shown (in sec. 4) to contain many nonlinear ones.

In the application motivating this work, the “market” in question is to consist of a single “cell”
in some stratification of the population of travelers between a particular origin and a particular
destination. The “products” are the services offered by the various transport alternatives; the
“modes” (air, rail, bus, private auto) plus
whatever novelties social and technological change may produce, or might reflect a finer classifi-
cation (e.g., particular auto routes, particular airlines, first-class versus coach service). The com-
ponents of x might be measures of trip time, trip cost, variability from published schedules, trip
fatigue, frequency and severity of accidents, etc. Validation and subsequent use (for prediction)
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of such a model would of course require operationally meaningful specifications of the transport
alternatives (more generally, the products) and of the x’s, and also appropriate “calibration” based
on empirical data. In the present paper, however, we are solely concerned with the mathematical
consequences of the model’s assumptions. In particular, the interpretive discussion of the model is
concluded at this point, the remaining sections of the paper consisting of mathematical analysis only.

The reader who works through the following derivations is bound to be struck by the very
heavy use of the competitiveness hypotheses, especially in showing the strong interconnectedness
of all the products early in section 3. As a topic for further investigation, we would suggest the
problem of replacing these hypotheses by fruitful but weaker assumptions on what market splits
are theoretically attainable, and of determining the resulting classes of consistent models and
their solutions. Those consistent models and associated solutions developed in this paper will
remain valid, the technical change being that some of those 4’s which are not forced to be zero by
model hypotheses other than the competitiveness hypothesis, might actually be zero. The essential
question, however, is that of what additional models might prove consistent under the relaxed
hypotheses.

2. Preliminaries

We begin this section by showing that
9w/ dyij) [0y = 0(dwk/dy1s) [ dyij. (2.1)

As is well known, to prove this it suffices to show that the two second-order partial derivatives
exist and are continuous. For the derivatives on the left in (1.19) to exist, w(x) must be continuous.
Since the f’s and g’s are continuous, it follows from (1.19) that all of the first-order partial derivatives
of w(x) are continuous. We can evaluate the left-hand side of (2.1) by applying the chain rule to
(1.19):

ad ( awk/a)’ij) /3}’11 = 2 bijkm {fk:(Wk)gm(wm) awk/ayu +f;c(wk')g;,, (wm) awm/(”yl.l } (22)

m

Since the f’s and g’s and their derivatives are continuous, and the first-order partial derivatives on
the right in (2.2) were just proved continuous, it follows that the left-hand side of (2.1) is continuous;
similarly for the right-hand side.

The derivatives on the right in (2.2) can be evaluated using (1.19); the resulting expression for
the left side of (2.1) is

2 2 bijkmbuknfl\’-(wk)gm(wm )f;c(wk)gn(wn) i ; ; bijl\’mbIJ"llLfI\‘(wk)g}’n(wlll)f;ll(wlll )gn(wn)- (2.3)

m n

The corresponding expression for the right side of (2.1) can be obtained from (2.3) by interchanging
(i, j) and (I, J); the first of its two summands, after interchanging the dummy indices m and n,
coincides with the first summand of (2.3). Thus (2.1) yields

ﬁ\(wl\) E 2 {bijkmlemn - bIkabijmn} g,ln(wm)fm(wm)gn(wn) =0. (24)

We next show that a consistent model is sparse, i.e., that most of the b’s must vanish. Specif-
ically we show that

bijkk = 0 (25)
and that
bijkm =0 (_/ = l\', ’") ’ (26)
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so that only the bjj’s and bji;’s with £ # j can possibly be nonzero. For this purpose, first note
from (1.3) that i

>, dwi/ dy;; = ‘3<2 wk) 18yi;= 0.
k k i
Substituting (1.19) into this, we obtain

2 E bijkmﬁf(wk)gm(wm): (0), (2.7)
e

m

Because the point defined by wy=1 and w,, =0 for m # k is a limit point of the attainable region,
while fi and g, are continuous and g.(0)=0, it follows from (2.7) that

bikn [Py = 0.

Since (1.20) and (1.21) imply i (1)gx (1) > 0, (2.5) is proved.
Suppose now that (j, £, m) are distinct. By (1.9), we have

> bigenfi (wi) gn (100) = O/ dyij = 0. (2.8)

For any w with 0 < w < 1, the point defined by
wr=w, wm=1—w, w,=0 for n #k, m

is a limit point of the attainable region; using this, (2.5), and the continuity of the f’s and g’s, we
see that (2.8) implies

bijim fi(10) gm (1 —w) =0
for 0<w =< 1, which in turn implies
bijkm = 0. (2.9)
Similarly (2.7) implies
bijrem e (W) gm(1 — w) + bijmuc fn(1 — w) gre(w) = 0. (2.10)
But by (2.9) both 4’s in (2.10) are nonnegative, while by (1.20) and (1.21) the f-values and g-values
are strictly positive for 0 < w < 1; hence (2.6) must hold.

Equations (2.5) and (2.6) have a number of consequences. First, we see that for consistent
models, (1.19) must have the form

i/ 3y = bijij fie (wi) g5 (w;) (k#j), (2.11)
dw;l dyi;= 2 bizimfi(wj) gm (wm) - (2.12)
m#j

Since the points defined by w; +wir =1 together with (1.2) and (1.3) are limit points of the attainable
region, it follows from (2.11) and (1.9) that

bijes = 0. (2.13)
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Second, it follows that the only interesting case of (2.10) is
bijrjfr(w)gi(1 —w) + b fi(1 —w) gr(w) = 0. (2.14)
From this and (2.13) it follows that
bijir < 0. (2.15)
Another implication of (2.14) is
b =0 iff by =0, (2.16)
a result useful in studying the pattern of nonzero &’s. From (2.11) we can infer that constant nonzero

elasticities Ejj(wx)(k #j) are impossible, while from (2.12) and (2.15) it follows that constant
nonzero self-elasticities Ejj(w;) are also impossible. Third, we observe that (2.7) becomes

> bijimfi () &m(wm) + ¥, bijwific (wr) & (w;) = 05

m#j k#j

a neater form is
> {bigiefi (wy) gr (wi) + bijwific (wic ) g (w;) } = 0. (2.16a)
k=j

We can also use (2.5) and (2.6) to simplify (2.4). For (j, k, J) distinct, which implies p > 2,
(2.4) becomes

i) {binibuszag (wi) fi(wy) s (ws) } = filwwn) {browsbijaie; (ws) f3 (w1) g () } (2.17)

This has of course only been proved for the case in which (wj, wi, wy) are the indicated components
of some w which lies in (or . . . by continuity . . . is a limit point of) the attainable region. But
by the third competiveness hypothesis, for any nonnegative wj, w, with wj+w,; <1, such a W is
obtained by setting wr=1—wj—w;,; this implies fi(wr) >0, so that (2.17) yields (for distinct
Ik, J)

bijribsjug; (wi) fi (w;) &1 (ws) = bryksbijsigr (wy) f1(wy) g (w;) (2.18)

as valid for any nonnegative (wj, w;) with wj+w; <1, and hence (by continuity) for w;+w; =1
as well.

Next take j= £ # J in (2.4). Then application of (2.5) and (2.6) yields

ﬁ(w}) {g,' (w,/)f,l(lw)[ 2 bijﬂb,,m,gn(w") — bIJijiijg(Wj)]+ 2 bijjmlemJg,;, (wm')ﬁn(wm)g.l(w.l)} =107

n#J m#=J, j

which can be rearranged as
Ji(w;j) {(bijjsbissj— brsjsbijsg) g (wi) fr(wy) g (w;)

Sl 2 [bijijl.lng,}(wJ)fl(wJ)gm(wm) ar bijjmlemJg;,,(wm )fm (wm)gJ(wJ) ]} =0. (2.19)

m#4/, j

This has of course only been proved for those cases in which j # J and the w’s are the components
of some w which lies in or is a limit point of the attainable region.
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Now consider any two products P; and P, j # J. We will call P; weakly disconnected (strongly
disconnected) from P, if dw,;/dyij=0 holds for some i (for all i) with 1 <i =< n(j). Clearly strong
disconnectedness implies weak disconnectedness. It will now be shown that, conversely, weak
disconnectedness implies strong disconnectedness, so that we can speak simply of “disconnect-
edness” and its opposite, “connectedness.” It will also be shown that disconnectedness (and hence
connectedness) is a symmetric relation, i.e., if P; is disconnected from P;, then P; is disconnected
from P;.

For the proof, assume dw,;/dy;;=0 for some i. Then b;;;;=0, by (2.11). By the irredundancy
hypothesis (used only here!) there is a &, with £ # j, such that dwi/dy; # 0 and hence by (2.11)
such that b, # 0; thus £ # J. Since (j, k. J) are distinct, we can apply (2.18) to infer that b;;;,=0
for all I with 1 <I=<n(J), i.e., that P, is strongly disconnected from P;. Applying the same argu-
ment with j and J interchanged, we have P; strongly disconnected from P,.

3. Analysis for More Than Two Products

We begin the analysis for p > 2 by showing that the relation of connectivity, proved symmetric
at the end of the previous section, is also transitive in the sense that for distinct (j, &, J), if P; is
connected to P, and Py is connected to P, then P;j is connected to P,. For the proof, note that for
any w with 0 < w =< 1, the point defined by

wr=w, wy=1—w, wn=0 for m #k, J
is a limit point of the attainable region. From this and (2.19), we have
bijik braks g (w) f (w) g (1 —w) + bijisbigsr &5(1 —w)fi(1 —w)gr(w) = 0.
If P; were disconnected from P;, the second summand would vanish, leaving
bijjxbiksgy(w) fr(w) g, (1 —w) =0

for 0 <w =1, and thus byjbixs=0. This however is impossible because P;j is connected to Py,
and Py to P, (note the use of (2.16)); the proof of transitivity is complete.

Next it will be shown that total connectivity holds, i.e., for any distinct j and J, Pj and P, are
connected. If not, then since “connectedness” is both symmetric and transitive, the set of p
products would decompose into two or more subsets such that

(i) any two products in the same subset are connected, but

(ii) no two products in different subsets are connected. Suppose for example that P, and P,
lie in different subsets S; and S,. Then dw;/dx;;= 0 unless P;j is in Sy, i.e., w; depends only on the
parameters of the products in S;, and similarly for w» and S.. By the first competitiveness hypothesis
there exist choices of {x;:jeS;} for which w(x) has w, arbitrarily close to 1, which requires that
w» be arbitrarily close to 0. This is impossible because the parameters of products in S; cannot
influence w,. It follows from this contradiction that, for p > 2, total connectivity must hold, i.e., all
of the possibly nonzero b’s (the bijxj’s and byjji’s for k # j) are in fact nonzero. (From this and the
argument below (2.16), it follows that for p > 2 there can be no constant elasticities Ejj(wy) in a
consistent model.)

Thus for distinct (j, &, J), the b’s in (2.18) are nonzero. For w; > 0 and w, > 0, (2.18) can be
written

bijijbrijsg; (wi) fi(wi) g (wj) = brwsbijig; (wy) fr(w,) /g (wy) .
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The left side is a function of w; only, the right one a function of w; only. Since p > 2, it follows that
both are constant, and since the b’s are nonzero, there exist (necessarily positive) constants d;
such that for w; >0

Ji(wy) g (wy) /g (w;) = d;
i.e. (by continuity for w;= 0 also)
fi= digilg;. (3.1)

Thus the f’s are uniquely determined by the g’s (in a consistent model).
At this point it is convenient to introduce the normalization

an(l)=1 (m=1,2,. . .,p), 3.2)

which is possible since gn(1) > 0, i.e., we can replace bijim with bijrmgn(1) and gn with gu/gn(1).
Now we return to (2.14), with (j, k) distinct, and apply (3.1) to obtain

(bijnjigr (w) gi(1 —w) /g (w) + (byjrdigi (1 —w)gr(w))/g; (1 —w) = 0.
Thus for 0 <w <1, and hence by continuity for 0 <w <1,
bijdig; (1 —w) + byjrdg;(w) =0. (3.3)
Indefinite integration with lower limit zero gives
bijrdig (w) — bijkjdig; (1 —w) = — byjkjd, (3.4)
where (3.2) has been used to evaluate the right-hand side. Setting w=1, we have

bijied; = — bijkjdk. (3.5)

Substitution of this into (3.4) yields
gr(w) +g(1—w)=1 (k#J). (3.6)
Since p > 2, this implies the existence of a single function g(w) such that
g(w)=gw)  fork=1,2,. .. p; (3.7)
i.e., the g’s coincide.
Now consider any distinct (7, k, J). The third competitiveness hypothesis, applied to (2.19),
shows that
15 (w) { (bijjsbrrsi— brsjsbisg) &1.158i (w)
+ bigjsbrrng; (wy) f1(ws) g (wie) + bigi broragy. (wie) fir(wi ) &5 (wy) } =0

holds if wj+ wy+w;=1. But by (3.1) gjff,/: dygy, so the last equation can be written as

Si(w;) & (wy) { (bijisbrrsi— busjs) bijiidsgi (wi) + bijjsbryedgr (wi) + bijjcbrksdigr (wi) } = 0.
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Thus if w; + wx +w,=1, then

(bjjsb1ssj — bisjsbijss ) digi (wj) + bisisbrrsrdsgr (wi) + bijjrcbryksdrgr (wi) =0

holds if w; > 0 and w, > 0, and hence (by continuity) even without this extra hypothesis. Taking
wp=1 leads to

bijjsbriad; + bijirbksdi = 0.
But by (3.5),
brksdr=—brydy,
so the preceding equation becomes
brakdy (bijis— biji) =0 (j, k. J distinet).

Since d; # 0, this implies the existence of constants b;; (necessarily negative, by (2.15) and total
connectivity) such that

bijj/.- = bij for all & 7’5]'. (38)
We turn now to (2.16a). By (3.1), it becomes

gi(w;) Y gk (wie) {byjnd;lg; (w;) + biwidil g (wi) } =0,
k#j

which by (3.5) can be written

gi(1w;)d; > biggr (wr) {1/g] (w;) — /gy (wi) } =0,

k=i
and then by (3.8) can be written

&i(wy) diby; Y, & (1wr){1/g; (w;) — /gy (wx)} =0. (3.9)

k)

Choose any distinct (7, &, J). Then the third competitiveness hypothesis, applied to (3.9) shows
that for w;+wr+w,=1,

gr(wi) {1/g; (wy) — /g (wi) } + &5 (ws) {1/g; (w;) —1/g)(ws)} =0
if w; >0, and hence (by continuity) also if w;=0. Choosing
we=w, wy=1—w, w;=0,
and applying (3.7), we have
g(w) {1/&'(0) —1/g' (w) } +&(1—w) {1/g'(0) —1/g'(1 —w) } =0,
which by (3.6) and the result of differentiating it becomes

{g(w) +g(1—w)} {1/g'(0) —1/g' (w)}=1/g' (0) —1/g' (w) =0.
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This implies g’ (w) =g'(0) for w >0, i.e., g’ is constant. Thus g is linear, and since g(0) =0 and
2(1)=1 we have

g(w) =w. (3.10)

By (3.1),

fi(w) =dw. (3.11)

Thus every consistent model is a linear one in the sense of (1.17)! By (2.11), (3.5), (3.8), and
(3.10-11) we have

Jw/ dyi; = bijijdiwiw;

e bijjkdjWij = b,-jdjwkwj

for k # j, while use of (2.12) leads to

dw;l 9y ="y, bijimdjwjon

m#j

= bijdjw; E wm = bijdjw;(1 —wy).

m#~j
Both forms can be combined, with the aid of the Kronecker delta, in

dwr/ dyij = bijdjwr (Sjr — wj) . (3.12)

We now proceed to the explicit solution of (3.12). We have

(1wi) dwx= (1/wi) S (dwi/ayy) (dyyy).

i,j

= bijd; (8 — wy) (dyy).

i,J
Therefore

dwi/wr — dwi /w1 =Y bid; (8 — 8;1) (dyy).
ivJ
= bikdi (dyi) = birdi (dyn).

There is therefore a constant c; such that

log (wi/wy) = 2 birdryin =Y, bindiyin + ck,

and hence such that

wk:CkW1Wk/W1 (3.13)
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where
C;.»'——exp (Ck)>0 (Cl-_—l),
W,\.= exp (E b;kd;\-yik).
From the definition (1.10) of y;x, we have
W= (H x?,f")d"’. (3.14)

By summing (3.13) over 1 < k < p and applying (1.3), we obtain

1= (w/W:) S CHi,
%

wk=CkWA-/EC,-Wj. (315)
b

We have shown that if the model (1.19) is to be consistent for p > 2, then it has the special
form (3.12), and its solutions w(x) have the form

we=Cy 1<) / 3 €[] k)" (3.16)
i n i
involving parameters

di >0, bix <0, C,>0 (3.17)

where the C’s are determined only up to a common positive multiplicative factor. Although (3.12)
admits the singular solution wx(x) =0 corresponding to C;=0, this is ruled out by the competi-
tiveness hypothesis.

Conversely, consider any sets of b’s, C’s and d’s satisfying (3.17), and define w(x) by (3.16).
It is readily verified that (1.2) and (1.3), as well as (3.12), are satisfied. The irredundancy hypoth-
esis is also clearly satisfied. So it only remains to check the third competitiveness hypothesis,
which subsumes the others. Consider, then, any distinct (j, k£, /) and any nonnegative (w;, wy, W)
summing to 1.

To show (as desired) that the point defined by

wj=w;?, wk=wﬁ, WJZWf;, W)n:() for m '_)’é], k, .] (3.18)

lies in or at least is a limit point of the attainable region in w-space, it is necessary to be more
explicit than the delimiting (1.7) about the extent of the feasible region in x-space. To be definite,
we will adopt the following somewhat complicated hypothesis: For each distinct (j, k, J), there
exists a triple of parameters (xiq);, Xi), k, Xi@), ) with

I1<si(l))=<n(),1<i(2)<sn(k),1<i(3)<n())

. we immediately renumber them xij, xik, x1; . . . such that for certain fixed settings
Xim= X;y > 0 of all other parameters

{xim: m#j, k, J or i>1},
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there exist constants
x>0, 2% >0, x1;, >0
with the property that any numerical triple (xij, xix, x1;) obeying
0 < xpj <afjy 0 <ovpp < afy, 0 <oy <xif, (3.19)

forms, together with the fixed settings xin = x5, a point x° in the attainable region in x-space.
The proof will involve a limiting process in which

x;—> 0+, x> 0+, x1y—> 0+ (3.20)
while all other x;;, are maintained at the fixed settings x§,. From this and (3.16-17), we have
wm(x)—>0 form#j, k., J,
as desired. In view of the fixed settings, we have from (3.16) that
wj = C;*(x1j) 21%[ (C* (215) *13% + Cjf (x1x) 16 + CF (215) 2190 + C*) ,
wi = CFf (x1x) "% [ (G5 (2015) P1i% + G (31 ) Pk 4 C f (1) P4 + C)
wy= CJf (x10) P94 (G5 (200) 1%+ CF (xaie ) "1kt + Cf (x10) P14 + CF)

where C¥, Cjf, C¥ are positive constants and C* a nonnegative constant (zero only when p=3).
One of (wy, wg, wj), say the last, must be strictly positive. The limiting process can be chosen
so that (3.19) holds, while x;; and xx are defined in terms of x,; in such a way that

wj(x) [wy (x) = C§ (x1) Y[ CF (210) PV = w5 [wy,
wi (x) [wy (x) = C§ (1) P15 CF (215) P11 = wifw.
Since all points w(x) associated with the process lie in the closed bounded set defined by

w=0, Ewm:Wj+Wk+WJ:l,

m
these points will have a limit point w* obeying the same conditions, and such that
wjlwi=wj/wj, wiflwf = wi/wj.
Thus

¥ o *%__ .. 0 %__ ,,0
wj = wj, Wp — Wk, Wy —wy,

i.e., w*, defined as a limit point of the attainable region in w-space, coincides with the point (3.18).
We have thus shown that for p > 2, (3.12), (3.16), and (3.17) give precisely the class of con-
sistent models and their solutions.
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4. The Two-Product Case

In this section we assume p=2. The situation will be shown to be quite different from that
with p > 2, in that there is an abundance of consistent nonlinear models.
It is convenient te introduce the continuous functions

hi(w) = fi(w) & (1 —w), (4.1)
hy(w) = fo(w) g1 (1 —w), (4.2)

so that for j=1, 2
hj(0) =h;(1)=0, hj(w) >0 for 0<w < 1. (4.3)

By (2.11) and (2.12), the model takes the form

dwi/dyin = binrzhy (w1) , (4.4)
dw1/yiz = bizizhi (w1) , (4.5)
ws/ it = birarhs (ws) , (4.6)
dws/dyiz = bizzihs (w2) , 4.7)
while (2.14) yields
biziahy (w) + bizartho (1 —w) =0, (4.8)
birzihs (w) + birzhy (1 —w) =0. (4.9)

The same argument used (in the second paragraph of section 3) to prove total connectivity
when p > 2, can be readily adapted to show that P, and P> must be connected. Thus (here (2.16)
is used) all the 4’s in (4.4) through (4.7) are nonzero. From (4.8) and (4.9) we have, for 0 <w < 1,

birrz/birzr =— h‘l(w)/hl (1 —w) = bp12/br221.

Thus there is a constant

R<0 (4.10)

such that
Rhi(1—w) + ha(w) =0, (4.11)
biri2= Rbirz1, briz=Rbp:. (4.12)

The sign of R follows from (4.12) together with (2.13) and (2.15). The simplifying substitutions

2ij = bij21yij (4.13)

then convert the model into
ow1/0zi1 = 0w/ 0zis= Rhy (wy) , (4.14)
Ows/0zi1 = dws/0ziz = ha (w2) . (4.15)
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Furthermore, the positive factor (—R) can be absorbed into h,, i.e., we can assume R=—1 so that

(4.14) becomes
w1/ 0zin = 0w/ dziz =— hy (w1)
and (4.11) simplifies to
he(w) =hi(1 —w).
Substitution of (4.15) or (4.16) into the differential identity

n(1)

E (0wj/dzi1 ) (dzin) +Z (wj 0zi2) (dziz)
1

yields

() () = (=1 | & (o) + S () |

For j=1. 2, choose points wy; with
0 < wy; < 1, wor + wee=1.
ForO<w<1, let

i o) = f (1/hs () ) dao.
woj

Then in terms of

n(1) Il(’)

R

(4.18) yields
Hj(w;) = (=1)/(u+¢)

where c; is a constant of integration. However, (4.17) and (4.19) lead to
Hy(w) =—Hi (1 —w),

which together with (4.22) and (1.3) yields ¢; = ¢,. Thus
Hj(wj) = (—1)/(u+c)

where ¢ is an arbitrary constant.
It follows from (4.3) that the differentiable functions H; are strictly increasing, with

Hj(O):—OC, I_Ij(l)::)c

They therefore possess differentiable strictly increasing inverse functions, denoted H;, with

(4.16)

(4.17)

(4.18)

4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)



It follows from (4.23) that these functions satisfy the identity
Hi(—v)+H:(v)=1. (4.25)
Finally, from (4.24) we see that the general solution is
wi=Hi(— (u+c)), (4.26)
w,=Hs(u+c), (4.27)

where « is defined by (4.21) and c is an arbitrary constant.
To relate this to the general solution (3.16) for p > 2, we set

C=exp (c) >0,
follow (3.8) in defining
biniz= bir, bize1 = bia, (4.28)
and introduce the functions
Ki(v)=H; (log v). (4.29)
Then by (4.12),
bitz1 = bi/R =— bi,

and by (4.13) and (1.10) we have
u+c=log [C ﬁ ("i‘l)l'iz/ﬁ (x“)hn]-
1 1

Thus (4.26) and (4.27) take the form

n(1 n(2
w =K, <C_' lL[) (xil)h“/ﬁ (xiz)"iz), (4.30)
1 1
n(2 n(1
W2=Kz <C rl) (Xiz)hiz/fl) (xil)h“)s (431)
1 1

involving the same products as in (3.16). Note that the competitiveness hypothesis has been used
to rule out the singular solutions w;j=0 and w;=1 of (4.15) and (4.16).

Conversely, assume h; and hy are continuous functions satisfying (4.3) and (4.17). Using some
wo; and woz as in (4.19), and any constant ¢, define functions w; and ws by (4.21), (4.26), and (4.27).
They satisfy (1.2), and by (4.25) they also obey (1.3). They are readily shown to be solutions of
(4.15) and (4.16). Next set R=—1, and for any set of

birzs >0, b2z <0, (4.32)

define the remaining b’s by (4.12), define the y’s from the z’'s by (4.13), and the x’s from the y’s by
(1.10). Then w; and w, satisfy (4.4) through (4.7), and satisfy the irredundancy hypothesis because
the b’s are nonzero. It remains to show that they obey the competitiveness hypothesis.
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Consider any nonnegative pair (w{, w}) summing to 1. It must be shown that w’= (w9, w?) is

in or at least a limit point of the attainable region in w-space. The situation regarding the attainable
region in x-space is like that discussed for p > 2 near the end of section 3, and we adopt for definite-
ness the hypothesis about that region analogous to the one chosen earlier for p > 2: There are
variables xi1) and xi@)2, which we immediately make x;; and x;2 by renumbering, and numerical
settings xi; = a9 > 0 and xi2 =% > 0 for all the other x’s, and numbers x;; > 0 and x, > 0, such that
any numerical pair (x;1, x12) satisfying

WSt < iapn WSS 0e0 = ven

forms, together with the fixed settings x? and xY,, a point x in the attainable region.
i1 2 p

Let the fixed settings 2}, and 2, correspond via (1.10) and (4.13) to the x¥, and x¢,. Taking into
account the signs in (4.32), we find that there exist intervals

(—, z§;) and (zf,, ©)

such that any z;; and z;, lying respectively in these intervals form, together with the fixed settings,
a point in the attainable region in z-space. If now 0 < w) <1, then we can choose such z; and z»
so that

)

n(1 n(2)
Gl z?1+z,2+$ 2% +c=H,(w)),
2 ol

and so w, = w) and hence w, =w). If w)=0 we use a limiting process with z,, fixed and z;, = (— ),
while if w)=1 we use a limiting process with z;, fixed and z;, — .

This completes the proof that all consistent models and their general solutions have been found.
We note (omitting details) that for the linear case
filw) =dw, gj(w)=w,

the solution derived above has exactly the same form as that obtained in section 3 for p > 2.

(Paper 72B1-259)
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