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The time-dependent Klein-Gordon and Dirac equations are solved for the motion of a charged
particle in a classical uniform electrostatic field of infinite extent. The elementary solutions have a
position dependence of the form e’ with the component of £ in the field direction varying linearly
with time.
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1. Introduction

Electromagnetic forces have the proper behavior under a Lorentz transformation, and this
paper treats the relativistic equations for the motion of a charged particle in a uniform electrostatic
field of infinite extent. The interaction of a charged particle with a quantized field is of great interest,
but any thorough treatment is rather involved and necessarily requires approximations. The field
will be treated classically, and such effects as polarization of the vacuum and radiation by the
accelerated charge are not included. This example of a uniform electric field is chosen, because
the time-dependent equations describing traveling waves can be solved in a rather straichtforward
manner.

It is worthwhile to examine the classical equations of motion before undertaking the quantum
mechanical treatment. The uniform electrostatic field £ is taken to be in the positive x direction.
The gage may be chosen arbitrarily, and it does not affect any of the observables. Maxwell’s
equation relating £ to the scalar and vector potentials is

. 1 0A
1= e 1)
© Gl
An obvious gage is V'=—FEx, A=0 for an electrostatic field E=iFE (E a constant). If this gage is
used, the relativistic Hamiltonian for a particle of rest mass m and charge € is
H=[m*c*+ *(pi+ p3+ p?)]'* —ekx. (2)
Hamilton’s equations are
y oH . oH g
e————, x=——, ete.
o ox pr
One finds that the various components of momentum are
Pr= Por+ €Et, py= poy, P: = Poz (3)
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where por, poy, po- are constants. The linear time dependence for p; is the same as the nonrela-
tivistic result and is due to the fact that the electric field is uniform. The traveling wave solutions
of the quantum mechanical equation have the same time dependence for the momentum as the
classical relations, of course.

An alternative gage is V=0, A=—7icEt. The x-component of mechanical momentum would be

—’i)%{ﬁ:l)r—gAa,n:pr-l-eEt. @)
(1-5)
The Hamiltonian would be

H=[mzc“%—cz[(plp+eEt)2-+~p§-i—lz)§]]”2 (5)

where p., py, p. are constants of motion. The original gage /'=—FEx, A=0 is preferable because
p is then the mechanical momentum. In addition, the introduction of the vector potential does not
simplity the solution of the quantum mechanical equations.

2. Klein-Gordon Equation

The scalar wave equation is appropriate for a spin zero particle, a charged 7 meson, for
example. The wave equation is found by taking the classical relation

(H+ €Ex)?= m?c*+ c¢*p?, (6)
and applying it in operator form. The Klein-Gordon equation is

(i?l3 %4— eEx)2 U= (m*c* — h*V/2). (7)

Let
lb — eik D rT’ (8)

where k, and T are functions of the time. The quantum mechanical expression for momentum is
identical with the classical results, eq (3). That is,

kI:k()1+'€fiQ- ky:k()y- kz:k(lz (9)

where koz, koy, koz are constants. The linear time dependence of k; is required if T'is to be a function
of the time only. The function e’ T represents a state in which the momentum and kinetic energy
are known with complete certainty since it is an eigenfunction for both the momentum and kinetic
energy operators.

The equation for 7' is found from the substitution of eq (8) into eq (7):

2 f—tsz[mzc4+c2h2(k§+k§+k§)]T. (10)

Wt
In the limit of E— 0, T is e * where W is the total energy. It is possible to find a power series
solution for 7. If the dimensionless quantities
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_ (ceE\"? koxh\ _ (ch\"?
o= ()" ()= .

m2c3+ch? (k2 + k2)
= Efi (1D
are used, then
2T
:17+(u2+a2)T=0. 12)

It is interesting to note that eq (12) is the same as the nonrelativistic Schridinger equation for the
potential —u?. The solution of (12) can be expressed in the following way:

.
T=exp (i%) 3 bau. (13)
0

The coefficients of the series are determined by the recursion relation

buiz__i(2n+1) +a®

bn +(n+1)(n—+—2) (14)

for both odd and even n. The series converges for all finite values of ¢. The coefficients by, and b,
are arbitrary. The signs in the foregoing equations are associated with positive and negative

iuz
charges [1]. That is, if e? corresponds to a positively charged meson with positive kinetic energy,
_iuz
then e 2 corresponds to a negatively charged meson with positive kinetic energy.
Equation (10) is very similar to the time-independent relation

(W + eEx)*y= (m2c* — c?h?V?) 4. (15)
Let = eilkyytkz)dh (x).
Then,
&,

(W +ekx)*p = [m*c* + h* (k2 + k2) | b — c*h® e

Time and distance enter in a symmetrical way for this example of a uniform field.

3. Dirac Equation

The Dirac equation is for a spin Y2 particle, an electron for instance. The time-dependent
equation 1s

eyl
Hy=ih 7 17

The Dirac Hamiltonian is

- LTI S 2
H=—ihkc (a, 8x+ay 8y+ o az)-i-,Bmc eEx. (18)
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The common representation is used:

0 0 0 1 0 0 0 —i
0O 0 1 0 0 0 ¢ 0
0= ay=
01 0 0 0 —i 0 0
1 0 0 O i 0 0 0
(19)
0 0 1 0 i 0 0 0
0 0 0 —1 0 1 0 0
o= B ==
1 0 0 0 0 0 —1 0
0o —1 0 0 0 0o 0 —1
Let us assume the solution
Ay
As
b= er (20)
As
A,

5 . ekt . .
where the A, are functions of the time and &, = ko, +—— as before. For convenience, k; will be taken

h

to be zero to simplify the spinor equations. This does not cause any loss of generality. The substitu-
tion of eq (20) into (19) yields

A4 _A4 A] /41
2 d 9
ficky 4s + ificky . +mc? 4 =—1ih pn A (21)
AZ "AZ _/4:; A;,
A] \ Al '_A4 A4
This is equivalent to the relations
. dA 2 .
—i (—dt—‘+% Ay + c(ky —iky)A:s=0,
. dA; = .
—i ﬁJr% A+ c (kg +iky)A3=0,
dA;  mc* @2)
o S BT I e
([[ h ,;+C(AI ley)Ag 0,
. dAy  mc? :
—i d;—T.,44+(-(A-J.+lA-y)Alzo.
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It is seen that 4, and 4, are coupled and 4, and 43 are coupled.
These equations can be made more symmetrical by taking the linear combinations

b1=A,+ A, b= A+ As, bs=A; — Ay, bs=Ar—As. (23)

Then we obtain

2
(1¢l+(/«r¢‘ (Lniic_ v

A

b
‘1"" AT (”w icAy> $1=0,
(24)
)

_.(ld) 4 kot (mc

— @—(A-Idxg <£;;—+ch,,> $2=0.

These spinor components have a somewhat similar time-dependence as the Klein-Gordon case.
This is illustrated by examining ¢; and ¢,. If the dimensionless quantities, eq (11), are used and
the substitutions

dri=ef. i=e’g (25)

are made, then

v (B ().t (B (5
l([ll+2“/+ et # +l(lu/ £ 0, 1[1“+ e A I(A_,/ f 0. (26)

These equations are equivalent to

1/2
L2 d @ rar=0.  e=—i (2)" (B—ick,) [ ftu+ao 27
du?® cek

The function f can be represented by a power series,

/22 bau™. (28)
0

The coefficients of the series are found from the recursion relation

[)"+2__ 2i(n+1) + a?
by  (n+1)(n+2)

(29)

for both odd and even n. The two constants by and b, are determined by the initial values of f and

g at zero time. The functions f and g are interchanged in eq (26) and all terms containing i change
iu?

signif e 2 is used (charge conjugation). The components 4, and 4, are given by

[
A= 5€* 2 (f+g),
1 e
A= §e1 2 (f—g). (30)
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The components 4> and 4; can be expressed in a similar way. The solution of the time independent
Dirac equation for a uniform field has been treated by Sauter [2] who has a detailed description
of the solution of equations similar in form to eq (26).

The two arbitrary constants by and b, for the Klein-Gordon solution and f; and go for the
Dirac solution can be specified by normalizing the probability per unit volume and by the relative
amounts of positive and negative charge at the initial time. For example, it would be possible to
start with a “pure’” charge at zero time. The charge could be positive (with no negative charge
density) or negative (with no positive charge density). At later time, both charge densities are
present, and the charge densities vary with time, but the net charge density is constant,

p = p+ — p-= constant.

These charge states are discussed by Feshbach [1] and by Foldy [3].
This examination of the time-dependent equations could be extended to the example of com-
bined electric and magnetic fields. There are two Lorentz invariants [4],

E2—B*=1,,

If E-B=0, but I, # 0, it is possible to find a Lorentz frame in which there is only an electric or
a magnetic field. If £ > B (Gaussian units), a frame exists in which there is only an electric field.
If E < B, a frame exists in which there is only a magnetic field.
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