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The time·de pe nde nt Klein-Gordon and Dirac eq ua tions a re so lved for the motion of a c harged 
part icle in a c lass ica l uniform e lec tros tati c fi e ld of infini te e xt e nt. The ele me ntary so lutions have a 
pos ition de pe nde nce of the fo rm e , k · r with the compo nent of k in the field direc tion va ryin g linearly 
with tim e . 
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1. Introduction 

Electromagne ti c forces ha ve th e prope r be hav ior und e r a Lorentz tran sformat io n, and thi s 
pape r tre ats th e relativi s ti c equations for the moti on of a charged pa rti c le in a uniform e lectrostati c 
field of infinite extent. Th e inte rac tion of a c ha rged parti cle wi th a qu a ntize d fi eld is of great inte res t , 
but any th orough trea tm e nt is ra th e r involved and necessaril y requires ap proximations . Th e fi e ld 
will be trea ted class ically , and s uch e ffects as polariza ti on of th e vacuum and radiation b y the 
accele rated charge are not included . Thi s example of a uniform electri c field is c hosen , because 
the time-depe nde nt equation s desc rib ing trave lin g waves can be so lved in a rather s traightforward 
man ne r. 

It is worthwhil e to exa mine th e c lassi cal equations of motion before und e rtakin g the quantum 
mec ha ni cal trea tm e nt. The uniform e lec tros tati c field E is taken to be in th e positive x direc tion. 
The gage may be chose n arbitrari ly, and it does not affect any of the observables . Maxwell 's 
equat ion re lat ing E to the scalar a nd vector potenti als is 

1 aA E =- \7V - - -· 
c at (1) 

An obvious gage is V = - Ex , A = 0 for an electrostati c fi eld E = iE (E a cons tant). If this gage is 
used , th e relativis ti c Hamiltonian fo r a particle of res t mass m and c harge E is 

(2) 

Hamilton's equ ati ons are 

One find s that t he various co mpone nts of momentum are 

px = POx + EEt , P!I = POy. pz = Poz (3) 
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where POx, POy, poz are constants. The linear time dependence for px is the same as the nonrela
tivistic result and is due to the fact that the electric field is uniform. The traveling wave solutions 
of the quantum mechanical equation have the same time dependence for the momentum as the 
classical relations, of course. 

An alternative gage is V = 0 , A = - ieEt. The x-component of mechanical momentum would be 

1--( 
V2)1 /2 

e2 

The Hamiltonian would be 

E 
Px -- Ax= Px+ EEt . 

e (4) 

(5) 

where px, Py, pz are constants of motion. The original gage V=-Ex, A=O is preferable because 
P is then the mechanical momentum. In addition, the introduction of the vector potential does not 
simplity the solution of the quantum mechanical equations. 

2. Klein-Gordon Equation 

The scalar wave equation is appropriate for a spin zero particle, a charged 1T meson, for 
example. The wave equation is found by taking the classical relation 

(6) 

and applying it in operator form. The Klein-Gordon equation is 

(7) 

Let 

(8) 

where kx and T are functions of the time. The quantum mechanical expression for momentum is 
identical with the classical results, eq (3). That is, 

(9) 

where kox, koy , koz are constants. The linear time dependence of kx is required if T is to be a function 
of the time only. The function e ik · r represents a state in which the momentum and kinetic energy 
are known with complete certainty since it is an eigenfunction for both the momentum and kinetic 
energy operators. 

The equation for T is found from the substitution of eq (8) into eq (7): 

(10) 

iWt 

In the limit of E ~ 0, T is e ±~ where W is the total energy. It is possible to find a power series 
solution for T. If the dimensio~less quantities 
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= (cEE) 1/2 ( koxfi) = (011,)112 
U '*= t+ E E kx 
nEE ' 

(11) 

are used, then 

(12) 

I t is interesting to note that eq (12) is the same as the nonrelativistic Schrodinger equation for the 
potential - u2 • The solution of (12) can be expressed in the following way: 

_ -+- ~u x n ( . 2) 
T - exp - 2 L bnu. 

o 

The coefficie nts of the series are determined by the recursion relation 

b11 +2 _ _ i(2n + 1) + a2 

&; - +(n + l)(n + 2) 

(13) 

(14) 

for both odd and even n. The series converges for all finite values of t . The coefficie nts bo a nd bl 

are arbitrary. The s igns in the foregoing equ ations are associated with positive and negative 

i1l2 ' 

c harges [IJ. That is, if e 2 corresponds to a pos itively charged meson with positive kineti c e ne rgy, 

'iU2 

the n e - 2 corresponds to a negatively charged meso n with positive kineti c energy. 
Equation (10) is ve ry similar to the time-inde pe nden t relation 

Le t t/J = ei( I.'!Jy+ l .. zZ)cp (x). 

Then, 

Tim e and di stance e nter in a symme trical way for thi s example of a uniform fi eld . 

3. Dirac Equation 

(15) 

(16) 

The Dirac equation is for a spin 1/2 particle, a n elec tron for ins tance. The time-depende nt 
equation is 

The Dirac Hamiltonian is 

Ht/J = iti ~. at 

H=- itic (ax ~+ ay ~+ az~) + f3mc2 - EEx. ax ay az 
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r- -_ .. -

The common representation is used: 

0 0 0 0 0 0 - L 

0 0 1 0 0 0 
a x = a y= 

0 1 0 0 -L 0 0 

1 0 0 0 0 
(19) 

0 0 1 1 0 0 

0 0 0 -1 0 1 0 
a z = f3 = 

1 0 0 0 -1 

0 -1 0 0 0 -1 

Let us assume the solution 

(20) 

where the AI.. are functions of the time and kx = kox + E~t as before. For conve nience, kz will be taken 

to be zero to simplify the spinor equations. This does not cause any loss of generality. The s ubs titu

tion of eq (20) into (19) yields 

AI AI 

fickx + ificky 
A2 d A~ = -ifi ~ (21) 

dt 
A3 

A4 

This is equivalent to the relations 

(22) 

- i d14 - ,;c2 A4 + c (k~. + ik!l)A 1 = O. 
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It is seen that A I and A4 are coupled and A2 and A3 are coupled. 
These eq uations can be made more symmetrical by taking the linear co mbinations 

(23) 

Then we obtain 

. d<p4 k A,. + (me2 . k ) A,. 0 - ~ Tc- e "X,/,4 --,;-- ~e y ,/,1 = , 

(24) 

These spinor compo ne nts have a so mew hat similar time-depe nde nce as th e Klein-Gordon case. 
This is illustrated by examinin g <PI and <P4. If the dimensionless quantities, eq (11), are used and 
the substitutions 

are made, the n 

These eq uation s are eq uivale nt to 

d2f·d 2 _ 
-I 2+2~-d (uf)+O,'f- O, 
cu u 

iU2 

<P4 = e 2 g 

. dg + ( 1i ) 1/2 (,ne2 . I ) j.- 0 
- ~ - - --~elf -

du eEE 1i y . 

The function f can be represented by a power series, 

f=! bl/ul/. 
o 

The coefficients of the series are found from the recursion relation 

bl/+2 

bn 

2i(n+1)+O,2 

(n+l)(n +2 ) 

(25) 

(26) 

(27) 

(28) 

(29) 

for both odd and even n. The two constants bo and b l are determin ed by the initial values off and 
g at zero tim e. The fun ctionsf and g are interchanged in eq (26) and all terms containing i change 

iu 2 

s ign if e - T is used (charge conju gation) . The co mponents A I and A4 are given by 

1 ill." 

AI= "2e± T(f+g), 

1 ill" 

A4= "2e ± T(f-g). (30) 
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The components A2 and A3 can be expressed in a similar way. The solution of the time independent 
Dirac equation for a uniform field has been treated by Sauter [2] who has a detailed description 
of the solution of equations similar in form to eq (26). 

The two arbitrary constants bo and b l for the Klein-Gordon solution and 10 and go for the 
Dirac solution can be specified by normalizing the probability per unit volume and by the relative 
amounts of positive and negative charge at the initial time. For example, it would be possible to 
start with a "pure" charge at zero time. The charge could be positive (with no negative charge 
density) or negative (with no positive charge density). At later time , both charge densities are 
present, and the charge densities vary with time, but the net charge density is constant, 

P = P+ - P- = constant. 

These charge states are discussed by Feshbach [lJ and by Foldy [3]. 
This examination of the time-dependent equations could be extended to the example of com

bined electric and magnetic fields. There are two Lorentz invariants .[4J , 

(31) 

If E . B = 0, but II "" 0, it is possible to find a Lorentz frame in which there is only an electric or 
a magnetic field. If E > B (Gaussian units), a frame exists in which there is only an electric field. 
If E < B, a frame exists in which there is only a magnetic field. 
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