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Under certain conditions the algebraic equation P(x, y) = (xy+d)z, where P(x, y) is a polynomial
in x and y with integral coefficients and d is an integer, is shown to have an infinite number of distinct
solutions with x, y, and z each an integer
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L. J. Mordell' suggested the problem of finding solutions of the diophantine equation
ax®*+ by +c=z(xy+d)
where a, b, ¢, and d are integers. We shall prove below that under certain conditions the equation
P(x, y)=z(xy+d)

has an infinite number of solutions, where P(x, y) denotes a polynomial in x and y with integral
coefficients.

We may write P(x, y) = P;(x) + P>(y) mod (xy+ d) and suppose that P»(0)=0. It is easily
verified that this representation is unique. Suppose now that (a) deg P(x) + deg P:(y) =4, {b)
a=deg P:(y) = max (deg Pi(x), 3), (¢) d# 0, and (d) that (P;(¢), d)=1 whenever (¢, d) =1.
Additionally, where P>(y) =Boy*+p1y*'+. . ., we suppose that (e) Bo|B for some k= 1. Under
these conditions we shall prove:

THEOREM. The diophantine equation

P(x, y)= z(xy + d)

has an infinite number of distinct solutions.

PROOF: The genesis of the following proof was the rather trivial remark that if x and y are chosen
such that xy=1—d then (x, y, ax®+ by*>+ ¢) is a solution of our equation. This gives only a finite
number of solutions; however, we are able to show that if |d| > 1 then there is almost a 1-1 cor-
respondence of solutions between our equation and each of an infinite collection of equations of
the same general type, where the number of divisors of the integer corresponding to 1—d is not
uniformly bounded. (Note d= 0 is contrary to the hypotheses. If d==1, {(0, y, = P(0, y))} is an
infinite collection of distinct solutions. Therefore we assume |d| > 1 in what follows.)

We must show that if |d| > 1

Pi(x)+ Pa(y)=z(xy+ d) (1)

'L. J. Mordell, The congruence ax®+ by*+c=0 (mod xy) and integer solutions of cubic equations in three variables, Acta Math. 88, 77-83 (1922).
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has an infinite number of solutions. Now (1) is implied by
x%(Pri(x) + Po(y) =z (xy + d), (2)
where (xy, d)=1. We may reduce x%(P;(x)+ Ps(y)) modulo xy+ d to obtain
Rx)=awx"+. . .tapd . . .+ azx®+ axdx® + ard?x + aod®,

for integers a,, . . ., ap with n =4, a, # 0, and ay # 0. (Recall that deg P,(x)+ deg P:(x) = 4 and
a=deg Ps(y) = 3.) Also ao|a* for some k = 1. This means (1) is implied by

Rx)=2"(xy+ d), 3)
where (xy, d)= 1. Since x*(P;(x)+ P2(y)) = R(x) mod (xy+ d) we have, setting y=0,
R(x) = x*(P1(x)) mod d.
Hence if (xy, d)=1 then (R(x), d)=1 by hypothesis (d).

If (3) has an infinite number of solutions with (xy, d)=1 then (1) has an infinite number of
solutions. For technical reasons we shall find it easier to show that

Yi— ardy{™ + as(aod®)yi 2 + asaod(— aod?)yi 3+ . . .+ ajaed(— aod?y?
Y4 L+ anaod(— aod?) 2= wa(x1y1 — anaod(— aod?)'3), 4)

with (x1y1, anapd)=1, has an infinite number of solutions. Hence we must show that (4) having an
infinite number of solutions implies that (3) has an infinite number of solutions. Looking at (4) mod
y1 we see that it implies, setting ws=xy1 + ayd®> and (x1y1 — anaod(— aod?)*3)=w; that we have
Vi — ardy? ' + as(aod?®)y? 2 + azaod(— aod®)y' 3 +. . .+ ajaod(— aod?y—?

Y+ L+ an(aed) (— aod?) 2 = ws(xy: + aod?). (5)

Now (y1, aod) =1 so (y1—aid, apd) =1 (use a,|a} for some k), and (xy:, apd) =1. We note that

Ws— (l()(lz

(y1, x, w3)= <y1, L X1Y1— ap@od(— Clodz)”_3>

1
so distinct solutions go into distinct solutions. It follows that (5) implies, setting w» = aod®ws, that
an(—aod®)"+. . .t ai(—aud?) Iyt +. .+ as(— aod?)dyr?
+ axd( — aod?)*y" 2+ ard®( — aod?) y' ' + aod?y" = wa (xy1 + aod?) (6)
where
(xv1, apd) =1.
Now (6) implies, setting w; = w,y;", that

R(x)=aw"+. . .+apd+. . .+ ax®+ adx®>+ aid*x + aod® = w: (xy1 + avd?). (7
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We conclude that (7) implies, setting w; = (xy+d) and (xy; + aod?) = 2", that

R(x)=Z"(xy+d). 3)
Since (x, d) =1 we have (R(x), d) =1, so (xy, d) =1. In this last change of variables (x, yi, w;)
becomes
Z{ — apd?
(x. e Gy d)
x

so distinct solutions go into distinct solutions.

Now to show that (4) has an infinite number of solutions. We shall show that there exists an
infinite sequence of equations Ky, E», . . . with Eg=(4) and E» <> Esi4» in the sense that a se-
quence of reversible steps takes one equation into the other—inducing a 1-1 correspondence of
solutions. Then we shall end with a proof that given N > 0 there exists an n such that £, has at
least N distinct solutions.

DEFINITION: Let B(m) be a function from the integers to the integers defined by B(0)= 0, B(1)= 1, and

B(m)=(n—2)B(m—1)— B(m—2).

Notice that since n = 4 if s(m) satisfies the above recurrence relation and 0 < s(0) < s(1) then s(m)
is nondecreasing for all m = 0. Therefore B(m+ 1)— B(m) is nondecreasing for all m = 0.
DEFINITION: For each integer m set

Iy = (— l)ﬁ(mﬂ)ﬂ(and—lyﬂ(m« l)( _— a“dz)a(mu) =(— l)B(mH)H( — ana‘)d( — a‘)dz)n—-l){s(mw l)(_ ‘,i“d:z}lzl(mﬂ)fﬁ(m)q

using Bm—+2)=(n—4)B(m+ 1)+ B(m+1)+B(m+1)—B(m). From the second expression for rp
we are able to conclude that if m =0 then (ajapd)='(ry,)™" rmﬂ is an integer by using the facts that
B(m+2)—B(m+ 1) is nondecreasing if m=—1, and B(1)—B(0)=1.

Now write (4) as

E A"V =74 (.XV+I‘())

k=0

which defines A)) for each 0 < £ < n. In what follows we assume m = 0. Let

m
Az =AY T (agorrg . ()
b
Then |43™| is a power product of ay, an, and d. By our remarks above (anaod)"'43" is an integer if
0<k<n.
Using (8) we derive the result that for each 0 <k <n

ey = { [T Cart ] ipas 9)

il

Checking (4), we see that rEAXA9)~" is always an integer, hence so is the left side of (9). If 0 < k£ < n,
(apand) "1k, A7"(A%3™)~" is an integer by the remark after the definition of r,,. We need to show that

2m’

rome1=(— 1)"(/4;')."1)71“2»1)”7'- (10)

Using (9) with £=n we see that the right-hand side of (10) is

(=1 "(AO rl,:r?m {H (rZJrZJ 1 }

25



Using the definition of r»,, we compare the exponents on ry, a,d=!, and — a¢d?, and observe that
g

m m

n Y B+ 1)—B2)= {B2i+2)+2p2+ 1)+ BE2)—BEZi+1)—28(2)—BEi— 1)}
j=1 y=i

=B2m+2)+ B2m+1)—B(2)— B(1)=y(2m +2)—y(2) where y(m)= B(m)+ B(m—1).
It follows that
r(and=1)Y2m+2)=v2)(— qod?)Y2m+3)—13)(— 1)r2m+2)-H2+n = Adramram+1.
Using the first expression for r2,, we see that this is equivalent to
[l At =d} (11)
or
— (— an@od(— aod®)" )= - ((— anaod(— aod?)"=*)""=3(— aod?}) = anaod(— aod?y*-2 = A}

0

which may be verified from (4).
We must also establish

Toms2 = A" (rams1) "1 (rem) =™ (12)
This is equivalent to

rom+2l2m+1 = (rzm+lfg_,,',)"/43"'-
By (8) we must prove that

m+1
Fam+2T2mi1 = A H (rzj—lrgjl__z)"-
Jj=1
Summing exponents again we have
_ — 1) W2m+3)— ; T
ram+2l2m+1 —A::(—and )o2rets) y(l)( _a“d2)y(2m+4) 72)
== A8r2m+2r2m+l( = (lnd_])_y(l)(_ a()(lz)_Y(Z)z Agr2m+2r2m+1 (r()r~l ) =1

’

using the recursion formula for B(m) and the formula for r,,. We see that (12) is equivalent to
A= g = (= D)=

which is (11).
We verify that

Aim( - rzm)k( - r2m+1)n_k(( - er)")_l :A'im(,-2"l+1r2~"l')ll—lc:Aim+2’ (]3)

using the definition of 43"+
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Set k=0 in (13). Then using A3"*>*=A2"(rym175,2)" along with (12) we may write
Tam+2 :A3m+2(r2m+1)f1_ (14)
We define E»y, to be the equation

2 Ahnxl. p— xy+ er) (15)

where (xy, apand) =1.

Now Eo,=(4). By induction we shall show that for each m = 0 Es,.» is equivalent to Esp.
Line (15) is equivalent to

2 A2mkyn = vy(xy + ram) with (xy, aoand)= (16)

(Recall that ry, is a power product of ay, a,, and d which is divisible by aea,d, for each m = 0.)
Line (16) is equivalent to

E A3 — ram)ey" k= v3(xy + ram), with (xy, apand)=1. (17)

k=0
Now (17) is equivalent to

E A}’)‘."'(/‘/’.(z,m)il( - r’lm)k)"lvk Bk U4(X_V+ Tam), with (X}‘, (lﬂ(ln(]): 1 (18)

k=0

by the comment after (9) and the fact that [42"| is a power product of ay, a,, and d. Taking both
sides of (18) mod y and using (v, ayand)=1 we see that

V4= xly+ ( ﬁm)~1( - er)"(r:Zm)_] = xl)'+ I'2m+1

by (10). Since apad divides AFMAF") ' (— rom)* if k> 0 (see the comment after line (9)) we see that
(x1y, apand)=1. Using (10) we may write the equivalent statement

N A AT (= ram) oy = vs(x1y + ramea), with (v1y, aoand)=1. (19)

k=0
As before we may write

n
2 AZAZ) Y — ram)Fy* Rt = vs(x1y + rems1), with (x1y, aoand)=1, (20)

k=0

instead of (19), so

n
N AAT) T (= rem) (= reme)" = vray + rame) with (ay, aeand)=1 (21)
k=0

is also equivalent to (19). We may write, after dividing above by (43")~'(— ram)", the equivalent
statement

N ARk = vs(ury + rame), with iy, aoand)= 1, (22)

k=0

27



by (13) and the fact that (43™)~!(— ren)" is a power product of ao, an, and d. Taking (22) mod x; we
see that

vs=x1y1 1+ A2 (rom+1)~' = 211+ ram+2, by (14), where (x1y1, apand)=1

by the remark after (8). Thus (15) is equivalent to

2 A,Z\."HZXI,‘. == ’Ug(xl}ﬁ ar r2m+2)- (23)

k=0

This completes the induction.
Now to find solutions of

n
Y Apmat=vi(xy+ ram). (24)

k=0

Suppose we solve xy+rap=1. Obviously (24) has solutions corresponding to these choices of

x and v.
Set anaod( — apd?*)"*=A and —aod*=B. Note |4|>1 and |B| > 1, as |d| > 1. If

xyzAB(2m+1)BB(2m+1)»B(2m)+ 1 —_— 1 — TI'om

we have a solution of Es,. Given N > 0 we shall show that we may choose m such that 1 —ry,, has
at least V distinct pairs of factors. (Then E.,, has at least N solutions as does the original equation.)

Let w and w be the roots of x>— (n—2)x+1=0. Note that w is a unit in the ring R of alge-
braic integers in Q(Vn%?—4n). Thus for any rational integer £ > 1, w, and w go into units when
we form the ring R/kR. The units in R/kR form a finite group so there exists a positive integer 6
such that (w)? =1 mod kR. Using the formula for B(m) from finite differences, we see that

B(2m+260+1) =B(2m+1) mod kR

and
B(2m+26) = B(2m) mod kR;

clearly both congruences hold also mod k. Setting k= ¢ (|1 —ry|) it follows that 1 —ry divides 1 — ra.
Now set ki = (|1 —r2|), and continue. (Note that as |4| >1 and |B|>1 the |l —ry,| form an
increasing sequence.) We see that the number of factors of 1 — r»,, goes to infinity on a subsequence
of positive integers m. This concludes the proof of the Theorem.

(Paper 72B1-255)
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