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Means and the Minimization of Errors™®

Michael Aissen**

(January 3, 1968)

Let 0<a <b. How should a number p be chosen so that the maximum ‘relative error’ obtained,
by replacing a number x varying in the closed interval [a, b], by p. is a minimum? For a large number
of ‘relative errors,” p must be chosen as the geometric mean of a and b.
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Let 0 <a <b. If x is a number contained in the closed interval [a, b], there are various meas-
ures of the “error” committed in replacing x by an approximation p. For example the “absolute

Lk 3 s " ) —X . .
error”’ |p—x|, or the “relative error u In [1]," Huntington suggests more general relative
5%
D=0 . . :
errors of the form Ip=s| where ¢(p, x) is a mean of p and x (that is for all p and x, d(p, x) lies

d(p, x)
between (not necessarily strictly) p and x). We shall consider errors of this type subject to a few
other conditions. If £ (p, x) :l;—)(]—_—-x—L is given, for each p in [a, b], let A\(p) =max E(p, x) and let
Dy, X v
w in [a, b] satisfy A(w)=min A(p). The conditions we impose on ¢ besides being a mean are
that A(p) exist and that u exist and be unique. If ¢* denotes the ‘transpose’ of p(p*(p, x) = P(x, p)),
we will also require that ¢* satisfy the same conditions as ¢. In [2], Polya showed that. for

¢

a o 3 s
(p,x) =x, u=——. In this note we compute w for a variety of other means. As a final condition
I = pute y

imposed on ¢ and hence on E, we demand that if p’ is strictly between p and x then E(p’, x) be
strictly smaller than E(p, x) and that £ (x, x) =0. A set of sufficient conditions on ¢ to ensure all
these requirements are

(1) ¢ is a mean.

(2) ¢ is continuous on the boundary of the square, [a, b] X [a, b].

(3) ¢ (t, u) and ¢p(u, t) as functions of u are monotone in each of the intervals [a, t] and )
[t. b]. for each te[a, b].
Under the conditions assumed in paragraph 1 preceding (A),
Np)=max (E(p, a),E(p, b)). (1)
and w can be characterized as the unique zero in [a, b] of the equation
E(p, a)=E(u, b) (2)
or
(n—a)d(p, b) + (n—0)dp(u, a) =0 (3)
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For many choices of ¢ the solution of (3) is completely routine and we merely record the results
for some of them. By A(u, v), G(u, v), and H (u, v) we mean the arithmetic mean, geometric mean,
and harmonic mean of u and v, respectively.

TABLE 1.
o(p, x) wn(a, b)
i H(a,b)
p A(a, b)
max (p, x) G(a,b)
min (p, x) G(a,b)
A(p, x) G(a,b)
G(p, x) G(a,b)
H(p, x) G(a, b)

We discuss another example in some detail. Let

b+(p. x) =A(p, ) +5(p—2). 0

For —1=7=1, ¢, is admissible for our discussion. If wu-(a, b) is the corresponding value of u,
(3) becomes

Q:(p:) =0 ©®)
where
Q:(u)=(r+1)u>—7(atb)ut (r—1)ab, (6)
or equivalently
Q:(u) =7(u—a)(u—>b) +u*—ab. (7)

From (7), Q:(a)=a(a—0b) < 0 and Q-(b) =b(b—a) > 0. Since Q; is of degree at most 2, there is
a unique zero in the interval [a, b]. For—1 =7 = 1, this would follow from the general theory, but
the argument just presented does not depend on ¢, being a mean. For all real 7 we define wu.(a, b)
as the unique zero of (5) in the interval [a, b].

From (7) it follows that

Qr+s(u) = Q:(u) =8(u—a)(u—0).

Setting u= ., for 8 > 0, we obtain Q,5(w.) < 0. Since Q;45(b) > 0, we obtain a < u; < pr45 < b.
Hence as a function of 7, w. is strictly increasing. As 7— + ©, one of the zeros of (5) approaches
b and the other becomes unbounded. By the monotonicity we then have w.(a, b)— b as 7— + =.
Similarly u.(a, b)—a as 7—> —oo. This motivates the definitions u.(a, b)==+b, u_.(a, b)=a.

We may uniquely extend u, for all pairs of positive numbers by defining u-(x, x) =x and
insisting that u,(x, y) = u-(y, x). With these extensions u is continuous in all variables — »= 7 = o,
0<x <o, 0<y<o,

It is interesting to compare this one parameter family of means with the standard means
M.(a, b) [3]. For r=—0o, —1, 0, 1, ©; u,= M,, each is homogeneous and symmetric. For 7= 2,
wa(a, b) =M (a, b) for all (a, b). We conjecture that for each 7, u, and M; are comparable.

From (6) or (7) we find that if x #+ 0

x2Q_; <ib> =—abQ:(x). (8)
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Also

a§x$b—>a$gg$b
x
Hence
_ab
M—T(aw b) _#T(a’ b)

For 7= 1, this is the elementary property

G(A(a, b), H(a, b))=GC(a, b).
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(10)

(11)

From (4) it follows that ¢_.= . This suggests the following generalization of (10). We recall that

a mean ¢ is homogeneous if for positive x, y, and k,

¢ (kx, ky) =k (x, y).

THEOREM: Let ¢ be a homogeneous mean satisfying the conditions (A). Let ¢* be the transposed

mean. If w and p* are the corresponding means of a and b, then
= ab.
PROOF: u is characterized by
() a<p<b
(i) (u—a)p (w, b)+(m—">0)d (u, a)=0.

* is characterized by

i
(iii) @ < u*<b

(iv) (u*—a)@* (u*, b)+ (u*—b) d* (u*, a)=0.

Let
P(x) = (x—a)¢*(x,b) + (x—b)dp*(x, a)
A2 (o) et
Since ¢ is homogeneous, ¢* (%, b) =¢ (b, a—:) =£¢> (m,a) and ¢* ((—l,ué’ a) =%¢ (w,b).
Hence
A -H(E- o w22

Z_iywﬂu—w¢(ma)+UVﬂ”¢(Wb”:0
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) b
Since a < u < b, a<%<b.

b
Hence ,u*:% or pu*=ab.

COROLLARY: If in addition to the hypotheses of the theorem, ¢ is symmetric, (p= ¢p*), then
w=G(a, b).
The corollary explains the frequent occurrence of G(a, b) in table 1. Symmetry without
2+ 2
homogeneity is not sufficient for w(a, b) =G(a, b). For an example let ¢(p, x) :;Tlikﬁ max

(p,x) +1 min (p, x). By direct substitution in (3) it can be shown that G(a, b) is not

I S
Par par L
w(a,b).
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