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Spatially extended defects such as the I center give rise to an effective defect charge density
which may produce important polarizations in the crystal. The electric field in the crystal depends
upon these induced dipoles. Lattice summations for the contribution to the electric field which arises
from ionic shells centered about the defect are evaluated for the NaCl and CaF. lattice structures.
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1. Introduction

We shall evaluate in this paper the ionic and elec-
tronic polarizations which defects induce in ionic
crystals. Such polarizations play a major role in the
energy of formation, the mobility, the self energy, and
the electronic structure of defects.

We shall consider an ionic crystal which contains
one molecule M, X, per volume v of the crystal.

The volume v, is the volume of a unit cell and is given

by

ve=a; - (axXay), (1)

where a;, a,, and a3 are the primitive translational
vectors. For NaCl and CaF. structures, the primi-
tive translational vectors are a;= (a/2)(0, 1, 1),
a,= (a/2)(1, 0, 1) and az=(a/2)(1, 1, 0), and the
volume of the unit cell is v.= a3/4. The lattice constant
a is the cation-cation distance. The nearest neighbor
distance (cation-anion) is ro= (a/2) for NaCl structures

and ry= (\/§/4)a for Cak structures. The cations are at
rt=(a/2)[(lo+13)x+ U5+ L)y+ L+ 12)2].
The anions for NaCl structures are at
r=rt+ (a/d) (£ +y+32),
and the anions for Cak, structures are at

rr=r*+ (a/4) (£+y+32),

and at
W, =t ar () (A =5=5%)).

The integers [; have the values 0, =1, =2, etc. The
above discussion places a cation at the origin. We
shall treat also the case for which an anion is at the
origin. For this latter case we have the reference
vectors r,= (a/2) (0, 0, 1) for NaCl structures and
ro= (a/4)(—1, —1, —1) for CaF, structures.

We view the anions X and the cations M as polariz-
able point charges occupying the lattice sites. The
anion ionicity is Z, and the cation ionicity is Z.. The
unit cell is electrically neutral, n.Z.+n-Z,=0. We
also associate an ionic polarizability a? or af and an
electronic polarizability af or a& with each ion in the
lattice. These polarizabilities determine the response
of the crystal to weak static and high frequency elec-
tric fields. We represent an ion which is located at the
lattice site r, and which experiences a static electric
field E(r,) as a point charge Z.e or Z.e located atr, and
upon which we superpose a point dipole moment

pr,)=(a’t+a”E(x,). 2)
When the period of the electric field is much shorter
than the characteristic period for ionic motion but also

longer than the orbital period for the electrons about
the ion, the point dipole moment is

pr)=a’E(r,). 3)

We assume that the response is linear in the electric
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field. In general, the polarizability is a tensor. However,
we choose here for convenience that it be diagonal
and isotropic. This is a very reasonable assumption for
cubic crystals. When we view an ionic crystal as a
dielectric continuum, the static dielectric constant
€o and the high frequency (optical) dielectric constant
€, give us information about the ionic and electronic
dipoles which are induced by weak electric fields.

For our purposes here, we may represent the defect |
by a spatially dependent charge density p(r) [1].! .

For example, the F center in an ionic crystal consists
of an electron (the F electron) localized about an anion
vacancy. We choose the anion vacancy to be at the
lattice site r=0. We characterize quantum mechan-
ically the F electron by its stationary wave function
Yu(r) with energy eigenvalue €, where n represents all
the quantum numbers of the given state. The F elec-
tron gives rise to the spatial charge density

prr)=— edl,’f(r)wn(r)~

Also, we view the anion vacancy as the addition of a
positive point charge Z,e=—Z,e at the site r=0
pu(r) =Z,e8%(r). The total charge density pq(r) of the
F center at r=0 then becomes.

pa(r)= e[Z .8 (r) = Y ()P (r)]. 4)

The total electric field which a polarizable ion
experiences is the sum of the electric field due to the
defect charge density pq4(r) and the electric field due
to the electronic dipoles and the ionic dipoles which
the defect charge density induces on all the other ions
of the crystal. A. D. Franklin and D. J. Sparks [2] have
computed the electric fields produced by a point charge
pp(r)=Z.4e8(r) in ionic crystals. We will compute
in this paper the electric fields produced by extended
charge distributions in the NaCl and CaF, lattice
structures.

Our intended research on the electronic structure
of the F' center motivates us to carry out the present
computations. The F electron and the lattice, par-
ticularly the nearest neighbors to the defect, form a
very strongly interacting system which we must treat
self-consistently. The polarizations which accompany
the F' center are most important when we use the
polarizable ion theory for the F' center [1].

2. Formulation

In order to make the present computations feasible,
we shall consider only the spherically symmetric part
ps(r) of the charge density pa(r);i.e., we average pqa(r)
over the unit sphere.

)= [ T f "singddp(r), ()

! Figures in brackets indicate the literature references at the end of this paper.
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where r=|r|. For convenience, we will suppress the
subscript s.

The electrostatic potential ¢ (r;) at the point r; due
to the spherically symmetric part p(r) of the defect
charge density pq(r) is given by the expression,

+f“ (r)rzdr_ ©)

r

f“ p(r)rdr
0

I

b(r) =

We do not allow the dielectric response of the system
to enter in eq (6). The negative gradient of the elec-
trostatic potential then prescribes the electric field
Eu(r)) at r; due to the charge density p(r);

" o (r)rtdr
PR
Ea(r))=Eq.(r)) i =— ¢ (r1) F== fi, (7)
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where #;=r/|r,| is the unit vector in the direction r;.
We also define the average amount of charge Q(r) con-
tained within a sphere of radius r centered about

r=0,
o f e ®)

Combining eqs (7) and (8) gives us
Ea(r)=r2Q(r). 9)

The electric field E4(r,) at r, due to the defect
charge density induces a dipole moment p(r,) on the
ion at site r,. The electric field at the site r,, due to the
dipole moment p(r,) at the site r, is

_3(ry,—r1) [[L(I‘,,) (v, — 1) ]

Egip(ry,5 1) = IP s I_—,
vy v

__rr) g
|t =1 |?

The total electric field which the polarizable jon at
r, experiences is the sum of the electric field due to the
defect and the electric field due to the dipoles induced
on all the other ions except the ion at r,,

Ey(r,) =Eq4(r,) + E Eap(rs; v,

vi¥Fr

(11)

where the prime denotes a sum over all lattices sites
except the site r,,=r,. Multiplying the left and right
hand sides of eq (11) by the appropriate polarizability
for the ion at r, converts eq (11) to a system of 3N equa-
tions having 3N unknown variables —the three com-
ponents of the dipole moments m(r,) at each of the N
sites in the lattice. Because N has the same order of
magnitude as Avogadro’s number, we cannot -solve
the system of equations given by eq (11). Hence, we
must make further approximations. The approxima-



tions which we will employ to overcome the above
formidable task are known as the Mott-Littleton
procedure [3].

We divide the crystal into two regions. Region I
contains all the ions on shells centered about the defect
and having a radius less than or equal to r. The radius
rs is the radius of the sth shell of ions centered about
the defect. Region II contains all the remaining ions.
The Mott-Littleton procedure solves the system of
equations given by eq (11) for only region I and employs
a continuum model to approximate the solutions for
the dipole moments of region II.

We first outline the prescription for the dipole mo-
ments in region II. We view region II as a dielectric
continuum. The electric field E and the displacement
vector D are related in region II by the constituitive
equation for a dielectric continuum,

D(r)=eE(r)=E(r)+47P(r), (12)
where € is the appropriate dielectric constant and the
polarization P(r) is the dipole moment per unit volume,

P@r)=[(e — 1)/4m|E(r). (13)
The dipole moment per unit cell at r; is,
P.(r)=vPr)=v[(e — 1)/4m|E(r) (14)

The Mott-Littleton presecription asserts that all dipole
moments point in a radial direction from the defect
and divides the dipole moment per unit cell among
the n, + n_ ions contained in the unit cell in proportion
to their individual polarizabilities;

ay i (€ — 1) Erl(rl/) #, (15)

v
nioe+n_og ¢ 4w € :

M“(r,,)=(

When treating the F center problem one must distin-
guish between the electronic polarizations and the
ionic polarizations. The electronic polarizations re-
spond to the rapid changes in pa(r) which occur when-
ever the F electron undergoes a transition from one
state to another state. However, the ionic polarizations
may not respond to such rapid changes in pq(r). Hence,
when €, =e€.., then € must be €.. But when €,=¢,
e=¢€, when we compute only the electronic polariza-
tions and € =€, when we compute both the electronic
and ionic polarizations. When both ionic and elec-
tronic polarizations occur a,= «{+af and when only
electronic polarizations occur «, = af. Referring to eq
(15) we define the polarizability of an ion in region 11
by the quantity.

o ve(e—1)

My(v)= (16)

darei(niaec+n_ay)

The electric field at a site r; in region I due to all
the dipoles [eq (15)] in region II is

Q(r,)My(v)

e

Eout(rl )= 2

'V>'S

[3(I‘1—ru){l'u «(r; _I'v)}_l'u} 17)

ey — [

Thtj summation is over all the sites in region II. The
radial part of E gy (r1), Eou(r1) = E oy (1) - (r4/|r4]), is

given by,
Enut(rl)z z Q(;rV)Mll(V)

rriley—r,[?
ry=ry

X[2(ry w) =322 — (v, 1) 2+ 2r2 (v, 1y) ] (18)
When we express the summation which appears in
e(q (18) in terms of a summation over the shells, we may
evaluate more easily the radial part of E,(r;). Each
shell of ions centered about the defect has ions of the
same type and each ion of shell s exhibits the same
polarizability M (v) =M;(s). Hence, we may write
an alternate expression, which is computationally
more practical, for the radial field £, (r;); namely,

Epu(r) =ri® 3 Q(re)Mu(s")D(s', ).

§'>s

(19)

The dipole coefficients for each shell s, which is out-
side region I, D (s; ry) is a summation over the n(s) ions
on the sth shell;

n(s) r’)
D(s;ry) = E >

m=1

X [2(1"" : rl)r%—Sr?,,rf— (rm r,)2+2r'f,,(r,,, : r1)]- (20)

rlrﬂrl _rmla

where the site r,, is the position of the mth ion of shell s
and |rn|=r;.

We may show from cubic symmetry arguments and
from the assumption of radial dipoles that the dipole
coefhicient D(s, r;) evaluated for the lattice site r; on
shell ¢ in region 1 is the same for all the other lattice
sites r, on the same shell ¢ in region 1.

The system of equations for the dipole moments,
eq (11), is tractable only when region I contains a small
number of shells; e.g., u shells. Incorporating eqs
(19) and (20) into eq (11) and assuming that the dipole
moments in region I also are radially directed, we may
reduce the system of equations given by eq (11) to u
equations containing the u dipole moments on the ions
in region I. The magnitude of each dipole moment at
the lattice sites on a given shell will be the same.

3. Results

The experience which we have gained from our
study of the F center in the alkaline earth oxide CaO [4]
indicates that reasonable agreement with experiment
obtains when we use the first order Mott-Littleton pro-
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cedure to evaluate the polarizations associated with
the F center. We shall present therefore the first order
Mott-Littleton prescription in order to demonstrate a
specific example of how one might use the preceding
discussion.

The first order Mott-Littleton approximation states
that region I contains only the first shell and that
region Il contains all the remaining shells. The first
shell about an anion defect contains n. cations at a
distance r;=ro from the defect center. Again, we as-
sume that the induced dipole moment on an ion in the
first shell points in a radial direction and has a magni-
tude w,. The radial electric field at the site r; due to the
dipole moments w7, on the (n.—1) other ions on the
first shell is

Eif = ,Uqcnf‘l

171 I‘? ’

where the same shell dipole coefficient C, is a constant

for a given lattice structure. The system of equations

represented by eq (11) reduces in the first order Mott-

Littleton approximation to one equation for the one
unknown dipole moment w;; namely,

M1 = 0 [%'{'Eout(rl) +M1_;Cl:|
1 ry

Equation (22) then predicts that the dipole moment w7
on the ions in the first shell about the defect is

a [Q(fl)+ Euut(rl ):l
" 1

Clal
-5

TABLE 1. The dipole coefficients D(s, r1) for NaCl structures

The defect site is an anion site and the evaluation site ry is a cation site on the first nearest
neighbor shell centered about the anion defect site. Region I contains only the first nearest
neighbor shell. Region II contains all the remaining shells. The number of cations in the
first” shell is n.= 6 and the same shell dipole coefficient C, for the (n.— 1)=>5 other ions on
the first shell is C,=—2.3713. The radius of shell s is ry in units of (a/4) and the dipole co-
efficients D(s, ry) for the shells outside the first shell are given by eq (20). The lattice constant
is a and the nearest neighbor distance is ro= (a/2). The dipole coefficients are expressed in
the form N x 10".

(21)

(22)

P = fi, (23)

Dipole coefficient D(s, ry)
Radius
squared Number of ions
Shell Cation shell Anion shell in shell
I N n N n
2 8 —0.2287 +1 12
3 12 | —0.4293 = 8
4 16 +.3742 =@ 6
5 20 | +.4580 Sl 24
6 24 =L =]l 24
7 32 =R1073 =1l 12
8 36| —.7591 =9) 30
9 40 +.1535 =1l 24
10 4| +.3931 =0 24
11 48 —.2678 =2 8
12 52 | —.1040 =g 24
13 56 —.3719 =2 48
14 64 25 A =0 6
15 68 +.8232 =3 48
16 72 +.9372 =&} 36
17 76 =8172 =3 24
18 80 +.3199 3 24
19 84| +.1159 =8 48
20 88 —.6631 —3 24
21 96 J —.2046 =5 24
> Dis, r1) —.3881 —1.965

where E,(r1) is given by eq (19) in terms of the dipole
coefhicients D(s, ry).

We list in tables 1 and 2 the dipole coefficients
D(s, r)) for the NaCl and CaF, structures. The com-
puter program used to evaluate the dipole coefficients
may be easily modified to treat defects centered about
cations and to treat any number of shells in region I.
The results given in tables 1 and 2 are applicable
directly to the F center problem.

The author thanks A. D. Franklin for many informa-
tive discussions.

TABLE 2. The dipole coefficients D(s, 1) for CaF, structures

The defect site is an anion site and the evaluation site r; is a cation site on the first nearest
neighbor shell centered about the anion defect site. Region I contains only the first nearest
neighbor shell. Region II contains all the remaining shells. The number of cations in the
first shell is n.=4 and the same shell dipole coefficient C; for the (n. —1)= 3 other ions on
the first shell is €, =—1.1482. The radius of shell s is r; in units of (a/4) and the dipole co-
efficients D(s, ry) for the shells outside the first shell are given by eq (20). The lattice constant
is @ and the nearest neighbor distance is ry=(3"2a/4). The same shell coefficient C, given
in ref. 2 is expressed in terms of the anion-anion distance and the above value is in terms of
the anion-cation distance. The dipole coefficients are expressed in the form N X 10",

Dipole coefficient D(s, ry)
Radius
squared Number of ions
Shell Cation shell Anion shell in shell
i N n N n
2 4 =0:3170 Sl 6
3 8 —.5616 (1) 12
4 11|~ —.3580 =0 12
5 12 +.3263 ={1) 8
6 16 —.4316 =1 6
7 19 +.8516 =il 12
8 20 —.3001 =1l 24
9 24 +.1424 = 24
10 27| —.1084 —1l 16
11 32 +.5379 = 12
12 35 —.1090 =1 24
13 36 +.2722 =4 30
14 40 =521 =2 24
15 43 +.7107 =2 12
16 44 —.8402 =} 24
17 48 +.7626 =3 8
18 51| -+.4131 =3 24
19 52 —.4039 -4 24
20 56 +.7445 =3 48
21 59 —.9259 =3 36
22 64 —.2120 —3 6
23 67| —.8697 =5} 12
24 68 SLo123 =) i 48
25 72 — Pl = 36
26 75 —.1190 =8 28
27 76 +.1574 =3 24
28 80 —.8521 -4 24
29 83| +.1069 = 36
30 84 —.3467 —4 48
31 88 +.1588 =5} 24
32 91 = P4l =5 24
33 96 +.4782 —4 24
2 Dis, r) —.2882 —3.464
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