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The electros tatic po tentia l which arises from a la tti ce ar ray of point ions is computed in te rm s of 
a Taylor's series expansion for s mall di s ta nces from a la tti ce site. This expansion gives the change 
in electrosta ti c e nergy whe n an ion moves in the bac kground of a perfec t point ion latti ce pote ntial. 
The Taylor's se ri es coeffi cie nt s for te rms up to fourth order in the ion di s placeme nt a re eva lu ated for 
the NaCI a nd CaF2 la tti ce s tructures. 

Key Word s: CaF2 ; c lass ical ioni c la tti ce theory; elec tros tati c pote nti al; latti ce di stortion; NaC I; 
point d efec t. 

1. Introduction 

Most theoretical studies of defec ts in ioni c solid s 
re quire a knowledge of the manne r in whic h the la tti ce 
di storts to acco mmodate the defect. Classical ioni c 
lattice theory gives the inte rac tion energy U IJ. V be tween 
two ion s /-t and vat a separation r IJ. V = I rlJ. - r vl ; namely, 

UlJ.v= (ZIJ.Z v/ rl'v) - (C~Ur~J 

- (C~Ur~,,) +CPrep (rlJ. v ), (1) 

whe re the four terms are respectively th e coulomb 
electrostatic, dipole-dipole, dipole-quadrupole , and 
re pulsive contributions to the lattice e nergy. Th e 
charge on the ion v is Z v, C (6) and C(8) are the van de r 

/-L V J..LV 

Waals cons tants for ions /-t and v , and the repulsive 
e nergy CPrep (rl'v) takes the Pauli exclusion principle 
be tween the /-tth and the vth ion cores into account. 
The repulsive e ne rgy CPrel) is a short·range fun c tion of 
rlJ.'" The co hes ive e nergy <1>(1'0) for the crys tal beco mes, 

1 
<P(ro) =2 L UlJ.v+Uo, 

IJ.. :-F 11 

(2) 

where ro is the nearest neighbor di s tance for the per· 
fec t lattice and whe re Uo is the lattice e nergy. 

The prese nce of a defect cau ses the neighboring 
ion s to move from their pe rfec t lattice si tes. This 
motion will modify the e nergy of the lattice and thi s 
change in the lattice e nergy is most important in a 

s tudy of the properties of defec ts in ionic solid s. 
Among the man y terms whi c h occur in the c ha nge in 
the la tti ce e nergy due to a defec t is the one whi c h 
re prese nts the c ha nge in e lec tros ta tic e ne rgy whe n 
a ne ighboring ion moves in the backgrou nd of a 
perfect poi nt ion lattice poten tial. 

As an example, le t us co ns id e r the F center, which 
is a n electron locali zed about an a ni on vacancy. The 
ions neighboring the F ce nte r d efect move in a self 
consistent mann er to accommodate the F electron. 
The many te rm s in the c hange in lattice energy are 
grouped in so me convenient manner. One of these 
te rms is the change in electrostatic energy ~.vv whic h 
occurs when a neighboring cation moves in the back· 
ground of a perfect point ion lattice potential [1];1 

Ll.Vv(r~-rv)=Zv LZI'{l r~-rl' l - I - lrv- rl'l - I} . (3) 
w tov 

The quantity Ll.Vv( r~- I·v) is th e cha nge in electro· 
s ta ti c coulombic e ne rgy when ion v moves from th e 
pe rfect latti ce site r v to th e pos iti on r~, which is not 
a perfec t lattice site, in the bac kground of a pe rfect 
la tti ce point ion pote ntial. Denoting the distortion 
(ion di splace ment) by r= r;,-rv we write the ene rgy 
of the vth ion at the position r~= r v+ r in the form, 

Vv(r) =Zv L Zl'lrv-rlJ.+rl - l. 
/J. '*'V (4) 

I Figures in brackets indicate the lit era ture refe re nces a l the e nd of this pape r. 
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Hence, the change in the electrostatic coulomb energy 
when only the vth ion moves in the background of a 
perfect lattice is 

(5) 

The few researchers [2 , 3, 4], who have considered 
local lattice distortions near the F center in a manner 
self consistent with the F elec tron state, consider 
only the alkali halides and neglect this term LlVv • 

This may be reasonable in the alkali halides for 
optical absorption discussions in which the lattice 
distortions are small. But one may question their 
neglecting the term LlVv for optical emission studies 
in the alkali halides and for other optical discussions 
in the alkaline earth fluorides and oxides. The lattice 
distortion may be as large as twelve percent of the 
nearest neighbor distance ro for the relaxed excited 
state in the alkali halides and in the alkaline earth 
halides and for all states in the alkaline earth oxides. 
In this paper we shall express the term LlVv as a series 
expansion in the di3tortion r= r~ - rv and evaluate by 
Ewald's method [5] the lattice summations which 
give the series coefficients. We shall compute explicitly 
these coefficients for the NaCl and CaF2 lattice 
structures. 

2. Formulation 

When (r/ro) < 1, we may expand the electrostatic 
energy given by eq (4) in a Taylor's series about the 
point r= 0; 

Ca - Ca distance. When a cation is at the origin, the 
position vector r t for the other cations (Na+ or Ca++) is 

where the l;'s are 0, ± 1, ±2, ±3, etc. The amons 
for NaCl s tructures are located at the sites 

rl= r t + x", 

where Xa= (a/2)(:i+y+z) and the anions for the 
CaF2 structures are located at the sites 

rlO)=rt+xa (1) andrl(2)=rt+x,,(2), 

where 

Xa (1)= (a/4)(:i+y+z) and x,,(2)= (3a/4)(:i+y+z). 

We also choose the distortion r to be given by 

(7) 

The position of a nearest neighbor cation when an 
anion is the reference ion is r c= (a/2) (0, 0, 1) for 
NaCl structures and rc= (a/4) (1, 1, 1) for CaF2 

structures. The nearest neighbor distance ro for the 
perfect lattice is then ro= (a/2) for NaCl structures 

and ro = CV3a/4) for CaF2 structures. Thus, 

The first term of eq (6) is directly proportional to the 
Made1ung constant for the vth ion, <Xv = [Vv(r= O)ro/Z v]. 
Throughout this paper, we will use the nearest neighbor 
distance as the reference distance. 

I 
I 

.' 

The vectors hi = (1/a)(-1, 1, 1), h 2= (1/a)(l, -1,1) 
and h 3= lila) (1, 1, -1) are the reciprocal triad of 

(6) the primitive translational vectors aJ, a2, and a:,. The 

The various derivatives of Vv(r) with respect to the 
Cartesian compo ne nts of r are evaluated at r= O. 
Many of the derivatives in eq (6) will be zero by sym­
metry arguments, but which ones are zero will depend 
upon the specific lattice structure and upon whether 
an anion or a cation moves. 

Let us first consider the point lattices and the re­
ciprocal lattices for the N aCl and CaFt structures. 
The primitive translational vectors for these two 
lattices are 

al= (a/2) (0,1,1), 

and a:, = (a/2) (1, 1, 0) 

a 2= (a/2)(1,0, 1) 

and the volume of the unit cell Vc is 

The lattice cons tant a is the Na -Na distance or the 

wave vector in the reciprocal lattice is '. 

where the n;'s are 0,±1 , ±2, ±3, etc. 
The series given in eq (4) is conditionally conver­

gent. Hence , straightforward evaluations for such 
series will be most tedious and usually unsatisfactory. 
The Ewald's method [5, 6] is an elegant procedure by 
which one converts the series (4) into the sum of two 
series - each one of which converges rapidly. Referring j 
the reader to references five and six for the details 
of Ewald's method, we have the following representa- I 
tion for the lattice summations appearing in eq (4): . J 

cp(x; r)=2: Jrt+x+rJ - I 
1 

_ IT 1 exp (- g2/4G2) 
- Vc G2:f (g2/4G2) cos g . (x + r) 

+ 2: Jr;+x+rJ - l erfc {GJr7+x+rJ}, (8) 
I 
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r 

> 

when 

x+r=l=O 

and 

cp(x=O; r=O)= 2: Irtl - I 

1,,0 

(9) 

We choose the quantity G so that the series in g and 
the series in I are both rapidly convergent. The com­
plementary error function erfc (z) is defined by 

erfc (z)= (2/V;) f< exp (- y2)dy 

and is normalized so that erfc (0)= L Hence, the 
potential energy for a cation displaced a distance r 
from its perfect lattice site is 

Vc(NaCI; r)=Zc[Z cCP(x= 0; r)+Z"cp(xo; r)]' (10) 

and 

+CP(Xa(2);r)}]; (11) 

and the potential energy for an anion displaced a 
distance r from its perfect lattice site is 

Va(NaCI; r) =Za[ZcCP(X= 0; r-xa) 

+ ZaCP(Xa; r - xu)], (12) 

and 

(a"v"(r)/axSaytazU ) for n;:?!: 4_ The evaluation of such 
derivatives is straight forward but is very tedious . 
We tabulate in appendix A these derivatives up to 
order four; i.e., n ~ 4_ 

3. Results 

Combining eqs (6), (7) and the equations in appendix 
A, we write the electrostatic energy in the form, 

V"(r) = ll" +1. {I 0"1 + 0"2 + 0"3) V"x 
To TO 

(14) 

The series coefficients V"sxtyUZ are the derivatives 
(a"v"/axSaytazuj evaluated at r=O. We list in table 1 
the Madelung constants ll" and the series coefficients 
V"sxtyuZ for the NaCI and CaF2 structures. 

r-x,,(l)) +cp(x,,(2); r-x,,(2)))]_ (13) TABLE 1. The Madelung constant (Xv and the series coefficients 

The ionicity of the cations is Z c and the ionicity of 
the anions is Zu-

We then see from expansion (6) that the term 
V"(r= 0) and the following types of derivatives 

must be evaluated, where n, s, t, and u are zero and 
positive integers and where n=s+t+u. We shall 
use the Ewald representation to compute the term 
V"(r= 0) in expansion (6). Because the spatial deriva­
tives of the lattice summation (4) for V"(r) lead to 
expressions which converge more rapidly than the 
lattice summation (4) itself converges, we find that 
Ewald's method is not necessary whenever we evaluate 

VVSXIYUZ which appear in eq (l4)for NaCl and CaF2 structures 
The reference ion moves a distance r give n by eq (7) from it s perfec t lattice s ile. The 

refere nce distance is the nearest neighbor distance r u; 'tI = (a /2) fur Nael s truc tures a nd 

ro= Cv3a/4) for CaF~ stru ctures. The numbe r N X 10+" is denuted by N + Oll . 

NnC] structures Ca Ft sl ruc lures 
Referencf' ion 

Ca lion Aniun Cal ion Anion 

a ,.,. - 1.7476 + 1.7476 - 7.565 +4.070 
V,.r.o 0.0 0.0 0.0 0.0 
V,.tJ'" 0.0 0.0 0.0 0.0 
V"J'/I" 0.0 0.0 0.0 0.0 
V,' :I.r ... 0.0 0.0 0.0 0.0 
V " :!.I'II ............... . 0.0 0.0 0.0 0.0 
V "JI/z ... .. 0.0 0.0 0.0 .1664+02 
V".u .. -.2148+02 + .2148+02 + .2983+02 -.4843 +02 
V ":I.fIl· ·· · 0.0 0.0 0.0 0.0 
V ":.! .rll/'" +.1074+02 -.1074+02 -.1491 +02 + .2423+02 
V v:.!.fl/:l" 0.0 0.0 0.0 0.0 
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4. Appendix A : Derivatives of the Electrostatic 
Potential 

The r . V operator w hic h appears in eq (6) is 

V ( , a , a , a) 
r' = cr l ax + crt ay + cr;) az ' (AI) 

where cr;= (a/4)crl. Let us denote a given term in the 
series (4) by T= (x 2+y2+ z2) - l/2=r- l. We then list 
the spatial derivatives up to order four: 

aT x -=-_. 

aZT = 3xy aZT = 3x2 _l. 
axay r5 ' ax2 r3 r3 ' 

105x 2yz I5yz 
r H r 7 ' 
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