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The electrostatic potential which arises from a lattice array of point ions is computed in terms of
a Taylor’s series expansion for small distances from a lattice site. This expansion gives the change
in electrostatic energy when an ion moves in the background of a perfect point ion lattice potential.
The Taylor’s series coefficients for terms up to fourth order in the ion displacement are evaluated for

the NaCl and Cak, lattice structures.
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1. Introduction

Most theoretical studies of defects in ionic solids
require a knowledge of the manner in which the lattice
distorts to accommodate the defect. Classical ionic
lattice theory gives the interaction energy U,, between
two ions w and v at a separationr,, = |r, —r,|; namely,

U= (Z;LZV/ULV) — (C®frt.)

vt
—(COI,) + orep(rus), (1)

where the four terms are respectively the coulomb
electrostatic, dipole—dipole, dipole—quadrupole, and
repulsive contributions to the lattice energy. The
charge on the ion v is Z,, C'f) and C(¥) are the van der
Waals constants for ions u and v, and the repulsive
energy ¢@pep(rur) takes the Pauli exclusion principle
between the wth and the vth ion cores into account.
The repulsive energy ¢, is a short-range function of
ruv. The cohesive energy @ (r¢) for the crystal becomes,

1
q)(r()):§ 2 U;LV+U(M (2)

HFEV

where r¢ is the nearest neighbor distance for the per-
fect lattice and where U, is the lattice energy.

The presence of a defect causes the neighboring
jons to move from their perfect lattice sites. This
motion will modify the energy of the lattice and this
change in the lattice energy is most important in a

study of the properties of defects in ionic solids.
Among the many terms which occur in the change in
the lattice energy due to a defect is the one which
represents the change in electrostatic energy when
a neighboring ion moves in the background of a
perfect point ion lattice potential.

As an example, let us consider the F' center, which
is an electron localized about an anion vacancy. The
ions neighboring the F center defect move in a self
consistent manner to accommodate the F electron.
The many terms in the change in lattice energy are
grouped in some convenient manner. One of these
terms is the change in electrostatic energy AV, which
occurs when a neighboring cation moves in the back-
ground of a perfect point ion lattice potential [1];!

AV, (e, =) =2, S 2 {Ir)—ru ' = In— w1} (3)

nFv

The quantity AV,(r,—r,) is the change in electro-
static coulombic energy when ion » moves from the
perfect lattice site r, to the position r,, which is not
a perfect lattice site, in the background of a perfect
lattice point ion potential. Denoting the distortion
(ion displacement) by r=r, —r, we write the energy
of the vth ion at the position r,=r,+r in the form,

Vor)=2, E Zyu|r,—r,+r|1.
v (4)

! Figures in brackets indicate the literature references at the end of this paper.
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Hence, the change in the electrostatic coulomb energy
when only the vth ion moves in the background of a
perfect lattice is
AV,(r)=V,(r) =V, (r=0). (5)
The few researchers [2, 3, 4], who have considered
local lattice distortions near the F' center in a manner
self consistent with the F electron state, consider
only the alkali halides and neglect this term AV,.
This may be reasonable in the alkali halides for
optical absorption discussions in which the lattice
distortions are small. But one may question their
neglecting the term AV, for optical emission studies
in the alkali halides and for other optical discussions
in the alkaline earth fluorides and oxides. The lattice
distortion may be as large as twelve percent of the
nearest neighbor distance ry for the relaxed excited
state in the alkali halides and in the alkaline earth
halides and for all states in the alkaline earth oxides.
In this paper we shall express the term AV, as a series
expansion in the distortion r=r,—r, and evaluate by
Ewald’s method [5] the lattice summations which
give the series coeflicients. We shall compute explicitly
these coefficients for the NaCl and CaF, lattice
structures.

2. Formulation

When (r/ry) <1, we may expand the electrostatic
energy given by eq (4) in a Taylor’s series about the
point r=0;

Vo(r) =V, (r=0)+r-VV.(r) +% (r-V)#V.(r)

. (l"V)SVu(I')+é%(r'V)4Vu(r)+. .. ®

N =

The various derivatives of V,(r) with respect to the
Cartesian components of r are evaluated at r=0.
Many of the derivatives in eq (6) will be zero by sym-
metry arguments, but which ones are zero will depend
upon the specific lattice structure and upon whether
an anion or a cation moves.

Let us first consider the point lattices and the re-
ciprocal lattices for the NaCl and CaF, structures.
The primitive translational vectors for these two
lattices are

a;=(a/2)(0,1,1), a,= (a/2)(1,0,1)

and a;=(a/2)(1,1,0)
and the volume of the unit cell v. is
ve=aj *

(a-_g X a:;) = ((13/4’).

The lattice constant a is the Na— Na distance or the

Ca—Ca distance. When a cation is at the origin, the
position vector r; for the other cations (Na* or Ca*+)is

where the [;’s are 0, £1, =2, =3, etc. The anions
for NaCl structures are located at the sites

r;y=rf+Xaq,

where x.= (a/2)(£+7y+2) and the anions for the
CaF, structures are located at the sites

ri(1)=r{ +xq(1) and r; (2) =ri +x4(2),
where
xq(1)=(a/4)(®+y+2) and x.(2)= (3a/4)(®+ 7+ 2).
We also choose the distortion r to be given by

r= (a/4) (o124 027+ 032). 7

The position of a nearest neighbor cation when an
anion is the reference ion is r.= (a/2) (0, 0, 1) for
NaCl structures and r.= (a/4)(1, 1, 1) for CakF,
structures. The nearest neighbor distance ry for the
perfect lattice is then ro= (a/2) for NaCl structures

and ro= (\/ga/él-) for CaF, structures. Thus,
ve(NaCl)=2r3 and v.(CaFy)= (16/3V3)r3.

The first term of eq (6) is directly proportional to the
Madelung constant for the vth ion, o, = [V, (r=0)ro/Z,).
Throughout this paper, we will use the nearest neighbor
distance as the reference distance.

The vectors b= (1/a)(—1,1,1),bo=(1/a)(1.—1, 1)
and bs;=(l/a) (1, 1, —1) are the reciprocal triad of
the primitive translational vectors a;, a», and a3. The
wave vector in the reciprocal lattice is

g =27 (n,b; + noby+ nsby)

where the n;’s are 0, £1, =2, +£3, etc.

The series given in eq (4) is conditionally conver-
gent. Hence, straightforward evaluations for such
series will be most tedious and usually unsatisfactory.
The Ewald’s method [5, 6] is an elegant procedure by
which one converts the series (4) into the sum of two
series —each one of which converges rapidly. Referring
the reader to references five and six for the details
of Ewald’s method, we have the following representa-
tion for the lattice summations appearing in eq (4):

o (x;3 r)=2 [rf +x+r|!

1
_m 1 exp (—g%46?)
ve G? ; (g2/4G2)

+> |r7+x+r|“ erfc {G|r‘lf+x+r|},
1

cos g (x+r)

@)
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when

x+r=+0

and
p(x=0;r=0=3 |rf|"!
1+0
_m 1§ exp Cg46?)
Ve Gzz (82/4G2)
2G
+ |y erfe {G|rf|} ——= 9)
I+0 v

We choose the quantity G so that the series in g and
the series in 1 are both rapidly convergent. The com-
plementary error function erfc (z) is defined by

2/\/_f exp (—y?)dy

erfe (z

and is normalized so that erfc (0)=1. Hence, the
potential energy for a cation displaced a distance r
from its perfect lattice site is

VeNaCl; r)=Z[Z.0x=0; )+ Zop(xqa; T)], (10)
and
Vp(can; P)=Z(-[ZC(P(X=O; P)+Z,[{(P(X:1(1); l‘)
+@(xa(2);r) }H; (11)

and the potential energy for an anion displaced a
distance r from its perfect lattice site is

Va(NaCl; r) =Za[Zc¢ (x =03 r—xa)
+Zwp(xasr—xa)],  (12)
and
Va(CaF: 1) =Z,[Zep(x =03 r — xa(1)) + Za{e (xa(1);
r—xq(1)) +¢(xa2); r —xa(2)}].  (13)

The ionicity of the cations is Z. and the ionicity of
the anions is Za.

We then see from expansion (6) that the term
V,(r=0) and the following types of derivatives

(0"V,(r) [0x30y'02") | r=0

must be evaluated, where n, s, t, and u are zero and
positive integers and where n=s+t+u. We shall
use the Ewald representation to compute the term
V,(r=0) in expansion (6). Because the spatial deriva-
tives of the lattice summation (4) for V,(r) lead to
expressions which converge more rapidly than the
lattice summation (4) itself converges, we find that
Ewald’s method is not necessary whenever we evaluate

0"V (r /8x‘0y’6z“) for n =4. The evaluation of such
derivatives is straight forward but is very tedious.
We tabulate in appendix A these derivatives up to
order four; i.e., n < 4.

3. Results

Combining eqs (6), (7) and the equations in appendix
A, we write the electrostatic energy in the form,

V,(r) =ﬁ+rl {l0‘1+0'2+0'3)V,,1
) 0

T

+ (O";’+O‘§+(T:5)Vw21-+ ((TI(Tz+(Tz(T:;+0':xO'1)Vu1y

N | —

+ (o3+ a3+ ad)Vise
1 ; 5 ;
+§ (0202 + olos+ 0201+ 0103+ 0205+ 0307) Visay
(o"+(rl+0' W i

+(T|O'>(T;Vy_1-yz+

+= (0103 + a0y + 00+ ooz + 030 + T yo) Visay

N | =

1 .
+Z (c202+ oo+ oio?)Visry

1
+§ ((T%O'g(f;;+0'10'§U'3+0'10'20'§)Vv2.1'yz+' * } (14‘)

The series coefficients Vg are the derivatives
(@"V,]0x59y'9z%) evaluated at r=0. We list in table 1
the Madelung constants «, and the series coefficients
V.sztyuz for the NaCl and CaF, structures.

TABLE 1. The Madelung constant «, and the series coefficients
V.sxyuz Which appear in eq (14) for NaCl and CaF, structures

The reference ion moves a distance r given by eq (7) from its perfect lattice site. The
reference distance is the nearest neighbor distance ro; ro= (a/2) for NaCl structures and

re= (\/30/4) for CaF, structures. The number N X 10+" is denoted by N +0n.

NaCl structures CakF, structures
Reference ion | S— IS NIRRT | SUEE— —
Cation Anion Cation Anion
—1.7476 +1.7476 —7.565 +4.070
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 .1664 +02
—.2148 +-02 +.2148+02 +.2983 +02 —.4843 +02
0.0 0.0 0.0 0.0
+.1074 +02 —.1074+02 —.1491 +02 +.2423 +02
0.0 0.0 0.0 0.0
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4. Appendix A: Derivatives of the Electrostatic
Potential

The r - V operator which appears in eq (6) is

v ('“+ ,a+,a> Al
P o /=@ —=ar @n ==ar@a =)
Yax Coay oz ()

where ;= (a/4)o,. Let us denote a given term in the
series (4) by T'= (x2+y2+22)"1"2=r-1, We then list
the spatial derivatives up to order four:

ﬂ’_x

ax r3’

OT 3y 0T_3x 1

’

axdy raxt rd

I = P = 15x2y+ 3y
0xdydz r’ 7 9x2dy Tid 57

loyd | Ok

or__
ax:} r ro Y

‘T 105x*yz  15yz

9 T

ax2ydz

r

o*T _ 105x%y  45xy

axy ) e
T 105x%y*  15(x* +y2)+§
ax2oy: P 7 7>
9T  105x* 90x> 9
P — + —
6x4 r9 r7 r
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