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In a previous paper [J. Phys. Chem. Solids 27, 975 (1966)] the authors have discussed symmetry
conditions for equivalence of jump rates operative in point-defect motion between crystallographically
equivalent general sites neighboring a trapping center. The treatment is here extended to equivalent
special sites to show that the total number of inequivalent jump rates can be expressed as (Ni/Ng)—q.—1
where N, and Ny are the orders of the symmetry groups of the trap and defect respectively and where
g is the number of independently effective pairs of nonself-inverse symmetry operators (paired with
their inverses) all in the symmetry group of the trap. The number g, can be obtained by counting any
nonself-inverse operator pair, an element of which, when multiplied by any element of the defect
symmetry, equals neither its own inverse nor an element of a pair previously counted.

For thermally activated relaxation processes expressions apply for maximum and minimum
numbers of jump frequencies involved in complete and partial relaxation processes. For complete
relaxation the maximum number is the number of prime factors in the ratio of the order of the symmetry
group of the trap to that of the defect group. The minimum number is the minimum number of gen-
erators that will raise the defect position symmetry to that of the trap.
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1. Introduction

In a recent publication [1] ! we have discussed sym-
metry conditions for equivalence of jump rates opera-
tive in point-defect motion between crystallographically
equivalent sites with a view toward an assessment of
the extent to which such motion can account for relax-
ation and diffusion phenomena observable in crystals.
Closely related problems have been treated by A. S.
Nowick [2] and in papers referred to by him. Our treat-
ment does not depend on linearity of response to an
outside influence and is believed to have rather general
applicability. In the quoted paper [1] it was applied to
a highly specialized situation governed by four restric-
tions; the partial removal of the second restriction
being the contribution in this paper.

Restriction 1: The point defect, though itself rela-
tively mobile, was held to an immobile trapping center,
the defect remaining free only to jump between sym-
metry-equivalent sites on a shell neighboring the
trapping center. The effect of this restriction was to
reduce a problem concerned with an infinite number of
possible defect sites to one concerned with the finite
point groups of the trap, G, and G, in the initial and

! Figures in brackets indicate literature references at the end of this paper.

strained conditions, respectively (all basic notation is
summarized in table 1). The corresponding point-group
orders are designated N, and ;. Both groups are sub-
groups of the corresponding crystal space groups, and
of the crystal point groups G and G’ of order N and V',
respectively.

Restriction 2: The point group of the point-defect
site in the unstrained crystal, G4, was restricted to the
identity 1. In the strained crystal the point group of
the defect, G, was necessarily 1, too, because by
simple symmetry postulate [1] G;CGq. We here relax
this restriction to allow the site symmetry of the defect
to differ from the identity and we refer to its symmetry
as symmetry of specialization. G4, of order N4, must
be a noncentrosymmetric subgroup of G, because the
trapping center neighbors the defect on only one side.
By the correspondence of the shell of sites around the
trap with the construction sphere for a stereographic
projection, we deduce that the only permitted Gq
are the ten symmetries achievable on the surface of
a sphere (see tables 3 and 4 in reference [3]), which
in turn are isomorphous with the ten two-dimensional
diperiodic point groups [4]. Although in three dimen-
sions the presence of the trap imposed the limitation
of lack of a symmetry center, this limitation does not
apply to the isomorphous two-dimensional groups.
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TABLE 1. Symbols used for point groups, their orders as well as for
individual operators, defect sites and paths
Point Symmetry
Crystal group Order operator
in group
Crystal Unstrained G N S;
Y Strained G’ N' &
Unstrained G, N Se
Trap L. o o 3
Strained G, N, S,
. Unstrained (1,1 Nd S,[
Defect | _ . - ; 3
Strained Gy N, S8

G, CGiCGCGD6G' DG, DG, and G2 Gy

where D indicates a subgroup relationship of the right group to the
one written to the left of that symbol.
An S could be a 1, 2, 3,4, 6, 1, 2, 3, 4 or 6 axial operator to the first
positive or negative power.
S is specifically an inverse of an S.
S is specifically an inversion axis operator.
S is specifically a rotation axis operator.
[S| is the order of the axis.
Additional suffixes 1,2, 3 . .
operators.
[uvw] is a direction €(uvw) where € means “an element of.”
S[uvw] is the direction e(uvw) to which [uvw] is transformed by

. are used to distinguish different

operator S. )
S.S; [uvw] = S3[uvw]when the successive operations S, followed by
S, is equivalent to the single operation of Ss.

[uvw] — S[uvw] is a defined path from a site defined by [uvw] to one
defined by S[uvw]. o o
[uvw]"S is the angle between [uvw] and the direction of S.

Indeed the two-dimensional environment of a defect
on the surface of the shell and on its tangent plane may
be two-dimensionally centrosymmetric.

There exist alternative ways of expressing all pos-
sible symmetry operators S. Most systems commonly
used allow, in addition to 1, any of the crystallo-
graphically permitted rotation axes 2, 3, 4, or 6. To
complete a self-consistent set of distinct possible
operators S in G we will use inversion axes 1, 2, 3, 4,
and 6. Where the order of the operator, |S|, defined by
the smallest positive integer for which SISI=1, is
greater than 2 (that is for 3, 4, 6, 3, 4, and 6) the operator
is nonself-inverse and its inverse is distinct. Never-
theless, if S is an element of G, S7! is, too, i.e.,
SeG <> S—'e€G. Of the inversion axes only 2, equivalent
to a mirror plane, m, provides a possible SqeG,. 2 differs

from all rotation-axial S4, denoted Sq4, in that 24 pro-
vides a locus of an infinite number of coplanar direc-
tions corresponding to defect sites all of which have
Gaq D 2, whereas a crystal can only possess a small
number of sites with rotational symmetry of specializa-
tion. (It is not implied that a defect with 2, has a degree
of freedom_of motion along the mirror plane perpen-
dicular to 24. The sites on 24 are not in general sym-
metry related and so can have differing free-energy
characteristics.) The possible G; are then the five

Sq alone plus the same five with a perpendicular

24 axis (Sa/2q4). Thus only ten defect groups can occur:
1, 2, 3, 4, 6, m, 2m, 3m, 4m, and 6m. The effect of the
second restriction imposed in our previous paper [1]
was further to reduce consideration to equivalent
general sites of the point defect. With G4=1, neces-
?\?rily, the number of equivalent defect sites was always

I

Each site can be defined by a [uvw]e{uvw) where the
u, v, w numbers need not be simple integers. Equality
of two directions represented by [ui, vi, w;] and
[us, v2, wo] is assured by the conditions that the magni-

. Louw v ow
tude and sign of any two of the three ratios —, —, — be
vV w' u

the same in the two cases and that the sign of one of
the three symbols u, v, w be the same. Every element of
(uvw) can be described as S{uvw], the direction gen-
erated by S.G; acting on [uvw]. A path indicated by
[uvw] — S{uvw| will refer to a path from a defect site
[uvw] to another site S{uvw]. Of the infinite number of
such geometric paths a choice can be made to fulfill
some specific conditions. If the notation were applied
to crystal-chemical networks, it might be adequate to
designate the straight-line path. In other applications
a great-circle path is satisfactory. In our work here, we
mean the path which has the largest jump rate, which,
in turn, approximates that of minimum free-energy
barrier. The path for largest jump rate need not be
straight, nor lie on the surface of the shell containing
the sites and has no single geometric representation
to justify fully the use of the singular word “path”
which, nevertheless, we use. One may thirk of a path
with a finite not-sharply delineated width. The removal
of restriction 2 will necessitate a further reexamination
of the concept of the path (see sec. 2).

In our previous work [1], for which always G4=1
and for which the number of sites, consequently,
equaled the number of elements in (uwvw), i.e., N,
the number of nonzero paths emanating from [uvw]
was always N,—1. Symmetry requires that these
paths from [uvw] are fully representative of all paths
relevant to (uwvw). This rule will apply equally for
Ng>1.

The aim of the present paper is then to remove
this second restriction, but we simplify our task by
restricting discussion to noncubic trap sites G;.

Restriction 3: We have assumed that (in our new
nomenclature)

[wvw] = S{uvw] = [uvw] = S [uvw] 1)
even when |S;| > 2 that is when
[uvw] = S{uvw] # [uvw] = S; uvw].

This eq (1) will hold for most physical models one can
invent. In our previous paper [1] we have in fact shown
that the equation must hold for all steady-state con-
ditions under which the principle of detailed popula-
tion balance is applicable. Our treatment, though in
some ways complicated by this restriction, would
lose likely contact with possible experiments if we
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removed it. We, therefore, retain the condition im-
posed by eq (1) throughout this paper.

In our previous paper [1] we found that for each
pair of nonself-inverse operators S and S—!, the num-
ber J of nonequivalent paths from [uvw] was reduced
by one. If ¢ is the number of such S pairs (|S| > 2)

e g (2)

Even after completely upsetting the population
in equivalent sites by an externally imposed influence,
relaxation by a thermally activated process does not,
in general, require all the nonequivalent jump rates
to be activated. It is in general impossible to state a
number of needed jump rates even for a given G,. It
was, however, possible [1] to derive simple expres-
sions for the minimum number J/,;,, and the maximum
number /... needed completely to relax a system.
The minimum number, /i, of nonequivalent jump
rates needed completely to relax a system in which
the population of defects over equivalent sites had
been completely upset was the rank of G, (the mini-
mum number of operators whose products and powers
constitute that group). In most point groups the ex-
perimentally observable number of jump rates could
be larger than /., depending on the relative magni-
tude of the jump rates. There was, however, a usefully
restrictive maximum number /.. of nonequivalent
jump rates equal to the number of prime factors in
Ni. Similarly, simple rules could be formulated for
partially upset populations. If N; of the N, initially
equivalent sites remained equivalent through a postu-
lated sequence of influences, the minimum number of
jump rates, Juin, needed for relaxation, was the mini-
mum number of nonequivalent symmetry operators
that would raise G; of order N, to the initial point group
G..

The maximum number was the number of prime
factors in (N,/N;). We presented [1] tabulations of
maximum and minimum numbers of jump rates.
Experiments designed to observe these points must
be carried out at temperatures high enough so that an
adequate number of jump rates are above the level
of observation, so that point defects can attain equilib-
rium distributions in finite time.

Restriction 4: Along paths emanating from a given
[uvw] predictable cross-over positions may occur with
equivalent paths emanating from other elements of
(uvw). Some crossings must be exact, some may only
be approximate, because of limited variability of the
radial distance from the trap. As a result some paths
must have equal, approximately equal, or lower free-
energy barriers than others also emanating from [uvw)].
These inequalities have not been discussed in detail,
nor are they further discussed in this paper. It should
be realized, however, that the effect of these inequali-
ties will be to lower the number of experimentally
observable distinct jump rates. Accidental equalities
of jump rates under specific conditions and within any
given experimental precision need not be discussed
in the present context.

2. Consequences of Symmetry of Specializa-
tion for the Defect Sites

By analogy with the definition of general posi-
tion in crystallography as the set of symmetry-related
positions each of which is left invariant by no other
symmetry operator S than.the identity, 1, we will use
“general direction” to define the (uvw) set if a [uvw]
€ (uvw) is not invariant under any operator S, other
than the identity. Similarly “special direction” will
signify the (uvw) set if at least one S, (other than the
identity, 1) will leave a given [uvw| invariant. The
special direction characterizes the symmetry prop-
erties of a special position set of a point defect con-
fined to a trap. The stereographic representation of
a special direction set (uvw) can easily be visual-
ized with the help of the steoregraphic representation
of the general direction set for the given G, [3]. The
positions of the general set (uvw) are moved, in con-
formity with the symmetry requirements, on the
stereogram into coalescence on the stereographic
representation of the defect symmetry group Gg.

N ) .
<v'—l> paths will then emanate from any [wvw].
Na

The direction Sq[uvw] = [uvw] so that generally

for S¢Sa:
(3)

S{uvw| = S¢S dl wvw|
where the product S.S; signifies the operation re-
quired by Sy followed by that of S;, a product which
must equal an operator S;;eG;; where S, # S; unless
Sa=1. We, therefore, note that for special positions
any one direction of the set (uvw) can be written in
terms of a given [uvw] in N4 ways. All will be of the
type S{uvw]. A given path [uvw]— S{uvw] can also
be written in N, ways referring to identically the
same path by changing only the operator S,. This is
illustrated for the case G,=6m2, G4=2, (2, signi-
fies 216) in figure 1 with its accompanying table.

The concept of the path itself needs to be examined
once more also by reference to figure 1. Reference is
made to the path [wvw]— 2)|[uvw] for which S;=2
leaves both [wvw] and 2j[uvw] invariant. For all
models for which the geometric path is permitted to
depart from the mirror plane of specialization, there
will be symmetrically equal geometric realizations
of that path on the two sides of the symmetry plane,
24. The 2pow axis relating [uvw] to 2| [uvw] has a sim-
ilar effect on any path not going through the angle
bisector. Although we are aware of this plurality
of some geometric paths [uvw]— S/[uvw| we feel
justified in continuing to use the singular word path
giving rise to one jump rate. For a given free-energy
barrier a geometric path plurality will slightly increase
the jump rate, but that enhanced jump rate will
be a characteristic of the system, namely, that ap-
propriate for the path [uvw| — S [uvw|. The geometric
plurality of paths does not introduce complexities
any more than did the path width discussed in the
introduction. In fact a wider path with energetically
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2[1010]

Gg=2 P,
Gf=gm2
2 Nt L6
N4 = ==
d Ny
o2 J=3
Point Two Path Equivalent Equivalence by
Methods of to Path el aesmee, N
GefloxdE o8 Operation Self-inverse
from p1 Pair
Py 1[uvw] - - - .
2112107 [uvw]
P2 2[0001] [uvw] P]_-»PZ None .
2[10107 [uvW]
o 5 =il
Py Z[Zﬁ.O] [uvw] P1>0P3 P]_—‘P5 2Cl 3, 3
3 [uvw]
3 = = -1
P4 2 [0110] [uvw] Pl—»P4 P1~0P6 2d 6, 6
5_1[uvw]
- 3 -1
P5 2[1120] [uvw] Ir’l—oP5 P Py 24 Sy &
37 L uvw]
& 2 =-1
Pb 2[1100] [uvw] Pl-on P]_—OP4 Zd 6, 6
6 [uvw]

FIGURE 1. Equivalence of paths from a special position on a mirror plane in point group 6m2,
for a defect on a mirror plane, m = 2.
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shallower sides will in the same way lead to lower
jump rates.

In the next section we shall obtain the number
of independent paths by a procedure involving the
counting of the effective number of nonself-inverse
operator pairs. We conclude the present section by de-
scribing an alternate procedure involving the counting
of certain distinct operator product sets; this alternate
procedure is perhaps not as easy to apply to specific
cases but provides a different point of view. We begin
by noting that we need only consider the paths emanat-
ing from any one [uwvw] and that all paths emanating
from a given [uvw] are of the form [uvw]|— S /[uvw]
where S;# G, because [uvw] is invariant under all
operators in G4. For two paths to be equal as ex-
pressed by [uvw]— Si[uvw]= [uvw] — Sp[uvw] the
operators must satisfy either of two conditions. First,
equality of paths is assured if S, =S;" and S/, is non-
self-inverse: this is the only case which can occur for
general [uvw] and was previously treated for general
sites. Second, if SqeGq and

St2=S8aSu or Sr‘z:SdSﬂl (4)

equality of paths is assured (note that the first con-
dition is contained in the second by taking S, to be
the identity). This second condition holds because
an operator Sq which satisfies this condition will
leave [uvw] unmoved and will take S; [uvw] into
S¢a|uvw]. By considering each of the possible opera-
tions Sq in turn one can see that each point of the
path [uvw] — Si[uvw] is carried into the corresponding
path [uvw]| — Se[uvw] so that the paths are equivalent
and must have equal jump rates. This argument
justifies the following procedure for determining
the number of independent paths, J: list all of the
S##Gy. For each S; form the set of operator products
SaS¢and S4S; " using all S4€G 4. J is equal to the number
of distinct sets.

3. The Number of Distinct Jump Rates in
Terms of the Effective Number of Non-
self-Inverse Operators

In this section we shall first show that only non-
self-inverse operators need be considered in deter-
mining the number of equivalent paths because
even though self-inverse operators do in certain in-
stances relate pairs of paths emanating from special
positions their effect is always duplicated by the ac-
tion of nonself-inverse operators. We then consider
the fact that distinct pairs of nonself-inverse opera-
tors sometimes coincide in their effect on paths
~ emanating from special positions or fail to relate
distinct paths so that the effective number of nonself-
inverse operator pairs is sometimes less than the total
number of distinct pairs.

Two physically distinct paths emanating from [uvw|
may be equalized by self-inverse elements of G4
acting directly on the paths or by the demands of

nonself-inverse symmetry operators in G, (compare
restriction 3 in the introduction). We can easily
cite examples of the second kind of cause without
the first being applicable (e.g., G,=4/m: Gq.= 2:
[uv0] = 4~ [uv0]= [uv0] = 4[uv0]).

The two paths related by nonself-inverse operators
(eq. (1)) need not be related by any element of G,.
Conversely, however, we can prove that two paths
related by a self-inverse element of G4 are necessarily
also related by a nonself-inverse operator as in eq.
(1). Let S4; be a self-inverse operator of G4 which
leaves [uvw] invariant; the path [uwvw]— S/ [uvw]
must be equivalent to the path [uvw]— SuS[uvw].
If S/{uvw] is also on S4 then two paths connect
the same directions and so are considered together
as a single path as previously discussed and no
equivalence of different paths results. If S/ uvw]
is not on Sg then we can show that either S; is non-
self-inverse or Squ1S; is nonself-inverse. To prove this
statement the four possibilities of self-inverse oper-
ators 1, 2, 1, 2 for Sq¢; must be considered in turn.
The possibilities 1 and 1 can be dismissed at once
because the former has no effect and the latter cannot
be an element of any G4 For Sq =2 any mirror
plane whose normal is || to Sa; will leave [uvw] in-
variant; a center, mirror plane, or other 2 axis 1 Sa
will generate [@ww] still on S4. Thus the only self-
inverse operators S; which will move Sfuvw] off
Sa1 are 2 or 2 axes inclined to S4 whose product
with Sq1 is a nonself-inverse operator. An exactly
analogous argument applies for Sz =2. Note also
that if any |Sq¢/>2 for noncubic G; all elements
of (uvw) are coincident with Sg. No S4eGq can then
repeat any path [uvw]| — S/ uvw] other than into its
inverse (i.e., the same path with the direction of
motion reversed). We are, however, only concerned
with the number of paths emanating from [uvw].
We conclude that any pair of paths related by a self-
inverse operator is also related by a pair of nonself-
inverse operators as in equation 1 and so turn our
attention to examining the latter.

If G¢ contains no [S/ > 2, i.e., when ¢=0, no dis-
tinct paths can be equal, so J=N—'—l. The total
d

number of nonself-inverse operator pairs may not
be effective in relating distinct paths when the (uvw)
is a special direction set. For a general direction set
(uvw): Spluvw] # Spluvw]. However, for a special di-
rection (uvw) it could be that Su[uvw]= Sp[uvw).
Two cases arise: (1) S;;=S3" and S% [uvw]= 1. This
will apply if and only if [uvw] || S¢ (|S:] >2). For
noncubic G, all S;(|S/|> 2) must be parallel to each
other, and for (uvw) |S/(|S;|>2) the number ¢, of
independently effective pairs of nonself-inverse opera-
tors is always zero. (2) The other special case is that
in which S;; and Si; are not a mutually inverse pair,
yet generate the same path emanating from [uvw].
Equation 3, however, expresses all N, possible ways
of expressing a given path. It follows that the con-
dition for this special case is:

Su = Srzsd-

235



However, for Sy |[|S;, all 2 and 2 LS, relate all S,
to S;' only. For 2||S,, i.e., a mirror plane perpen-
dicular to S;, will relate:

4241
326!
and 6 231,

For (wvw) LS, therefore ¢g=gq. if G4=2 and ngP
if Ga=m or mm?2.
In summary, therefore,
N

==L—g.—1
J Nr[ e

where g, < q.
For noncubic G, and |S/| > 2.

IS/ || (uvw) B ge=0
IfS; L (uvw) and S, || 2 _ Ge= 2
IfS; L (uvw) and S; not || 2 qe=gq
If S; » (uvw) # nm/2

qe— (-

The value of ¢. can be expressed in words as the
following count taken from the ¢ nonself-inverse
operator pairs: A pair is counted if neither of its
elements multiplied by any element of the defect

symmetry equals either its own inverse or an element
of a pair previously counted.

4. Jump Rates for Special Defect Directions
in Noncubic Point Groups of the Trap Site

For special defect directions (uvw) in noncubic trap
point groups G; an exhaustive list of the total number
J, of distinct paths, is given in tables 2 and 3 relating
to centrosymmetric and other G, respectively. The
maximum and minimum number of jump rates needed
for relaxation is also given in these tables. If the con-
cepts involved are not adequately clarified in the intro-
duction of this paper, the reader is referred to our
previous publication [1]. It is noteworthy that for
special positions in noncentrosymmetric point groups,
Jmin >2 occurs only for G;=6m2 and Gi=myoon).

The last two columns of table 2 show additional
figures in parentheses corresponding to relaxation -
jump rates needed after the population has been upset
by an influence that itself was centrosymmetric such
as homogeneous mechanical strain. For general posi-
tions these numbers are always one less than the corre-
sponding one for noncentrosymmetric influences as
previously discussed [1], except for the minimum
number of paths in point groups having a 3 axis, for
which the numbers in parentheses did not differ from

TABLE 2. Paths for centrosymmetric noncubic trap symmetries; all special positions of point defects

Jstin Jriax

G, V, Ga Na | N qe J

Ny Figures in parentheses refer
‘ to limitations for centro-

symmetric influence
1 2 1 1 2 10 |1 1(0) 1(0)
2/m 4 2 2 2 0 1 1(0) 1(0)
m 2 2 0 1 1(0) 1(0)
mmm 8 m 2 4 3 2(1) 2(1)
mm2 4 2 0 1 1(0) 1(0)
3 6 3 3 2 |10 |1 1(0) 1(0)
3m 12 m 2 6 | 2 |3 1(1) 2(1)
2 2 6 2 1(1) 2(1)
3m 6 2 0 1 1(0) 1(0)
4/m 8 m 2 1 2 1(1) 2(1)
4 4 2 0 1 1(0) 1(0)
4/mmm 16 M{100] OT M[110] 2 8 2 5 2(1) 3(2)
mioo1] 2 8 1 6 2(2) 5(2)
mm?2 4 4 1 1(1) 2(1)
4mm 8 2 0 1 1(0) 1(0)
6/m 12 m 2 6 2 3 1) 2(1)
6 6 2 0 1 1(0) 1(0)
6/mmm 24 M [1070] OF M (5170 2 12 4 7 2(1) Si(2)
M{ooo01] 2 12 2 9 2(2) 3(2)
mm2 4 6 2 3 1(1) 2(1)
6mm 12 2 0 1 1(0) 1(0)
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TABLE 3. Paths for noncentrosymmetric noncubic trap symmetries;

all special positions of point defects

| N
G, N Ga Na ,\—vll qe J jMin ./\I;n

1 1 1 1 1 0 0 0 0
Z 2 2 2 1 0 0 0 0
m i m 2 1 0 0 0 0
222 4 2 2 2 0 1 1 1
mm2 4 m 2 2 0 1 1 1
mm2 4 1 0 0 0 0
3 3 3 B I 0 0 0 0
32 6 2 2 B 1 1 1 1
3 3 2 0 1 1 1

3m 6 m 2 3 1 1 1
3m 6 1 0 0 0 0
4 1 1 1 1 0 0 0 0
4 4 2 2 |20 |1 1 1
422 8 2 2 4 1 2 1 2
4 4 2 0 1 1 1
bmm 8 m 2 4 1 2 1 2
4m 8 1 0 0 0 0
42m 8 D) 2 [ 4 (1|2 |1]2
m 2 4 1 2 1 2
mm2 4 2 0 1 1 1
6 6 6 6 1 0 0 0 0
6 6 m 2 1 1 1 1
3 & 2 0 1 1 Il
622 12 2 2 6 2 3 1 2
6 6 2 0 1 1 1

6bmm 12 m 2 6 2 < 1
6m 12 1 0 0 0 0
6m2 12 M li570) 2 16 |1 |3 |1]2
M[0001] 2 6 1 4 % 2
mm2 4 3 1 1 1 1
3m 6 2 0 1 1 /|

that corresponding to noncentrosymmetric influences.
For special positions, however, there are additional
causes for equalities of numbers in and out of paren-
thesis while in point groups containing a 3 axis a
difference in minimum numbers of paths is obtained
when the special direction is parallel to that 3-axis.
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