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Various features of the spectral profile of an x- ray one can be measured with an uncertainty which 
is only a s mall fraction of the observed line width. With recent improvements in measurement tech· 
niques, statisti cal errors due to the random Au ctuations of the intensities in counter recordings may 
become significant. The present study considers the effec t of such errors on several features of the line 
profile which could be used for definition of its wave length. These may be broadly classified into three 
groups, viz , the peak, the centroid, and the median. In the present analysis the s tatistical eu ors asso­
ciated with these features are compared theore ticall y, with the assumption of negligible error in 
angular measurement. Certai n sys tematic errors are also brieAy examined. The effects of truncation 
range, asymmetry, and background intensity are cons idered, as well as possible optimiz.ation of the 
data-taking procedu re. 

In general, fT , the standa rd deviation of the wave length , is given by fT/W = F/(lvn' /2, where IV is 
the full width at half- maximum intensity, Iv the peak intensity, T the total counting ti me, and F a 
dimensionless fac tor of the order of unity. Thu s.F may be regarded as a fac tor of merit for comparing 
the various cases, a low value of F being des irable . Wh en the form of the one pro file is known a priori , 
it is usually bes t to make use of this knowledge; e.g. , a Lore ntzian can be thus fitted with F "" 0.8 for 
any of the three wavelength features. Us ing optimized truncation ranges and including the error in 
locating end points, one obtains approximate ly this sa me F for the centroid or medi an even without 
prior knowledge of the profile. In the latter case the value of F for the peak usually ranges from about 
1.6 to 2. 1. However, the peak is less subject to certain syste matic errors and is preferable from the 
viewpoint of sim plic ity and hi storical precedent. It is reco mmended that use of the peak be continued 
at present ; further study of the proble m from the viewpoint of atomic energy level interpretation 
would be desirable. 
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1. Introduction 

1.1. Problem of Wavelength Criterion 

X-ray emission lines have natural widths of the 
order of 0.1 percent of their wavelengths and in many 
cases show considerable asymmetry in their line pro­
files [1).3 Precision wavelength measurements [2,3] 
have frequently claimed accuracies of a few parts 
per million; in a recent paper by Bearden and co­
workers [4J probable errors of approximately one part 
per million were reported for five standard reference 
lines. Since the error estimate is thus only a fraction 
of 1 percent of the line width, it is clearly necessary 
to use some specific feature of the line profile in defin­
ing the wavelength. For symmetric lines all criteria 
which are likely to be regarded as reasonable defini­
tions will reduce to the same value; in the more general 
case of asymmetric lines, the resulting values may 
differ appreciably. 

These wavelengths are vitally important both in 
determining atomic energy levels and in providing 
standards for crystallography and y-ray spectroscopy. 
Hence at least four factors should be considered in 
formulatin g a wavelength criterion, viz: 

1. Consistency of the resulting energy level scheme 
with the Ritz combination principle, i.e., the 
atomic interpretation. 

2. Simplicity of the definition. 
3. Historical precedents and current usage. 
4. Attainable accuracy as limited by the effects 

of both systematic and statistical errors. 
While the first factor is clearly the one of most 

fundamental physical significance, presently available 
experimental data and theoretical knowledge of x-ray 
line shapes do not appear to provide a clear answer 
to this point. From the standpoint of simplicity and 
intuitive appeal the peak of the line profile is probably 
the most acceptable criterion. This is also generally 
supported by current usage in x-ray spectroscopy, 
as well as considerable historical precedent. 

The majority of tabulated x-ray emission wave­
lengths were recorded with photographic plates. 
Usually it was not stated just what point on the profile 
defined wavelength , although this probably corres­
ponded, at least approximately, to the position of 
maximum blackening. In some cases a microdensi­
to meter trace of the plates was made and the maxi­
mum used to specify wavelength. 

Most recent high precision determinations measure 
the peak of a line by rotating a crystal through small 
angular increments and recording the intensity at each 
step by means of a photon counter (gas or scintillation 
counter), yielding a step-by-step scan of the line profile. 
This basic method has been used with single-crystal 
[4], double-crystal [4], and curved-crystal [5] spectrome­
ters. High angular accuracy has long been attainable; 
the recent development of an angular interferometer 
[6] has furnished a new precise and convenient tech­
nique to facilitate the required angular measurements. 

3 Figures in brackets indicate the literature references at the end of this paper. 

The accuracy of a wavelength measurement is 
limited by both systematic and statistical errors. 
Systematic errors may arise from numerous causes, 
e.g., drift in x-ray tube voltage, presence of satellites, 
and distortion due to the instrumental "window." 
While this window may be the predominant factor in 
crystallography and y-ray spectroscopy, it is much 
less serious in x-ray spectroscopic work. 

With good crystals and proper geometry, such dis­
tortion of the true line profile may be held to a mini­
mum. For example, using two good quartz crystals 
with the Mo Kal line in second order, Bearden [4] 
obtained a window curve which was only about 3 
percent of the natural line width. Brogren [7] reported 
a comparably narrow window with the Cu Kal line. 
Moreover, Bonse and Hart [8] recently reported almost 
tailless x-ray rocking curves obtained by multiple 
Bragg reflections between the walls of grooves cut 
into large perfect crystals of silicon and germanium. 
Furthermore, one may remove much of the residual 
instrumental distortion by "unfolding techniques" 
[9]; Sauder [10] has given a somewhat simplified 
method of correcting selected features of the line 
profile. 

The statistical error is largely due to random 
intensity fluctuations, caused by the inherent nature 
of the photon emission from the x-ray target and by the 
properties of the counter. The present paper is princi­
pally concerned with this factor as it affects the various 
features used to define wavelength. It also treats briefly 
certain sources of systematic error which are sensitive 
to the choice of wavelength criterion. 

Thomsen [11] has given a preliminary analysis of the 
problem and indicated how the errors may often be 
reduced by varying the counting times for different 
points on the line profile. Subsequently Wilson, 
Thomsen, and Yap [12] generalized this optimization 
procedure. The overall problem has been compre­
hensively treated in a thesis by Yap [13] , which forms 
the basis for the present paper. 

This treatment will consider at length three features 
of the line profile, viz, the centroid, the median, and 
the peak. To date the peak has been used almost 
exclusively in x-ray spectroscopy whenever a defining 
feature was explicitly specified. Some crystallographers 
[14] and y-ray spectroscopists [15] have employed the 
centroid and the median in a limited number of cases. 

The greater mathematical simplicity of the centroid 
and median facilitates a more straightforward and 
complete analysis; hence we will treat them first. Both 
oH"er the possibility of a limited improvement in the 
statistical error. However, we finally recommend con­
tinued use of the peak, primarily because of its sim­
plicity and its current acceptance. The statistical error 
of the peak is treated at length in section 5, which is 
independent of the analysis of the centroid and median 
in sections 3 and 4. 

1.2. Previous Investigations 

Other investigators have studied various aspects of 
the problem. Pike and Wilson [16] derived the statis-
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tical error of the centroid; Parrish [14] and his co­
workers studied, both theoretically and experimentally, 
the use of the centroid for lattice parameter .measure­
ments, including the effect of truncation error. Merrill 
and DuMond [17 J analyzed the problem of fitting a 
Lorentzian to the data points by least squares and 
outlined a method for obtaining the resulting statistical 
error of the peak. Previously Muller, Hoyt, Klein, and 
DuMond [18J had derived an expression for the 
statistical error that arises in fitting any assumed pro­
file to the data and applied this result to the case of an 
isosceles triangle. Knowles [19] obtained an approxi­
mate expression for the statistical error of the median. 

Several workers have made comparative studies of 
various features. Cohen and DuMond [20] discussed the 
relative merits of the centroid and the peak, and recom· 
mended the use of the latter. The same conclusion was 
reached earlier by Porteus and Parratt [211 in an unpub­
lished investigation. Wilson [22] analyzed both the 
statistical and the systematic errors that result from 
locating the peak by a least-squares parabolic fit to 
the data and by finding the midpoint of a horizontal 
chord. Beu and Scott [23] discussed reasons for pre­
ferring the peak to the centroid for lattice parameter 
measurements. Recently Backovsky [24] compared 
several features, including the peak and the midpoint 
of a horizontal chord, and suggested using the latter, 
with the chord drawn near the inflection point of the 
line profile. 

1.3. Profile Features for Wavelength Criteria 

a. The Centroid. In the present analysis we will 
define the centroid Xc as the center of mass of some 
specified truncated portion of the line profile, i.e., 

lX2 Ilx2 Xc= xl(x)dx I(x)dx, 
Xl Xl 

(1.1) 

where l(x) represents the true intensity and Xl and 
X2 the selected truncation limits . In principle, the 
abscissa variable X should represent wavelength; 
however, x·ray lines are sufficiently narrow so that an 
angle or an energy scale may be employed with negli­
gible error. 

It should be noted that crystallographers [14] who 
have employed the centroid have always assumed an 
infinite range in the above definition (which is essential 
in order to apply the convolution theorem for addition 
of centroids). Experimentally it was, of course, neces­
sary to infer the centroid value by extrapolation from a 
finite truncated portion of the curve. By contrast the 
present paper considers the possibility of defining the 
centroid with finite truncation Limits, which repre­
sents a generalized concept. 

b. The Median. Similarly we will define the median 
as that value XIII which equally divides some specified 
portion of the line profile, i.e., 

l x iX2 
In I(x)dx = l(x)dx. 

Xl Xm 
(1.2) 

c. The Peak. Finally we will define the peak simply 
as the abscissa Xp corresponding to the maximum 
intensity. (In this connection we will disregard the 
possibility of multiple peaks.) In practice two primary 
techniques have been used to locate this feature; the 
results so obtained will be termed (i) the geometrical 
peak and (ii) the extrapolated peak. 

(i) The Geometrical Peak. A smooth curve may be 
fitted to the raw data points by a computer (using either 
a theoretical line profile or an empirical function with 
undetermined parameters) or drawn in graphically. 
The geometrical peak Xp is then defined as the abscissa 
value for which thelIlaximum occurs, i.e., 

[dI(x)/dx] x=xp = O. (1.3) 

(ii) The Extrapolated Peak. When graphical methods 
are used, statistical fluctuations make it difficult to 
determine the exact maximum of a smooth curve. 
Hence spectroscopists developed the technique of 
drawing several horizontal chords across the upper 
portion of the profile , determining their midpoints, and 
drawing a smooth "bisector curve" (often simply a 

. straight line) through these midpoints; the bisector was 
then extrapolated to intersect the line profile to obtain 
the peak [251. This method is illustrated in figure 1. 
With the advent of computers various analytical modi­
fications of this technique are now feasible; these are 
described more fully in section 6. We will denote the 
peak found by any of these methods as the extrapolated 
peak. 

>­
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b THE EXTRAPOLATED PEAK 

o 
SPECTROMETER SETTING 

FIGURE 1. Extrapolation technique of locating peak by means 
of a smooth bisector curve through chord midpoints. 

For symmetric lines it is also possible to use the 
average of the midpoints of several chords [26] or even 
the midpoint of a single chord [27] as a means of 
determining the peak. (Since the lines are assumed 
symmetric, this technique might equally well be said 
to determine the centroid or the median.) For reasons 
of mathematical similarity, this approach is considered 
along with the extrapolated peak. 

2. Preliminary Considerations 

2.1. Experimental Assumptions 

Our present analysis is primarily from the viewpoint 
of the spectroscopist rather than the crystallographer. 
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The spectroscopist is chiefly interested in a simple, 
accurate , reproducible criterion for measuring wave­
lengths; he normally employs a device with a relatively 
narrow instrumental window (e_g_, a double-crystal 
spectrometer), which does not greatly distort the 
natural line profile_ The crystallographer uses x rays 
as a tool to study crystal structure and frequently 
employs a powder diffractometer, which greatly 
broadens the natural line. 

These differences may lead to the choice of different 
wavelength cri teria. For example , the crystallographer 
may employ the centroid and the spectroscopist use 
the peak. No fundamental difficulty should result, pro­
vided that these two features can be related with high 
accuracy for the rather limited number of intense lines 
commonly used by crystallographers. 

We will adopt the following assumptions as to experi­
mental conditions: 

(A) There is no drift in x-ray intensity incident on the 
spectrometer _ 

(B) Both counting time intervals and angular 
positions (and hence the corresponding wavelength or 
energy scales) on the spectrometer can be measured 
with negligible error. 

(C) The instrumental window causes a negligible 
shift in the selected feature for the wavelength cri­
terion, or the necessary correction may be made with 
negligible error. 

(D) Measurements are recorded at a finite number 
of closely spaced points (usually at equal abscissa 
intervals)_ Consequently it will always be assumed 
possible to replace an integral by the corresponding 
sum, and vice versa, whenever convenient-

(E) Photon counts at the individual data points are 
statistically independent of one another and follow 
the Poisson distribution, and the number of counts 
recorded is always sufficiently large so that the latter 
may be approximated by a normal distribution. It 
follows that the variance (i_e., the square of the stand­
ard deviation) for a total count N at the ith point is 
given by 

(j~ = N. (2.1) 

Experimental tests [13] are in good accord with these 
assumptions. 

(F) Background is relatively small compared to the 
peak intensity and is free from drift. In most of the 
analysis we will also assume that the background is 
independent of wavelength over the relevant portion 
of the profile; however, the effect of a linear variation 
will also be briefly discussed. 

Background intensity B may be determined experi­
mentally by preliminary measurements at points well 
removed from the peak on either side_ This is then 
subtracted from the experimentally observed value, 
lObS, for each point to give the computed intensity, i.e_, 

1= / obs - B. (2 .2) 

An error in the background correction B may produce 
a systematic effect throughout a given run, but will 

-- l 

not affect the statistical error discussed under assump­
tion (E) above_ Hence the effective variance of I is 

(2.3) 

Thus it is governed by the total intensity, both line 
and background. 

2.2. Lorentzian Line Profile 

There is both theoretical [28] and experimental [29] 
evidence to indicate that many x-ray emission line 
profiles are closely approximated by a Lorentzian curve 
(often referred to as a witch) , which is given by 

I( ) = I [1 + 4(x - xp)2]-1 
X P W2 ' (2.4) 

where I and x represent intensity and wavelength 
respectively, Ip and Xp denote the respective coordi­
nates of the peak, and W represents the full width 
of the curve at half maximum intensity. 

Frequently the Lorentzian curve may be a fair 
approximation to the true line profile, but not suffi­
ciently good to be assumed a priori. In such cases, 
after the standard deviation has been calculated in 
generalized form , we may then insert the Lorentzian 
expression, eq (2.4), only for the purpose of obtaining 
an error estimate. We will term such a line profile a 
quasi-Lorentzian. 

It is convenient to normalize I and x in the above 
expression by defining 

g=I/lp, 

v=2(x-xp)/W. 

(2.5) I 
(2.6) 

Except where otherwise indicated, all equations will 
be expressed in terms of these normalized coordinates. 

The Lorentzian equation then becomes 

(2.7) 

2.3. Asymmetric Lines 

Many prominent x-ray emission lines are asym­
metric ; this property has usually been described by an 
index of asymmetry given by (v+ - vp)/(vp - v_), where 
Vp is the wavelength of the peak while v+ and v_ repre­
sent the wavelengths of the half intensity points 
(i .e., g± = gp/2) on the long and short wavelength sides 
respectively. Under this definition asymmetries ranged 
from zero to infinity with a symmetric line having a 
value of unity. 

More recently Sauder [10] proposed the definition 

(v+ - vp) - (vp -v_) v+ + v_ - 2vp 
s= 

(v+ - vp) + (vp-v_) 
(2.8) 

With this convention we have - 1 :s; s :s; 1, with s = 0 
corresponding to a symmetric line. We will employ this 
definition throughout the present paper. 
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Asymmetric line profiles may be represented by a 
simple modification of eq (2.7) , viz, 

_ {{l + [V/(I-S) ]2} - 1 
g(v)- {1 + [v / (l+s)]2} - 1 

v~o 

v>O. 
(2.9) 

Figure 2 shows typical examples of one symmetric and 
one asymmetric line fitted by eqs (2.7) and (2.9) 
respectively. 

While eq (2.9) furnishes a reasonably good model 
r fun ction , it has at its peak a discontinuity in the 

second derivative , which seems physically unreali s ti c. 
He nce, in some calculations which are sensitive to 
behavior at this point , it is preferable to e mplo y the 
alternative model function 

I 

I 
~ g(v)=(l+ ~V)/(l+V2), (2.10) 

I whic h has a qualitative ly similar behavior for ~ ~ 1, 

.~ 

provided we set ~ = 2s and translate the origin by ~ /2 . 

2.4. Gaussian Profile 

While a Gaussian profile is not representative of 
mos t lines encounte red in x-ray spectroscopy, it does 
furnish another example which is straightforward to 
co mpute mathe matically. Hence it is of some inte res t 
to cons ide r thi s case in order to see how far the results 
for a quasi-Lorentzian can be qualitatively applied to 
other profiles. The Gaussian case is represented by 

g(v) = exp [-(In 2)v2] (2.11) 

In place of eq (2.7). W e may then de fine a quasi­
Gaussian profile analogously to the quasi·Lorentzian 
one. 

2 .S. Variance of Data Points 

To express the variances of the individual data 
points in te rms of the new normalized variables, we 
note that the intensity 1 is defined as 1= N/!J.t, where N 
counts have been recorded in an interval !J.t . The cor­
respond in g variance of the intensity thus becomes 
(J"~/(!J.t)2 or, by eq (2.1), simply I/!J.t. Employing eq (2 .5) 
to compute the variance of g, we find 

(2.12) 

In the case of background the calculation is similar 
except that , in accordance with eq (2.3), we must 
re place I by lobs, which is given by eq (2 .2). For cons tant 
background B , the result may be expressed as 

whe re 
YJ = B/lp • 

3. Centroid 

3.1. Truncation Procedure 

(2.13) 

(2. 14) 

To comple te the de finition of the centroid given by 
eq (1.1) we must s pecify the truncation limits. Taylor, 

-------

Mack , and Parrish [14] have discussed at length several 
alternative definitions from the viewpoint of crystal­
lographers. They recommended using a specified 
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F IGURE 2. (a) Lorentzian curve fitted to experimental data for 
W Ka , line obtained with a double-crystaL spectrometer in (1, + 3) 
position. (b) Model function of eq (2.9) compared with experi­
mental curve for the highly asymmetric Fe Ka, line. 
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interval symmetric about the centroid; this interval 
may be located by s uccessive approximations. This 
definition permits a rather straightforward error analy­
sis and will be employed here. 

Even if we knew the correct truncation limits exactly, 
there would be an error in the centroid due to statis­
tical fluctuations in intensities; we will define this as 
the idealized statistical error, Ee , and denote the cor· 
responding standard deviation by fTc. Since the limits 
are in fact determined by successive approximations 
which are in turn influenced by these statistical errors, 
an additional uncertainty occurs. As demonstrated 
below, this introduces a multiplicative factor, which 
will be denoted as the truncation mislocation/actor'/e. 
The product of these two quantities then gives the 
total statistical error, (fTe)(O(. 

3.2_ Idealized Statistical Error 

For N equally spaced abscissa intervals the centroid 
definition in eq (1.1) may be rewritten in terms of 
summations and normalized variables, given by 
eqs (2.5-6), as 

Ve = 2.iVigi/2.;gi. (3.1) 

(1 ~ i ~ N in all summations, unless otherwise speci­
fied.) It follows that 

(3.2) 

Since the g/s are statistically independent with 
variances given by eq (2.13), the variance of the 
centroid is now given by 

(3.3) 

We may immediately write this in integral form for the 
case of equal time intervals, noting the tlv = 2V/N for 
the normalized abscissa range - V ~ v ~ V and that 
the total counting time T=Ntlt. The result is 

(fTe)eq tJ.t= (2V/lpT)1 /2 [L:g(v) dvr1 

(3.4) 

In general, it may be necessary to employ fractional 
intervals for tlv at the end points in order to obtain a 
range symmetric about Ve. However, this refinement 
should not affect the error es timate appreciably, 
provided N is reasonably large. Furthermore we may 
frequently bypass the use of fractional intervals by 
the method given below in section 3.4. 

3.3. Optimization of Statistical Error 

The idealized statistical error may be reduced by 
proper choice of the time intervals tltj. Let us fix the 

total time T, which is given by 

(3.5) 

We may then use the method of Lagrangian multi­
pliers to minimize the j summation in eq (3.3) subject to 
the constraint of eq (3.5) with the result 

Solving for tltj and employing eq (3.5) to evaluate A 
yields 

M j = TI Vj - Vc I (gj + TJ) 1/2/2.i I Vi - Vel (gi + TJ )1 /2, (3.7) 

where the absolute value sign is used to assure that all 
time intervals are positive. This equation indicates that, 
for optimum error, more time should be spent at points 
on the sides than those at the center; a large back­
ground tends to equalize the optimized intervals, as 
might be expected. 

Inserting these values in eq (3.3) and expressing 
the result in integral form, as done with eq (3.4), we 
find for the optimized error 

(fTc)oP( = L: Iv - Vc I [g(v) + TJ]1/2dv/(Ip T) 1/2 fvg(v)dv. 

(3.8) 

This result is a special case of that given by Wilson, 
Thomsen and Yap [12]. From eqs (3.4) and (3.8) we 
may form the optimization ratio 

L: Iv- vel[g(v)+TJ)1/2dv . 

{2V L: (v - Ve)2[g(V) + TJ]dV} 1/2 

(3.9) 

The above expression is simply the ratio of the mean 
value of the function Iv - Ve I [g(v)+ 7]]1 /2 to its root­
mean-square value. Hence its qualitative behavior can 
readily be visualized by plotting this function for any 
specific case. 

3.4. Truncation Mislocation Factor 

Let us define our coordinate system with origin at 
the true centroid. If the desired truncation limits 
were known exactly, there would be only the idealized 
statistical error Ec as discussed in section 3.1. Actually 
the limits are never exactly known; we may begin with 
a trial value of v~O) for the centroid and use this to com­
pute a first approximation v~l). Similarly successive 
approximations may be computed, the kth approxima­
tion being denoted by V~k). 

In eq (3.1), the denominator is proportional to the 
area under the profile in the range - V ~ v ~ V; this 
is insensitive to s mall location errors for a curve of 
moderate asymmetry. The numerator represents a 
first moment and is sensitive to such errors. For the 
(k + l)th approximation the range is 
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if V~k) should vanish, we would obtain the idealized sta­
tistical error, Ee, for the particular curve_ Hence eq (3.1) 

f . may be rewritten as 

f V+f!," If I' 
V~'+I) = - V+d/' vg(v)dv _ I ' g(v)dv = Ec + rcv~d, (3.10) 

where 

I"c"" V[g(V) + g( - V)] I r:, g(v)dv. (3.11) 

Now rc is simply the ratio of the average height of 
of the profile at the end points to the average height 
over the entire range; hence rc < 1. The recursion 
relation, eq (3.10), and the initial condition are satisfied 
by 

k-I 

v~d = Ec L r~' + r~v~O), 
111.=0 

which converges to the value Vc given by 

Vc = EcI(1 - rc). 

(3.12) 

(3.13) 

The denominator on the right is independent of the 
particular curve. Hence the standard deviations given 
by eqs (3.4) and (3.8) (which represent averages over 
several c urves) must be multiplied by a truncation 
mislocation factor fe, i.e., 

(3.14) 

The above results also suggest a means of bypassing 
the successive iterations. For k = 1, eq (3.12) becomes 
simply V~I)= Ec+ rcv~O). Solving for Ec and substituting 
in eq (3.13) yields 

(3.15) 

J Thus, if the trial value v~() is a reasonably good guess, 
I the value of rc may be approximated and Vc then com­

puted from the above expression without further 
iterations. 

3.5. Application to Quasi -Lorentzian Profile 

If the line profile is quasi-Lorentzian (see sec. 2.2), 
we may substitute eq (2.7) in the various expressions 
for the centroid to obtain more explicit results. Since 
Vc = 0 for this model, eq (3.4) , for equal time intervals, 
yields 

l. (O'c)eq:'/ = (Vjl"T)!/2(tan - ' V) - I[V -tan- I V 
~,I 

(3.16) 

This result is essentially the same as that obtained by 
Pike and Wilson [16]. In figure 3 it has been trans­
formed to the wavelength variable x by means of 

> eq (2.6) and is plotted for various values of range and 
background. 
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FIGURE 3, Idealized statistical error of centroid of a quasi-Lorent­
zian profile as function of truncation range for various vaLues of 
background parameter '1) , 

Similarly we may integrate eq (3.9) explicitly for the 
quasi-Lorentzian case; however, the resulting exp res­
sion is rather complicated and not particularly informa­
tive. For the special case of zero background, the res ult 
in simply 

(3.17) 

This ratio varies from 0.86 at V = 0 to 1.00 as V -HXl. 

(Detailed calculations indicate that it is inse nsitive to 
background.) Hence only a limited improvement can be 
achieved by optimizing the data-taking procedure. 

The truncation mislocation factor is found by com­
bining eqs (2.7), (3.11), and (3.14), with the result 

'_ (1 + V2) tan- I V 
jc- (1 + V2) tan- I V-V (3.18) 

This factor is unity for infinite V, attains a value of 
2.75 for V = 1.0, and approaches infinity as V ~ o. 

Idealized statistical errors for the case of zero back­
ground and equal time intervals have been calculated 
from eq (3.16), multiplied by the above factor to obtain 
the total error, and plotted in figure 4 (after conversion 
to the wavelength variable x). This curve reaches a 
minimum for V = 1, in which case the toial statistical 
error is given by 

(V = 1). (3.19) 
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(Note that V = 1 implies the centroid of a relatively 
narrow truncated portion of the profile, rather than the 
centroid definition as used by some crystallographers.) 
Optimization can reduce this error by only 11 percent , 
as shown by eq (3.17) and by figure 4. 

:3 

TRUNCATION RANGE V 

o~? __ ~L-__ ~L-__ L-__ ~1 __ ~ ____ 6LI __ -L __ -L~ __ 

FIGURE 4. TotaL statisticaL error of centroid of a quasi-Lorentzian 
profiLe as a function of truncation range for equaL and for op­
timized counting time intervaLs (zero background). 

3.6. Application to Quasi-Gaussian Profile 

We may carry out similar calculations for the quasi­
Gaussian profile defined by eq (2.11). The minimum 
error occurs at V = 1.8, for which the numerical factor 
in eq (3.19) is reduced to 0.62. In contrast to the Lor­
entzian case, this range includes over 90 percent of 
the area under the profile; this is due to the rapid decay 
of the tails of a Gaussian. 

Optimization of time intervals can reduce the above 
figure by about 8 percent. For large truncation ranges 
and zero background, optimization could be of crucial 
importance; the numerical factor would then asymp­
totically approach 0.68 in sharp contrast with the case 
of equal intervals , where the error approaches infinity. 
However, any appreciable background will cause an 
increase in the error at large ranges and greatly re­
duce the advantage of optimization. 

3.7. Syst.)matic Errors 

There are at least two sources of systematic error 
whose effects may depend upon the choice of wave­
length criterion adopted; these are undetected back­
ground and the presence of unresolved satellites. 
Since we consider only the case where truncation 
limits are taken symmetrically about the centroid, 
the resulting centroid position must be unaffected by 
a constant background, even if no correction is made 
for it. However , if there is an undetected linearly 
varying background, i.e., if the observed intensity 

(after the experimental background correction) IS 

given by 

gObS(V) = g(v) + 'Y/ + /-tv, (3.20) 

the linear term will cause a systematic error. Assum­
ing that the curve is almost sym metrical, we may as a 
first approximation calculate the centroid for a sym­
metric range about the origin and then apply eq (3.15) 
to find the centroid of the observed curve. The result 
may be expressed as 

Jv ' 
- v g(v)dv - V[g(V) + ~ - V)] 

(3.21) 

where 8vc represents the systematic error due to the 
background term in /-t. For a quasi-Lorentzian profile 
this term becomes 

8vc= 3[(1 + P) tan- I V - vj (3.22) 

This error is roughly equal to /-t for V = 1 and to 
0.2/-tP for V ~ 1. Thus for V = 1 and /pT ~ 106 , we 
must have /-t ~ 10- 3 to keep this systematic error of 
the same order as the statistical one; for V ~ 1, the 
requirement is clearly far more stringent. It should 
be reemphasized that /-t refers only to the undetected 
portion of the background, i.e. , it is an error term in 
the background correction. 

A satellite, whose amplitude is likely to be voltage 
dependent , may be strong enough to cause an appre­
ciable systematic error in the centroid and yet not 
be resolved. For large truncation ranges, the worst 
situation occurs with the satellite just short of the 
truncation limit ; its moment arm is then almost equal 
to V. If Ws denotes the satellite width and as the ratio 
of its amplitude to that of the main peak, the sys­
tematic error is roughly VasWs/W. For V ~ 1, the worst 
situation occurs when the satellite peak is appre­
ciably inside the truncation limit; the error is then of 
the order of 0.5 as and is less sensitive to Ws. 

3.8. Effect of Asymmetry 

The form of eqs (3.4) and (3.9) indicates that the 
centroid statistical errors should be insensitive to 
moderate asymmetries since they depend on the shape 
only through integral expressions involving the nor­
malized profile. Furthermore it seems clear that the 
error should not depend on the sign of s (the index of 
asymmetry defined by eq (2.8)); hence we might 
expect that the relative change in the standard devia­
tion is of the order of S2. This expectation was verified 
[13] by taking the model function of eq (2.9) with 
asymmetry s = 0.24 (corresponding to the Fe Kat line) 
and inserting it in eq (3.4). The resulting error was 
about 1 percent greater than that for the symmetric 
quasi-Lorentzian. 
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The actual di placement of the centroid from the 
peak will de pend both on the range and on the model 
function e mployed. For V = 1 the displaceme nt 
Vc-Vp is approximately 0.67 s with eq (2.9) and 0.50 s 
with eq (2.10). In terms of wavelength these expressions 
beco me 0.34 sW and 0.25 sW, respectively. 

4. Median 

4.1 . Computation and Truncation Procedure 

As in the case of the centroid, we must employ a 
truncated portion of the line profile for a practical 
determination of the median. For simplicity, we will 
adopt the same convention, viz, a specified range which 
is symmetric about the median and which may be 

i determined by successive approximations. The total 
statistical error will again be given by an idealized 
statistical error, EIIl , with corres ponding standard 
deviation (Till, multiplied by a truncation mislocation 
factor, ],11' 

>­
I­
Vi 
Z 
w 
I­
~ 

XMJ 
Xm XM+I 

SPECTROMETER SETTING 

FIG URE 5. Illustration of median located in th e (M + I )/h interval, 
as used ill derivation of eq (4 ··n 

" In order to calculate the median error it is helpful 
; to derive a more explicit expression for the median thall 

that given by eq (1.2). Let us pass from the continuous 
to the discrete case and represent the data by the 
histogram of figure 5, where each abscissa value 
corresponds to the midpoint of the base of the cor· l responding rectangle. If the median is located in the 
(M + l)th interval, its position XIIl is defined by 

111 = XM + (tu: /2) + Llxm. ( 4.1) 

Equation (1.2) now becomes 

M N 

'2.IiLlx+IM+,Llxm= '2. IiLlx-IM+,Llxm. (4.2) 
;=1 i=M+I 

Rearrangi ng and inserting the normalized variables l defined by eqs (2.5-6) yields 

Llvm = (Llv/2gM+ I) [ =t+ 1 gi - il gT (4.3) 

4.2. Idealized Statistical Error 

The statistical error in v", is just that in Llvm. The 
calculation is similar to that for the centroid in section 
3.2, except that two cases must be considered for the 
required partial derivatives. For i ~ M + 1, eq (4.3) 
yields 

(4.4) 

For the special case in which i = M + 1, we obtain 

The sum mations may now be eliminated through the 
help of eq (4.3); it follows that 

[a (LlvlII) /agM+I] = (Llv - 2Llvm)/2gM+,. (4.6) 

By figure 5, 0 ,;; Llvm ,;; Llv. Hence it is clear that the 
right side of eq (4.4) represents an upper limit for 
i = M + 1; if N ~ 1 we may employ this equation for 
all i without serious error. 

The calculation then proceeds as for the centroid, 
with the result 

(4.7) 

where we have set gil/+ I = gill, the ordinate at the 
median. 

4.3. Optimization of Statistical Error 

The optimi zation procedure may again be carried 
out by the method of Lagrangian multipliers. The 
optimum time intervals are 

which yield for the optimization ratio 

((Tm) opt 

((Till) eq AI { Jv }1/2 
2V -v [g(v) +'Y) ]dv 

4.4. Truncation Mislocation Factor 

(4.8) 

(4.9) 

Calculation of the truncation mislocation factor is 
also similar to that for the centroid case. Let the 
origin be located at the true median position and the 
idealized statistical error be EI/I. Then, if the range 
for the (k + 1) th approximation is - V + vW ,;; v 
,;; V + vIA'), eq (1.2) is approximated by 

[l v+v(k) JO ] 
V\~' + I) = (l /2gm ) III g(v)dv- . g(v)dv 

o - 1'+vW 
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where 

rm == (1/2gm) [g(V) + g( - V) J. (4.11) 

The factor rm represents the ratio between the average 
ordinate at the end points and the ordinate at the me­
dian position; it will normally be substantially less 
than unity. Hence the same analysis as for the centroid 
follows and the truncation mislocation factor has the 
same form as eq (3.14) , i.e.,j,n = I/(I-r",). Equation 
(3.15) is also applicable to bypass the need for succes­
sive approximations, with v", and rill replacing Ve 

and re. 

4.5. Application to Quasi-Lorentzian Profile 

For the case of a quasi -Lorentzian line (which 1m· 
plies that gill = 1), eqs (2.7) and (4.7) give 

(O"m)eq III = {V( tan-1 V + YJ V) IIpT} 1/2. (4.12) 

This equation is illustrate d in figure 6. If this result 
is reexpressed in terms of the total number of counts 
for the case of zero background, it agrees with the 
calculation of Knowles [19] within the approximation 
of the latter. 
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FIGURE 6. Idealized statistical error of median of a quasi·Lorent­
zian profile as function of truncation range for various values of 
background parameter 1'/. 

Equation (4.9) may easily be integrated for the case 
of zero background to yield 

(O"m)op! 

(O"III)eq 111 

In [V + (l + V2)1 /2] 
[V tan-l V]1 /2 (4.13) 

The factor rill defined by eq (4.11) is simply (l +V2)-1; 
the truncation mislocalion factor then becomes 

j,,, = 11 (1- r",) = (1 + V2) IP. (4.14) 

Assuming zero background, we may calculate the 
total statistical error for the case of equal time in­
tervals by combining eqs (4.12) and (4.14); the opti­
mized case is obtained through multiplication by the 
ratio given in eq (4.13). The results are plotted in fig­
ure 7. For equal time intervals we find that the min­
imum error occurs for V = 1.2 and is 

(V=1.2). 

(4.15) 

Optimized time intervals reduce this figure by only 
about 1 percent. 

3 
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FIGURE 7. Total statistical error of median of a quasi-Lorentzian 
profile as a function of truncation range for equal and for op­
timized counting time intervals (zero background). 

4.6. Application to Quasi-Gaussian Profile 

When the results for the median are applied to a 
quasi-Gaussian profile , the minimum error occurs for 
V = 1.7, with the numerical factor in eq (4.15) becom­
ing 0.76. Optimized time intervals can reduce this 
figure by about 5 percent. As in the case of the centroid, 
optimization appears to be of great significance for 
large truncation ranges and zero background; the r 

numerical factor then approaches asymptotically a 
value of 0.75. However, this advantage would be 
greatly reduced by the presence of any appreciable 
background. 

4.7. Systematic Errors 

Like the centroid, the median is immune to any 
systematic error from a constant background, pro-
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> vided that the truncation limits are defined as in 
sec. 4.1. A linearly varying background 1] + p.v may 
be shown to produce a systematic error 8v", equal to 
p. for V = 1 and approaching p.V2/2 for V p 1. 

For a large truncation range and a satellite with a 
width comparable to that of the main line the worst 
systematic error occurs when the satellite is cen· 
tered at ± V/2. In this case substantially all its area 
lies to one side of the true median and is included in 
the integration. This area is 1TCXsWs/W; inspection of 
eq (4.3) shows that this will cause a systematic error, 
8v"" equal to 7TCI'sWs/2W. For smaller ranges the error 
will be magnified by the truncation mislocation factor; 
on the other hand it will be reduced by the fact that 

( ) not all of the satellite area is included within the 
limits of integration and the included part has sig· 

I nificant portions on both sides of the true median. 

)-

The net result will usually be to reduce the above 
estimate quite substantially. 

4.8. Effect of Asymmetry 

As in the case of the centroid, we might expect 
that the statistical error is insensitive to asymmetry 
and that the relative change in the standard deviation 
is of the order of S2. This prediction has been tested 
[13J by a calculation with the Fe KCI'I line, for which 
S = 0.24. The standard deviation is within roughly 
1 percent of the value for a symmetric line. l For the truncation range V = 1, the displacement of r the median from the peak, i.e ., VII/ - Vp, is 0.57 s for 

i eq (2.9) and 0.39 s for eq (2.10). For infinite range, the 
former gives a well-defined median with a displacement 
of 1.57 s; the latter model then becomes physically 
absurd, since it implies negative values of g(v). 

S. Geometrical Peak 

5.1. Orthogonal Polynomial Technique 

In order to determine the geometrical peak of a 
) _ line profile we must adopt some method of drawing r a smooth curve through the data points_ When the 
~ form of the profile is not known a priori, it seems 

reasonable to fit the data with an empirical polynomial 
by the method of least squares, preferably through 
the use of a computer. 

Forsythe [30J has discussed the difficulties which 
arise with higher degree polynomials, due primarily 

... to roundoff errors, when this method is applied di­
rectly. Hence in such cases he has recommended least 

KI squares adjustments by means of the orthogonal poly-
nomial technique, which alleviates the roundoff prob­
lem. We will adopt this approach and employ a 
weighting function for the jth point which is inversely 

j-~ proportional to its variance, i.e_, 

~ wj=K/a}. (5.1) 

With a slight modification of Forsythe's presentation, 

a senes of orthogonal polynomials may then be de­
fined by 

L. Wjcp",{Zj)CPn{Zj)~Z= 8mn , 
J 

(5.2) 

where m and n denote the degrees of the respective 
polynomials and Z represents a new abscissa variable 
normalized such that -1 !S; Z !S; 1 for the desired range. 
I[ the points are closely spaced and of equal weight, 
then under this definition the CPn'S reduce to the Legen­
dre polynomials. These polynomials may be generated 
by a variety of techniques, e.g., the Schmidt orthog­
onalization process or a set of recursion relations given 
by Forsythe [301. 

Let us assume that the true profile g(z) is an Mth 
degree polynomial, which may be expressed in the 
form 

M 

g{z) = L ancp,,{z). (5.3) 
n= O 

The true values of the coefficients (the an'S) are, of 
course, unknown. However , if we denote the (nor­
malized) observed intensity at the jth point by gj and 
compute the coefficients by the relation 

all = LWjCPn{Zj)gj~, 
J 

(5.4) 

we can show [13J that the resulting polynomial is a 
least squares fit to the data. 

We may now show that the coefficients are statis­
tically independent quantities with equal variances. 
Since the 8g/s, i.e., the errors in g at the various 
points, are statistically independent, it follows im­
mediately that the average (8g;8gj) = 8;p}. Combin­
ing this with eq (5.4) yields 

(oaIll8a ll ) = (~)2 L_L W;WA)m (z;) 1>n{Zj) (8g;8gj) 
I J 

= (~)2 L w }1>",(Zj)1>n(Zj)a-J. (5.5) 
J 

Eliminating a-J by eq (5.1) and applying eq (5.2) the n 
shows 

(oa",8an) = K~z8mn, (5.6) 

which proves the above statement and gives explicitly 
the variance of all/. 

5.2. Statistical Error 

Let us now express the physical problem in terms 
of the normalized variable z, which was defined such 
that -1 !S; z!S; 1, i.e_, 

Z=V/V, (5.7) 
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and set g( v) = g(z). If we assume equal counting 
times tlt and put K = l/lptlt in eq (5.1), it follows with 
the help of eq (2 .13) that 

(5.8) 

By this choice the orthogonal polynomials defined by 
eq (5 .2) depend only on the shape of the observed 
profile and are independent of lp and tlt. (Note that, 
in principle, the g/s in the above expression should 
be the true values rather than the experimentally 
observed ones. However, it may be shown [13] that the 
experimental ones may be used with n egligible error 
under normal conditions.) When the above value of K 
is substituted in eq (5.6), the result is 

(aamaan 1= (tlz/lptlt) am" = (2 /lpT) am" (5.9) 

since tlz = 2/N = 2tlt/T. 
To calculate the peak shift due to statistical error 

we first denote the fitted polynomial by g(z). This 
may be expressed as the sUIllofil1e true profile g(z) 
and an error term ag(z) , caused by the aan's, i.e., 

M 

g(z) =g(z) +ag(z) =g(z) + 2: aancp,,(z). (5.10) 
,,=0 

If the true peak is at Zp, for which g' (zp) vanishes, the 
observed peak will be at a point Zp + oZp such that 

M 

+ L aa"ct>~(zp) = 0 (5.11) 
n=O 

with the neglect of second ·order terms. By eqs (5 .7) 
and (5.11) it follows that 

ct>:, (zp) 
Vg"(vp) 

(5.12) 

With the help of eqs (5.12) and (5.9) the standard 
deviation of the peak becomes 

(5.13) 

(In this expression the quantity g" (vp) in the denomi· 
nator may be adequately approximated by using the 
second derivative of the fitted curve, rather than that 
of the true one.) The cp,,'s have a rather insensitive 
dependence on range through the weighting function 
Wj in eq (5.2). Hence the error depends on range chiefly 
through the explicit factor V in the denominator and 
through the indirect effect on M; the larger the range , 

the higher will in general be the degree of the poly· 
nomial necess ary to fit the data. 

5 .3. Goodness of Fit 

Since in practice the proper value of M is not known 
a priori, we must determine this by some empirical 
test on the fitted curve. One such criterion is the X2 .{ 
test (see, for example, Bearden and Thomsen [32]). 
The residuals for the individual points are gj - g(Zj), 11 

where gj is the experimental value and g(Zj) the value 
of the smoothed fitted curve at the jth point; the vari· 
ances are given by eq (2.13). 

Thus the expression for X2 becomes 

(5.14) 

When averaged over several runs , the average value 
(X2) should approximate the number of degrees of 
freedom, which is simply N - (M + 1), where N is the 
number of data points and (M + 1) the number of " 
coefficients required for an Mth degree polynomial. " 

While the X2 test is an excellent criterion for a gen· 
erally reasonable fit , we may often obtain a more 1 

sensitive indication of the best value for M by exam· 
ining values of the (all I 's , i.e ., the polynomial co­
efficients in eq (5.3) averaged over several curves , say 
No runs. The variance of (a,,1 is found immediately 
by dividing eq (5.9) by No. When the magnitude of the 
average value of a particular coefficient is less than 
its standard deviation , i.e. , -<II : 

(5.15) 

it evidently contributes more error than useful infor­
mation. If this inequality holds for all m > M, it will 
confirm the choice of an Mth degree polynomial. ~ I 

For lines of high symmetry it is usually best to use 
an even degree polynomial, since the last term im· 
proves the fit without appreciably contributing to the 
error given by eq (5.13) . It has been found empirically 
[13] that for a range V = 1 and IpT ~ 106 a 6th degree 
polynomial is usually adequate to represent the data. -' 
This holds for most of the strong K and L lines of -<4 
medium and short wavelength. The highly asymmetric l 
Fe Kal line is somewhat of a borderline case between '] 
a 6th and 8th degree fit, with the 8th apparently I 

preferable. 

5.4. Application to Quasi-Lorentzian Profile \--

If the line profile is quasi·Lorentzian with a range 
V = 1 and I pT ~ 106 , theoretical calculations show that 
a 6th degree polynomial will satisfy the condition given 
by eq (5.15). The orthogonal polynomials have been 
evaluated for this case, with zero background, and 
substituted in eq (5.13) with the result [13] _{ ~ 

(jxp/W = (jp /2 = 1.67/ (IpT) 1/2, (V=1, M=6). 

(5.16a) 
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for the standard deviation in terms of x. It may be 
shown that the numerical factor is roughly propor· 

I tional to M 3/2. 

/i) 

> 

We have checked this equation experimentally 
with six se ts of data on the W Ka, line , comprising a 
total of 35 curves. The results, as shown in table 1, 
indicate rather good agreement. 

TABLE 1. Comparison of theoretical (eq (S. 16a)) and experimental 
standard deviations of the geometrical peak of the W Ka, line for 
a 6th degree polynomial fit with range V = 1. 

Crystal No. of 
(X'/D·F.) settings c urves (jexp U \heor 

(2. - 3) 7 l.l 0.0046W 0.OO33W 
(2. -3) 5 1.3 .0035W .OO36W 
(2. - 3) 6 0.9 .0042W .OO37W 
(2.3) 7 l.l .0038W .OO30IV 
(2.3) 4 1.0 .OO32W .OO33W 
(2.3) 6 1.0 .OO32W .OO33IV 

Since the geo me trical peak is usually determined 
with a range V ~ 1, background will normally be a 

'> rather minor factor. We may ob tain an estimate of 
the background effect as follows: The average value of 
g( v) over the range V = 1 is easily computed from 
eq (2.7) and found to be 7T/4. If we assume equal 
weights and employ this average value of gi n eq (5.8), 

I it follows that for zero background 'Pn(V) = (7T/4)1 /27Tn(V), 
where the 7Tll 'S are the orthonormal forms of the 
Legendre polynomials. If these are used in eq (5.13), 
the numerical factor in the above expression becomes 

c .... 1.68, a change of less than 1 percent. Hence it seems 
reasonable to adopt this same approximation for a 
nonzero background. Thus for a range V = 1, the aver· 
age value of the observed profile is (7T/4) + 1) and 
eq (5.16a) becomes 

(V = l). 

(5.16b) 

5.5. Optimization of Statistical Error 

The time intervals, i.e., the M 's, enter eq (5.13) 
only im p\icitly through the definition of the orthogonal 

? \ poly no mials in eq (5.2). Because of thi s indirect rela· 
r tionship it does not seem feasible to optimize the time 
~ intervals for minimum statistical error by the same 

straightforward method used for the centroid and 
median . Hence a somewhat less satisfactory alterna· 
tive approach has been adopted for the peak. 

After passing from the sum to the integral in eq 
-( (5.2), we may arbitrarily assign a weighting function 

w(z) to obtain one of the standard sets of orthogonal 
J polynomials. (For a concise summary of several well 

I 
known examples, see Abramowitz and Stegun [31J.) 
Thus , for example, assigning w(z) = 1 generates the 
Legendre polynomials. 

Equations (5.1) and (2.13) then fix the relative values 
I', of the time intervals required to produce the desired 

I weight. Summing these and equating to the total time 
> T gives the cons tant K in eq (5.1), which may next be 

substituted in eq (5.6). It is then straightforward to 
obtain an error expression analogous to eq (5.13). 

We have applied this procedure to a quasi·Lorentzian 
profile with zero background for three cases, viz , 
Legendre polynomials and Chebyshev polynomials 
of the first and second kind. Table 2 shows the results 
for a 6th degree polynomial fitted over a range V = 1, 
with the previously treated case of equal time inter· 
vals listed for comparison. In this instance the latter 
turns out to give the lowest error. 

TABLE 2. Comparison of standard deviations obtained for the 
geometrical peak with a 6th degree polynomial fit and a range 
V = 1. 

z represents the abscissa variable normalized such that the range becomes - 1 :$; z ~ 1. 

Weighting 
function 

1 + z' 
1 
(1- z')' /' 
(1- Z2)- 1/2 

Polynomials 

(Equal times - see sec. 5.4) 
Legendre 
Chebyshev (first kind) 
Chebyshev (second kind) 

1.67 
1.68 
1.76 
1.70 

Various other ranges and degrees of polynomials 
were analyzed. In most cases varying the weighting 
function did not affect the error by more than a few 
percent. Hence it seems that no s ignifi cant improve· 
ment in the peak error can be ob tained by optimizing 
time intervals. 

The calculations described above show that, for 
the case of Legendre polynomials, we may replace 
eq (5.16a) by the approximate expression 

(1) = 0), 

(5.16c) 

where M is the degree of the polynomial. For the range 
0.5 ~ V ~ 1 and M = 4 , 6, 8, this approximation is good 
to within 5 percent; it may also be used for other 
weighting functions, but will be a somewhat cruder 
estimate. It is important to note that M itself is im· 
plicitly a function of V, as discussed in section 5.2. 

5.6. Application to Quasi-Gaussian Profile 

The peak error was also computed for the quasi­
Gaussian profile as given by eq (2.11). For simplicity, 
we employed Legendre polynomials according to the 
procedure outlined in the previous section. With 
IpT ~ 106 a 4th degree pplynomial gave an adequate 
fit, as judged by the criterion of eq (5.15). For the 
range V = 1 the numerical factor in eq (5.16a) was then 
reduced to 1.40. 

5.7. Systematic Errors 

Systematic errors in the geometrical peak due to 
background and unresolved satellites are easily treated. 
A linear background, as given by eq (3.20), will have a 
slope /-t; the resulting slope of the observed profile 
near the origin is approximately g" (vp) 8v + /-t, which 
vanishes when 8vp=- /-t/g"(vp) or, in the case of a 
quasi·Lorentzian, 8vp = /-t/2. 
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The maximum slope of a quasi-Lorentzian satellite 
with amplitude as and width Ws is 3 v3 asW/SWs. 
Thi s plays the same role as f-t in the above expression, 
givi ng a systematic error oVp = 3 v3 asW/16Ws for 
the worst case of an unresolved satellite. 

There is an additional systematic error in the geo­
metrical peak due to the degree of the polynomial 
used to approximate the profile. If the test of eq (5.15) 
con trols the fit, there might conceivably be any number 
of omitted orthogonal polynomials whose coefficients 
(i .e., the an's) are just under (2/NoIpT) 1/2. It seems 
re asonable to estimate the error on the basis of the 
first neglected orthogonal polynomial with an appre­
ciable derivative at the origin; for the quasi-Lorentzian 
case , thi s means the first neglected odd coefficient. 
Comparing the systematic error caused by a neglected 
coeffi cient a7= (2/NoIpT)t /2 with the statistical error 
of the mean of No runs in which a 6th degree poly­
nomial was used , we find that they are roughly equal. 
For a 2d or 4th degree fit, the systematic error can be 
still more serious. 

However , if both the profile and the range of obser­
vation are nearly symmetric, the odd coefficients tend 
to be much smaller than the preceding even ones. 
Thus, if a s is barely significant statistically, it is likely 
that a7 is substanti ally smaller. Hence the above 
estimate of syste matic error is probably overly pessi­
mis tic, except perhaps in cases of high asymmetry, 
e.g. , Fe Kat . 

5.S. Effect of Asymmetry 

The error q uoted in sec. 5.4 is not particularly 
sensitive to moderate values of asymmetry. To check 
thi s point the Cu K at line (s = 0.06) and the Fe Kat line 
(s = 0.24) were chosen as typical examples of low and 
high asymmetries. The required orthogonal poly­
nomials were then generated by computer from the 
original experimental data of Bearden and Shaw [1] 
and substituted in eq (5.13). As a result, the factor 
of 1.67 in eq (5.16) was changed to 1.52 and 1.93 in the 
two respective cases. 

5.9. Parabolic Fit 

If the profile is fitted only in a relatively small region 
near the peak, a parabolic fit may be sufficient. In 
this case the weighting factor in eq (5.S) is substantially 
constant with the value (1 + TJ)- I. Thus, in analogy to 
sec. 5.4, it follows from the integral form of 
eq (5.2) that the orthogonal polynomials are simply 
(1 + TJ )I/27Tn (Z) , where the 7T,, ' S are the normalized 
Legendre polynomials. The only one presently required 
is 7Tt (z) = (3/2) t /2Z • If we assume the line is quasi­
Lorentzian and compute g"(0) =-2 from eq (2.7), 
eq (5. 13) then yields 

(Txp/W = (Tp/2 = 0.433 (l + TJ) 1/2jV(/pT) 1/2. (5.17) 

The calculation suggests the possibility of a signifi­
cant reduction in error. Hence a rather detailed study 
[13] has been made on the range of validity of a para­
bolic fit. This showed that, on the assumption of a 

quasi-Lorentzian line with I"T = 106 , a parabolic fit < 
will be satisfactory up to V = 0.32; the right-hand side 
of eq (5.17) then becomes 1.35/(Ipn t/2, an appreciable 
improvement over the 6th degree polynomial for V = 1. 

Furthermore, if the true curve is symmetric and if 
the range of observation is almost symmetric about the 
true peak, a parabola will locate the peak quite ac- ,\ 
curately even though it fails to satisfy the X2 test for ,,­
goodness of fit. In this case the resulting systematic 
error is found to be proportional to EV2, where V defines 
the observed range and E represents the displacement 
of the origin from the peak (in units of v). If, for ex­
ample, we choose V = 0.5 and keep E ~ 0.02, the 
systematic error in the computed peak will be about 
0.1 percent of the line width. 

For an asymmetric line there will be a systematic 
error even if the range is fortuitously centered about 
the true peak. Based on the model of eq (2.10), this 
turns out to be 0.6 SV2 (in units of v). Thus for V = 0.5 
and s = 0.05, the systematic error is about 0.4 percent 
of the line width. Thus an appreciable asymmetry can 
preclude use of a parabola over an extended range, as 
might be expected. This result and eq (5.1S) as well 
are in essential agreement with the calculations of 
Wilson [22]. 

5.1 0 . Optimization of Parabolic Fit 

An effort to optimize the time intervals at each data 
point for a parabolic fit yields the result [13] that ....::> 
virtually all the time should be divided equally between 
the two end points. While the proof is somewhat 
lengthy, the resulting error is easily computed. Let the 
fitted curve be represented by 

(5.1S) 

where an approximate value of A has been determined 
in a preliminary scan. If now readings g2 and gt are 
recorded at ± V, with a time interval T/2 at each, it 
follows that 

(5.19) 

It is clear that the primary factor determining the error 
in Vp is the small difference g2 - gt, whose variance is 
found with the help of eq (2.13) as 2[g(V) + TJ]/Ip l1t. It 
follows that 

2 __ 2_ [g(V)+rz]. 
(T,,- (4AV)2 /p(T/2) (5.20) 

For a quasi-Lorentzian line with V ~ 1, we have 
g(V) = 1 and A = 1; hence for this case 

(V ~ 1). (5.21) 

This is a distinct improvement over eq (5.17), which 
represents the case of equal counting times at many 
points. However, as V is increased, the coefficient A 
in eq (5.18) will be decreased, and the possible improve-

C 

r ' 
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> ment in accuracy correspondingly diminished. Fur­
thermore, thi s two·point method assumes the line is 
exactly symmetrical and provides no internal check 
on this ass umption; this fact would seem to limit its 
practical application. 

5.11. Profile Known a Priori 

We now turn to the case where the exact form of 
the profile is known or assumed a priori. The proble m 
then reduces to determining the amplitude, width , and 
peak position, which may be done by .a least squares 
adjustment. 

The present analysis will be res tricted to a sym­
> metric line profile, e.g., a Lorentzian ; in thi s case a 

determination of the peak is, of course, also a deter­
mination of the centroid and the median. 

Let the given functional form be denoted by f(v). 
We will ass ume that the approximate parameters for 
the li ne are known from a preliminary scan and that 
the approximate peak location is used to define the 

> origin of the v-coordinate. In forming the dimension­
less variables g and v, let these approximate values 
Ipo and Wo be e mployed. The corresponding true 
values , Jp and W, may be expressed as Ipo(1 + y) and 
Wo(l + /1-) res pectively. The true line profile will the n 
become 

.> 

g(v)= (l + y)f (~~;), (5.22) 

where y, /1- , and Vp are all small compared with unity. 
The above equation may be linearized by expanding 

in a Taylor series and neglecting higher order terms 
with the result 

ilg= g(v)- f(v) = f(v)y - vf'(v)/1- - f'(v)vp. (5.23) 

"1 The experimental value of ilgj at the jtb. point is simply 
the differe nce between gj, the observed value, and 
f(vj) , the quantity obtained by substituting Vj in the 
given fun ctional form. If the number of points N> 3, 
there will now be an overdetermined set of linear 
equations with unknowns y , /1- , and Vp. This set may 

> be solved by the method of least squares (see, for 
example, Bearden and Thomsen [32]). 

The equation thus obtained by differentiation with 
respect to Vp is 

(5.24) 

where f; = f(v;) andf; = f'(v;). For a symmetri c function 
f(v) with a range of observation almost symmetric 
about the peak, the first two sums are negligible , at 
least for the purpose of an error estimate. In this case 
eq (5.24) reduces to 

Vp = - [L;I; ilgi/<TT] [L;(f;)2/<TTJ- I. (5.25) 

Since the variance of ilgi is simply that of g;, i.e., 
(ilg;ilgj ) = <TT8ij, it follows that 

., _ L;Lj[fJj /<TT<TJ]<Tf8ij 
<Tp - [L;(f;)2/<TT]2 

This is essentially the same result as obtained by 
Muller, Hoyt, Klein, and DuMond [18] for a known 
profile (a "composite line profile") with specified ampli­
tude and width; under the symmetry condition assumed 
he re, the same error is obtained with only approximate 
values for these two parameters. 

The variance, <TT, is obtained from eq (2.13); with the 
restriction that 1] ~ gi throughout the range of observa­
tion, we may approximate thi s as 

1/<TT = (l"ilt ;/g;) [1 -(1] /g;) ]. (5.27) 

Since f(v) = g(v), the di stinction may now be dropped 
for th e error calculation . Equ ations (5 .26) a nd (5.27) 
the n give 

(5.28) , 

For equal time intervals ilt; = TIN = Tilv/2V; passing 
from the sum to the integral thus yields 

1 _ I}JTJI r[g'(v)]2 ~g '(V)]2} - - - j---1] - dv . 
<T7, 2V - I ' tmv) g(v) 

(5.29) 

We may now evaluate this integral for the case of a 
Lorentzian profile, given by eq (2.7), and obtain finally 

] 
- 1/2 

+ (1 - 41]) tan- I V . (5.30) 

Figure 8 shows the res ultin g errors, plotted as a 
function of V for various values of 1]. In all cases the 
error is large for small values of V, decreases to a 
minimum near V= 1, and ri ses s lowly thereafter. For 
the range V= 1, the error is 

(V= 1), (5.31) 

which is obviously competitive with the optimum 
values for the centroid and the median. 

A similar analysis may be applied to any known 
symmetric profile. If the profile is qualitatively similar 
to a Lorentzian, the error should be comparable to 
the above result. For a Gaussian profile the numeri cal 
factor 0.80 is reduced to 0.76. Moderate asymmetry 
will complicate computati on in the leas t squares ad­
justme nt, since it will the n usually be necessary to 
solve three simultaneous equations in y, /1- , and V}J; 
however, it should not greatly change the resulting 
error. 

5.12. Optimization of Lorentzian 

The sum in eq (5.28) is a linear function of the 
ilt;'s; it will obviously be maximized (and the error 
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TRUNCATION RANGE V 
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FIGURE 8. Statistical error of peak of a Lorentzian profile (form 
known a priori) as a function of range for various values of back­
ground parameter 1/. 
Since the profile is symmetric, this also re presents the e rror of the centroid or median. 

correspondingly minimized) by dividing s ubs tantially 
all the time be tween those points for which the co­
e fficient is a maximum. Substitution of the Lorentzian 
profile fun c tion, eq (2.7), and differentiation with 
respect to v2 yields 

(5.32) 

With the neglec t of second-order terms in 7] the opti­
mized value for v2 becomes (1 /2)[1 - (37] /4) ] and it 
follows that 

Xopt = VoptW/2 = ± (0.71 W/2)[1 - (37]/8)], (5.33) 

m agree me nt with the result of Merrill and DuMond 
[17]. 

If time T/2 is spent at each of these two optimized 
points, the resulting error obtained from eq (5.28) 
beco mes 

(Jxp/W = [0.65/ (lpT) 1/2][1 + (37]/4) ], (5.34) 

again with th e neglect of second-order terms in 7]. 
The above result represents the lowest statistical error 
obtained for any case treated in the present paper; 
however, this me thod can introduce a serious un­
detected systematic error if the line profile is slightl y 
asymmetric. 

6. Extrapolated Peak 

6.1. Midpoint of Single Chord 

The error in the midpoint of a single chord is of 
interest in itself as well as being a starting point for 
analysis of the extrapolated peak technique . Suppose a 
smooth c urve g(z) has been fitted to the data by the 

orthogonal polynomial technique d escribed in secs. 5.1 
and 5.2. Assume a specified value G and le t thi s be the 
true value of the c urve at Zkl, i.e., g(z"I) = G; le t 
the fitted curve attain thi s value at Zk l + OZk l , i. e. , 
g(Z" I +OZkl) = C. Then it follows from eq (5. 10) tha t 

,11 

g'(z"I )oz"'1 + L oClllcPiz,,·d = 0, (6.1) ~ 
11 = 0 

which yields immediately the value of aZ,n/aClII • 

Now le t Zk be the midpoint of a chord drawn at height 
C, intersecting the fitted curve at ZI + OZkl on the left 
side of the profile and at Z2 + OZk2 on the right. Em­
ploying e q (6.1) and setting g' = g' now yields 

(6 .2) 

For symmetric c urves the two term s in the bracke t 
cancel for even n (since the even order orthogonal 
polynomials then contain only even te rms) and are '1 
equal for odd n. Thus for thi s case the above result I 
becomes 

_ {O (n even) 
(aZk /aClII ) = A , 

- cPlI(Z'.) /~ ' (Zk) (n odd) 
(6.3) 

where Zk denotes either end point of the chord. 
Combining thi s with eqs (5.7) and (5.9) now gives 

M 

O'~ = L (av,../aall )2((oCl,y) 
Il = O 

M 

= (2/ I1'T) L V2[cPlI (z")/g'(z,,W , (6.4) 
/I odd 

or 

{ 
M . }1 /2j 

O'x,../W=O',./2 = V/(2 IpT)I /2 L [cPlI (Z"W Ig'(z,J1 
II odd 

(6.5) 

for symmetric line profiles. 
This expression was evaluated [13] for a quas i­

Lorentzian line with a 6th degree polynomial and a 
range V = 1. It is found to give a minimu m for 
g(z".) = 0.75, in reasonable agree ment with the result of 
Backovsky [24], who used uniform weighting. In thi s 
case we have 

" 

O'x,,·/W = 0.95/ (I,]) 1/2, (g = 0.75). (6.6) y 

This accuracy is obviously co mpetitive with the 
centroid or median under optimum conditions. How­
ever, unless the true line profile is exactly symmetric , 
it will define a n e ntirely new feature and will introduce 
a systematic error if used to approximate the peak. 

6.2. Use of Fitted Curve 

If we draw a number of chords as described in the 
above section , it is possible to fit a s mooth " bisector 
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curve" through the ir midpoints with the use of Le- , 
ge ndre polynom ials and extrapolate thi s curve to the 
top of the profile to ob tai n the peak. This follows a 
co m mo nly used graphical technique and is shown in 
figure 1. W ith the aid of eq (6.3) we may co mpute the 
resulting statist ical errors. 

Such calculations [13], which are somewhat lengthy , 
show only minor differences when compared with the 
result of sec. 5.2 for the geometric peak. For c hords 
equally spaced along the ordinate the error seems to be 
slightly higher. With chords drawn at equally spaced 
v,,'s along the abscissa, experimental results indicate 
a slight reduction in s tatisti cal error. Howe ver, addi­
tional sources of sys tematic error may be introduced by 
the choice of range in which the c hords are co nstruc ted, 
as well as by the polynomial degree of the bisector 
curve . He nce, while this extrapolation tec hniqu e is a 
valu able tool for graphical work , it seems to offer little 
advan tage for computer calculations. 

6.3. Use of Raw Data 

It is possible to bypass the fitt ed c urve and con­
struct the bisec tor curve direc tl y from the data points 
on e ither side of the line profile. The error analys is [13] 
of this me thod is somewhat simpler math ematically 
than th e preceding case and he nce permitted a more 
comp re he nsive stud y. With a straigh t line as th e 
bisector curve, the resulting stati s ti cal error is co m­
pe titive with the geo me trical peak. In the case of a 
pa rabola, this error is increased by roughly 50 perce nt. 
Actually it is very doubtful that even a parabola is of 
sufficiently high degree to represent the bisector c urve 
of a line profile with moderate asymmetry. Thu s, except 
as a possible alte rnative tec hniqu e for almost sym­
metri c lines, thi s approac h appears to offer little 
advantage. 

7. Conclusions 

In general our results are in good agreement with 
prior workers for cases which have been treated pre-

'> viously. The only possible exception seems to be the 
suggestion of Porte us and Parratt [21] that the use of 
the centroid involves an unduly large error; their 
conclusion appears based on consideration of an 
i nfini te truncation range rather than the truncated 
portions which must be used in practice. 

While our experimental results on the peak, as 
reported in sec. 5.4, are in good agreement with theory, 

-{ further experiments to verify other predictions would 
be desirable. In this connection it might be helpful to 
com pare the reproducibility of the difference between 
two wavelengths (e.g., the Kal ,2 doublet) as deter­
mined by different criteria. 

Our analysis is not, of course, restricted to x-ray 
line profiles, but applies to any similar problem 

) where the errors in the ordinates are primarily due to 
co unting s tatistics (e.g., nuclear spectroscopy and 
Mossbauer s tudies) . Furthermore, even when a dif­
ferent error law holds, the basic method of optimizing 

counting times, as developed in sec. 3.3, may be of 
value in suggesting a more efficient data-taking tech­
nique. In fact, the possible gain may be greater in 
other fields than in the x-ray problems which we have 
analyzed. 

All of our results may be expressed 111 the form 

(7.1) 

where F is a dimensionless factor of the order of unity. 
Values for a few representative cases are listed in 
table 3. (While standard deviations are tabulated , error 
distributions are normal; hence probable errors can be 
immediately obtained by multiplying by 0.67.) 

TABLE 3. Statistical errors of wavelength features determined by 
various methods (ze ro background). 

u re presents s ta ndard deviatio n , W the full width of the pro fil e at half int e ns it y. / " the 
peak in tensity, and T the total cou nting time. The range is specified by the dime ns ionless 
parame te r V=2X/W, where - X !!S;: x:E: X. 

Case 

a. Lorentziafl Profile known a priori .............................................. J 
Peak , centroid , and median .. 

b. Quasi .Lorelllzian profile not known a priori. 
Centroid .... . 

Median . . , 

Peak -6th degree polyno mial fit.. 
Peak - parabolic fit.. 

*Opllm lzed range for equal countlllg Illnes. 

r runcalion F = (u/W) (/,,1')LI2 
range V 

0.71 
*1.00 

*1.0 
6.0 

*1.2 
6.0 
1.0 
0.32 

Equal Opt. 
times 

0.81 

0.81 
2.1 1 
0.88 
1.49 
1.67 
1.35 

times 
0.65 

0. 73 
2.05 
0.88 
1.28 

= 1.67 
0.82 

Obviously it will require the order of 1()6 co unts to 
de fine a wavele ngth to within 0.1 percent of the line 
width. It is also clear that optimization of time inter­
vals can produce only a rather limited improve ment in 
accuracy. 

If the line profile is known a priori , it is usually 
advantageous to make use of this knowledge in cal­
culating th e wavelength; e.g., a Lorentzian can be 
fitted by thi s method with F = 0.8. For the Lorentzian 
or a ny other symmetri c profile known a priori , all 
three wavelength criteria coi ncide and any method of 
locating one locates all. Hence their errors must , of 
course, be identical. For any known profile of moderate 
asymmetry the errors should be identical if the width 
is specified a priori and roughly equal when the width 
is an adjustable parameter. 

In the general case, where the profile form is not 
known a priori , we may fit a smooth curve to the data 
by the orthogonal polynomial technique and compute 
the peak from the fitted curve. (The extrapolation or 
chord method is a useful graphical technique , but 
offers no particular advantage in numerical co mputa­
tion , where it can indeed introduce additional syste­
matic error.) With the total counts of the order of 1()6, 
a 6th degree polynomial is often satisfac tory for the 
range between the half intens ity points (i.e., V= 1); 
resulting values of F range from about 1.6 to 2.1. 

We may obtain so mewhat lower errors, with a mini­
mum of computational effort , by fitting a parabola 
over a limited range near the peak. However, extreme 
caution is necessary when even small asymmetries 
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are involved. If the number of counts is substantially 
lower (~ 104), or if the curve is more nearly Gaussian 
in shape, a 4th degree polynomial may be satisfactory 
over the range V= 1, which will give F = 0.9. 

In many cases, adoption of the centroid or median 
would promise a reduction in statistical error; these 
criteria can, in fact, be determined to almost the same 
precision for a quasi·Lorentzian profile as for a true 
Lorentzian, known a priori. The reduced error is ob· 
tained only for a truncated portion with a range V ~ 1. 
Of course, adoption of either criterion would result 
in new wavelengths, which would frequently differ 
significantly from the peak values now in general use. 

Definition of wavelength in terms of an arbitrarily 
defined truncation interval appears lacking in funda· 
mental physical significance. Hence it may seem 
preferable to attempt to approximate the "true 
centroid" of the entire profile (V = (0), as done by 
some crystallographers, or the true median. In this 
connection, the median has one obvious advantage, 
viz, it is well defined mathematically. By contrast the 
centroid of a quasi·Lorentzian curve involves a 
logarithmically divergent integral. If the tails are suffi· 
ciently symmetric, it may be defined by using sym­
metric truncation limits in the limiting process; other­
wise the true centroid simply does not exist mathe­
matically. In any case, when large truncation limits 
are used, the statistical error may equal or exceed 
that for the peak of a 6th degree polynomial. 

A linear variation in background will cause a sys­
tematic error, about twice as great for the centroid 
and median as for the peak. (Constant background 
merely produces an increase in statistical error, 
which is roughly comparable for all three criteria.) 
An unresolved satellite may also cause a systematic 
error. With the range V ~ 1, the maximum errors 
from this source for the centroid or median are 
again about twice that of the peak. On the other hand, 
the peak is uniquely subject to an additional syste­
matic error due to the degree of the polynomial used 
to approximate the observed profile; in some cases 
this may be of the same order as the statistical error. 

We wish to reemphasize that the present study has 
ignored any errors in correcting for instrumental 
effects, as stated in Assumption C of section 2.1. In 
')'-ray spectroscopy and in x-ray crystallography these 
corrections may be much greater than the natural line 
widths. In such cases the statistical error calcula­
tions will still give the errors for the respective features 
of the observed experimental profiles, but these may 
be completely overshadowed by systematic errors 
in instrumental corrections. Under these circum­
stances, statistical counting errors are not partic­
ularly relevant if! the choice of a wavelength criterion. 

Even where instrumental corrections are small, 
as in the case of x-ray spectroscopy, the present 
error analysis is somewhat inconclusive in indicating 
a clear choice among the three wavelength criteria 
considered. Simplicity and historical precedent clearly 
favor retention of the peak. It seems doubtful that the 
limited statistical error reduction attainable in some 
cases by abandoning the peak, seldom greater than a 

factor of two, is sufficient incentive to warrant a new 
wavelength definition which would alter many pres­
ently tabulated values. 

Before reaching a final decision, it would be highly 
desirable to know how closely each criterion is asso­
ciated with the term values for the various energy 
levels. This problem might be attacked by either a 
theoretical or an experimental approach. 

In our present state of knowledge, we recommend 
that the use of the peak to define x-ray wavelength 
be continued. We further recommend that the geo­
metric peak method be used in preference to extrapo­
lation techniques. 
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