JOURNAL OF RESEARCH of the National Bureau of Standards – A. Physics and Chemistry Vol. 72A, No. 2, March–April 1968

Effect of Oxide Additions on the Polymorphism of Tantalum Pentoxide (System Ta₂O₅-TiO₂)

J. L. Waring and R. S. Roth

Institute for Materials Research, National Bureau of Standards, Washington, D.C. 20234

(December 8, 1967)

The phase equilibrium relationships of the TiO₂-Ta₂O₅ system were determined in air. An equimolar compound, TiTa₂O₇, was found to melt congruently at about 1662 °C and have a monoclinic unit cell a = 20.297 Å, b = 3.804 Å, c = 11.831 Å, $\beta = 120^{\circ}14'$, apparently isostructural with TiNb₂O₇. In addition, two other compounds are postulated to occur at about TiO₂:49Ta₂O₅ and TiO₂:7Ta₂O₅ and to dissociate at about 1230 and 1190 °C, respectively. TiO₂ apparently accepts a maximum of 9 mole percent Ta₂O₅ in solid solution at 1630 °C. Two eutectics occur in the system at 54 mole percent Ta₂O₅ and 1650 °C and 31 mole percent Ta₂O₅ and 1630 °C.

The high temperature form of Ta₂O₅ is apparently triclinic at room temperature with a = 3.801 Å, b = 3.785 Å, c = 35.74 Å, $\alpha = 90^{\circ}54.4'$, $\beta = 90^{\circ}11.5'$, and $\gamma = 89^{\circ}59.9'$. A metastable transition occurs at 320 °C to a monoclinic form which inverts to tetragonal at 920 °C with a = 3.81 Å, c = 36.09 Å. Several intermediate morphotropic phases are found with up to 9 mole percent TiO₂ in solid solution.

Key Words: Phase equilibria, polymorphism, tantalum pentoxide, titanium dioxide.

1. Introduction

The increased commerical importance of tantalum oxide together with the apparent ambiguity of its phase relationships have served as an impetus to investigate both the pure oxide and the interaction of Ta_2O_5 with other oxides. As part of a continuing program of phase equilibria studies, it was decided to investigate the effect of various impurities and environments on Ta_2O_5 . Titanium dioxide was selected to be studied in air because the cation has a radius similar in size to Ta^{+5} but differing in oxidation state. Investigations of other tantalate systems are in progress and the results will be reported subsequently.

No systematic attempt to study the phase equilibrium relationships in the system Ta_2O_5 -TiO₂ has been previously reported. However, some attempts to investigate the polymorphs of Ta_2O_5 have been described in the literature [1–12].¹ The exact relationships of the various polymorphs are still in doubt because of the lack of suitable single crystals needed to properly characterize the phases. However, it has been concluded by various workers [10, 11] that Ta_2O_5 has at least two structurally different polymorphs, with a reversible phase transition occurring at about 1360 ± 10 °C [11].

2. Materials

The starting materials used in this study were found by general quantitative spectrochemical analyses to have the following impurities:

- $TiO_2 Si$ present in amounts less than 0.01 percent, Cu present in amounts less than 0.001 percent, Ca present in amounts less than 0.0001 percent.
- Ta₂O₅-Al and Si present in amounts less than 1.0 percent; Cu and Mg present in amounts less than 0.1 percent; Ag, Ca, and Mn each present in amounts less than 0.0001 percent.

3. Specimen Preparation and Test Methods

Three-gram batches of various proportions of Ta_2O_5 and TiO_2 were weighed, mixed in a mechanical shaker for approximately 10 min, and pressed into disks at about 10⁴ psi. The disks were placed on platinum setters and calcined in air at 1000 °C for 16 hr. Following this preliminary heat treatment portions of the ground specimen were placed in platinum alloy tubes and heated in the quenching furnace at various temperatures for different periods of time.

The tubes containing the specimens were quenched into ice water and examined by x-ray diffraction techniques. A high-angle recording Geiger counter-

¹ Figures in brackets indicate the literature references at the end of this paper.

diffractometer and Ni-filtered Cu radiation was used in the study. The Geiger counter traversed the specimen at 1/4 deg/min. and radiation was recorded on the chart at 1 deg- 2θ /in. The unit cell dimensions reported can be considered accurate to about ± 2 in the last decimal place listed. Equilibrium was considered to have been achieved when x-ray patterns showed no change after successive heat treatments of a specimen or when the data were consistent with the results from a previous set of experiments. Solidus and liquidus temperatures were obtained by using both a quenching furnace and an induction furnace. Because of the temperature limitation of the quenching furnace, melting points above 1800 °C were determined with an induction furnace. Some duplicate determinations below 1800 °C were made using both furnace types.

The quenching furnace consisted of two concentric ceramic tubes wound with platinum-rhodium alloy wire. The inner tube served as the primary winding and the outer one as the booster. Separate power sources were used with each winding.

The power for the outer winding (booster) was supplied from a variable autotransformer. An a-c bridge type controller in which the furnace winding was one arm of the bridge was used to control the temperature of the inner winding.

The induction furnace consisted of an iridium crucible and cover which acted as the susceptor and specimen container. A small fragment of the calcined material was placed in the iridium crucible on an iridium setter or button and heated to the desired temperature for about 2 min to achieve thermal equilibrium. Apparent temperatures were measured with a calibrated, disappearing filament-type optical pyrometer which was sighted through a 45 deg calibrated prism into a viewing hole at the center of the crucible cover. The temperature measuring system of both the quenching furnace and the induction furnace were calibrated frequently against the melting point of Au (1063 °C), Pd (1552 °C), and Pt (1769 °C). In addition, the measuring system of the induction furnace was calibrated against the melting point of Rh (1960 °C). Temperatures reported in the present study are considered accurate to within ± 10 °C below 1650 °C and to within ± 20 °C above. The measurements were reproducible to within ± 5 °C, or better. The degree of melting was determined by the physical appearance of guenched or cooled specimens. The first adherence of the specimen to the platinum container or iridium setter generally established the beginning of melting. In quenched specimens, complete melting was established by the formation of a meniscus. Similarly, the slumping or loss of shape of the inductively heated specimens established complete melting.

4. Results and Discussion

The phase diagram, figure 1, for the system Ta_2O_5 -TiO₂ in air was constructed from data in table 1 (part A, B and C). Circles represent composition and temperature of experiments conducted in the quenching furnace; triangles represent those conducted with a high temperature x-ray furnace. A triangle with an arc under the base represents experiments conducted in both types of furnaces at the same temperature and a square represents those conducted in an induction furnace. Heavy dashed lines delineate regions of the phase diagram where equilibrium could not be unequivocally established by the experimental methods employed in this study.

Alternate dotted and dashed lines represent metastable equilibrium relationships on the phase diagram.

Several melting points of Ta_2O_5 have been reported [11, 13] previously. The melting point of Ta_2O_5 determined in this investigation was 1887 ± 20 °C which is in reasonable agreement with the previously reported value of Reisman et al., [11]. The numerous reported melting points of TiO₂ have been tabulated by Schneider [14]. A redetermination of the melting point of TiO₂ was not attempted because of the inherent problems associated with the determination.

4.1. L-Ta₂O₅ and Related Phases²

Brauer [1] reported a structural modification of Ta_2O_5 which was isostructural with the low temperature form of Nb₂O₅. Hahn [2] listed x-ray diffraction powder data for a similar form of Ta_2O_5 .

The x-ray diffraction pattern of L-Ta₂O₅ is characterized by strong subcell lines and numerous weak superstructure lines. Lehovec [3] indicated that the major lines of the x-ray powder pattern for Ta₂O₅ could be accounted for on the basis of an orthorhombic subcell a' = 6.20 Å, b' = 3.66 Å, and c' = 3.89 Å. The powder pattern given in reference 4 failed to account for the superstructure lines on the basis of a similar size subcell. Zaslavskii [5] and Harvey and Wilman [6] on the basis of single crystal data, accounted for the superstructure lines in *their* respective patterns by increasing the b axis to b = 44.02 Å (12b') and b = 69.6A (19b'), respectively. Frevel and Rinn [7] attempted to account for the superstructure lines of their powder pattern by selecting a monoclinic cell a = 7.32 Å (2b'), b = 15.55 Å (4c'), c = 10.79 Å, $\beta = 120^{\circ}36'$. However, Terao [8] found that his powder pattern could be indexed only by utilizing approximately twice the previous monoclinic c axis (c = 21.549 Å).

The subcell of the low temperature form of Ta_2O_5 used for this study can be indexed on the basis of an orthorhombic cell a' = 6.19 Å, b' = 3.67 Å, c' = 3.89 Å. The various published unit cell constants [4–9], including those employed by the present authors as well as those derived by others from single crystal and electron diffraction data, failed to provide suitable hkl values to account for the superstructure reflections in the Ta₂O₅ used in this study. Therefore, no x-ray diffraction pattern for low Ta₂O₅ is given. Although the published d-spacings derived from the subcell of the various patterns of Ta₂O₅ agree with those found to occur in the present work, some reflections resulting from the superstructure have not been reported previously. The variance of superstructure reflections

 $^{^2}$ L-Ta_2O_5 represents the low temperature polymorph of Ta_2O_5.

FIGURE 1. Phase equilibrium diagram for the system TiO₂-Ta₂O₅.

H-Ta₂O₅-High temperature form of Ta₂O₅

 H_{tet} -Ta₂O₅ – Tetragonal form. H_{mon} -Ta₂O₅ – Monoclinic metastable form

 $\begin{array}{l} H_{\text{int}} (Ta_2O_5 - Monoclinic metastable form. \\ H_{\text{int}}(Ta_2O_5 - \text{Monoclinic metastable form.} \\ H_{\text{int}}(Ta_2O_5 - \text{Triclinic metastable monoclinic solid solution phase occurring at about 30Ta_2O_5:TiO_2. \\ ("3o:1" - A metastable monoclinic solid solution phase occurring at about 30Ta_2O_5:TiO_2. \\ H_{\text{mon}}(Ta_2O_5 - A \text{ morphotropic modification of } H_{\text{mon}}, Ta_2O_5. \end{array}$

- "49:1" - A L-Ta₂O₅ type compound postulated to occur at about 49Ta₂O₅:TiO₂. "7:1"-A L-Ta₂O₅ type compound postulated to occur at about 7Ta₂O₅:TiO₂.
 - 1:1-TiTa2O7.

 - Liq. Liquid. ss Solid solution

may be due, among other things, to a nonequilibrium low-temperature poorly crystallized material lacking sufficient energy for proper ordering of the superstructure. Similarly the influence of anion and cation impurities on phase formation has essentially not been reported. In fact, most of the materials used for the previously reported Ta₂O₅ x-ray diffraction patterns apparently were not characterized by spectrographic analyses.

In the present work, TiO_2 additions were found to have a significant effect on the nature of the L-Ta₂O₅

O-Compositions and temperatures of experiments conducted in guench furnace. Δ - Compositions and temperatures of experiments conducted in high temperature x-ray furnace

Compositions and temperatures of experiments conducted in an iridium crucible induction furnace.

Д Compositions and temperatures of experiments conducted in both the quenching and high temperature x-ray furnaces.

For clarity not all experimental data appearing in table 1 are plotted on this diagram Heavy dashed lines represent regions where equilibrium was not unequivocally established. Alternate dot-dash lines represent metastable equilibrium.

Quotation marks around a composition indicate that the exact stoichiometry is not known.

type x-ray diffraction powder patterns. Specimens were prepared at close intervals, up to 13 mole percent TiO₂. Since equilibrium was difficult to achieve on heating, these specimens were equilibrated at 1500 °C and reheated at about 1100 °C in excess of 200 hr. A cursory examination of the x-ray data derived from these quenched specimens would suggest a solid solution between L-Ta₂O₅ and TiO₂ up to about 13 percent. However, these x-ray patterns show additional reflections derived from a superstructure. Moreover, the superstructure reflections shift significantly with the

Comr	osition	Heat treatments				Results		
Comp	osition	Initi	ial ^{ia}	Fin	al ^b	Physical observation	X-ray diffraction analyses ^c	
${\rm TiO}_2$	$\mathrm{Ta}_2\mathrm{O}_5$	Temp	Time	Temp	Time			
Mole %	Mole %	°C	Hour	°C	Hour			
0	100			1220 1306	264 16	Not melted.	L-Ta ₂ O ₅ . Do.	
				1350	65	do	$H \cdot Ta_2O_5 + L \cdot Ta_2O_5.$	
				1506	24 4.5	do	H-1 a_2O_5 . Do.	
		1220	264	1775 1329	6 336	do	Do. L-Ta-O-	
		1506	24	1299	90	do	Do.	
1	99			1204 1462	12	do	H_{tri} - Ta_2O_{5ss} .	
				1506 1640	24 4 5	do do	Do. Do	
		1.505		1641	16	do	Do.	
		1506	24	1100 1155	432 66	do	L-T a_2O_5 phase(s). Do.	
				1204	72	do	$H_{tri} Ta_2 O_{5ss}$.	
				1200	90	do	Do.	
2	98	1640	4.5	887 1461	65 19	do	H_{tri} -Ta ₂ O _{5ss} . H_{rei} -Ta ₂ O _{5ee} + "30:1" _{ee} .	
				1640	4.5	do	Do.	
		1640	4.5	887	65	do	Do.	
		1461	19	901	67 432	do	Do. L-Ta ₂ O ₂ phase(s).	
2	07			1200	64	do	"30:1"ss.	
э	91			1506	24	do	Do.	
		1461	16	1641	16	do	Do. Do	
		1506	24	1100	432	do	L-Ta ₂ O ₅ phase(s).	
				1260	112	do	$\frac{50:1}{\text{Do.}}$ ss + L-1a ₂ O ₅ phase(s).	
4	96		1	1471	16 20	do	"30:1" _{ss} . Do	
		1471	16	1641	16	do	Do. D-	
		14/1	10	1100	432	do	L-Ta ₂ O ₅ phase(s).	
5	95			1297 1316	20 65	,do	H'_{mon} -Ta ₂ O _{5ss} + L-Ta ₂ O ₅ phase(s). Do.	
				1345 1486	65	do	Do.	
				1506	72	do	$H_{mon}^{-1} 1a_2 O_{5ss}^{-} + 30.1 S_{ss}^{-}$.	
				1535	64	do	Do. Do.	
		1486 1506	16 72	924 1078	89 72	do	Do. L Ta O, phase(s)	
				1104	65	do	Do.	
				1155	64	do	H_{mon} Ta ₂ O _{5ss} + L-Ta ₂ O ₅ phase(s). L-Ta ₂ O ₅ phase(s) + H _{mon} 'Ta ₂ O _{5ss} .	
		1535	4.5	876	16	do	$H'_{mon} Ta_2O_{5ss}$.	
				950 1297	19 20	do	$\prod_{mon} 1a_2 O_{SSS} + OO.1 SS.$	
		1500	64	1351	2	do	Do. Do.	
6	94	1300	04	1628	16	do	Do.	
7	93	1628	16	1097	336	do	$L-Ta_2O_5$ phase(s). H' Ta_2O_5	
		1506	72	1628	16	do	Do.	
0	0.0	1000	12	1155	60	do	L-1 a_2O_5 phase(s). H' _{mon} -T a_2O_{5ss} + L-T a_2O_5 phase(s).	
8	92	1628	16	1628	336	do	$H_{mon}^{y,on}$ -Ta ₂ O _{5ss} . L-Ta ₂ O ₂ phase(s)	
9	91			1628	16	do	H'_{mon} -Ta ₂ O _{5ss} .	
		1506	24	1506	24	do	Do. Do.	
		1300	24	1033	72	do	L-T a_2O_5 phase(s) + H'_{mon}-T a_2O_{5ss} . Do,	
				1097	336 72	do:	L-Ta ₂ O ₅ phase(s). L-Ta ₂ O ₅ phase(s) \pm H' $=$ Ta ₂ O ₅	
				1150	16	do	H'_{mon} -Ta ₂ O _{5ss} +L-Ta ₂ O ₅ phase(s).	
10	00			1201	16	do	Do. H'_{mon} -Ta ₂ O _{5ss} .	
10	90			1345	16	do	Do. Do.	
				1504 1535	24 4.5	do	Do. Do.	
				1560	168	do	Do.	
				1640	16	do	Do.	
		1400	6	1684	16	do	Do.	
		1486	16	924	80	do	W. T. O.	
				1124	65	do	$H_{mon}^{-} - 1a_2 O_{5ss}.$ Do.	
		1400	6	1247	48	do	Do.	

 TABLE 1. Experimental data for compositions in the system TiO₂-Ta₂O₅

 Part A. Quenching data

See footnotes at end of table, p. 181.

178

			Heat tre	eatments		Results		
Com	osition	Init	ial ^a	Fii	nal ^b	Physical observation	X-ray diffraction analyses ^c	
TiO ₂	${\rm Ta_2O_5}$	Temp	Time	Temp	Time			
Mole %	Mole %	°C 1486 1535 1580	Hour 16 4.5	°C 1351 1097	Hour 16	do	H'_{mm} . TagO ₅₅₅ .	
11	89	1580 1580	22	1203 1097 1132	312 192 64	do do do	$\begin{array}{l} H'_{mon}\cdot T_{aQ}O_{sss}+L\cdot Ta_{2}O_{5} \ phase(s).\\ H'_{mon}\cdot Ta_{2}O_{sss}.\\ L\cdot Ta_{2}O_{5} \ phase(s).\\ L\cdot Ta_{2}O_{5} \ phase(s)+H'_{mon}\cdot Ta_{2}O_{sss}. \end{array}$	
13	89	1580	2	1167 1197 1097	168 168 168	do do do do	$\begin{array}{c} Do. \\ L \cdot Ta {}^*O_5 \ phase(s). \\ H^{}_{mon} \cdot Ta_2O_{sss}. \\ L \cdot Ta_2O_5 \ phase(s)+1:1. \end{array}$	
15	85	1400	6	1167 1358 1470 1480 1486 1508 1580 1640 1687 1695 1721 1750	7 16 16 16 16 16 16 16 16 .5 .16 .16	do do	$ \begin{array}{l} L \cdot 1 a_2 O_5 \ pnase(s) + H_{mon} \cdot 1 a_2 O_{5ss} + 1:1. \\ H_{mon}' T a_2 O_{5ss}. \\ H_{mon}' T a_2 O_{5ss} + 1:1. \\ D_0. \\ H_{mon}' T a_2 O_{5ss} + 1:1. \\ D_0. \\ H_{mon}' T a_2 O_{5ss} + 1:1. \\ \end{array} $	
		1400 1470 1406 1480 1406 1486 1486 1508		1781 1127 1167 924 1097 1055 1060	.16 192 168 89 168 112 19	do. Not melted. do.	$\begin{split} & {\text{Do.}} \\ & H'_{\text{mon}}.Ta_2O_{5ss} + L\cdot Ta_2O_5 \text{ phase}(s) + 1:1, \\ & H'_{\text{mon}}.Ta_2O_{5ss} + L\cdot Ta_2O_5 \text{ phase}(s) + 1:1, \\ & H'_{\text{mon}}.Ta_2O_{5ss} + 1:1, \\ & L\cdot Ta_2O_5 \text{ phase}(s) + 1:1, \\ & H'_{\text{mon}}.Ta_2O_{5ss} + L\cdot Ta_2O_5 \text{ phase}(s) + 1:1, \\ & D_{0.} \end{split}$	
20	80	1406	6	1091 1640 1651 1687 1721	120 20 .16 .16 .16	do. do. Partially melted. do. do.	$\begin{split} & L \cdot Ta_2O_5 \ phase(s) + H'_{mon} \cdot Ta_2O_{5ss} + 1:1 . \\ & H'_{mon} \cdot Ta_2O_{5ss} + 1:1 . \\ & H'_{mon} \cdot Ta_2O_{5ss} + 1:1 \ Liq . \\ & H'_{mon} \cdot Ta_2O_{5ss} + 1:1 \ Liq . \end{split}$	
25	75	1406	6	1780 1413 1450 1576 1646 1722	.16 17 3 16 16 16	do	Do. H' _{mon} .Ta ₂ O _{5ss} + 1:1. Do. Do. Do. Do.	
30	70	1400 1646 1400	6 16 6	$\begin{array}{c} 1300\\ 1612\\ 1642\\ 1646\\ 1652\\ 1656\\ 1662\\ 1671\\ 1704\\ 1726\\ 1753 \end{array}$	$ \begin{array}{c} 16\\ 2\\ 0.16\\ 1\\ 0.16\\ .16\\ .33\\ .16\\ .16\\ .16\end{array} $	Not melted. do	$ \begin{array}{l} H_{mon}' \cdot Ta_{2}O_{5ss} + 1:1,1 \\ H_{mon}' \cdot Ta_{2}O_{5ss} + 1:1,1 \\ \cdot D_{0} \\ Do, \\ Do, \\ Do. \end{array} $	
33.33	66.67	1400	6	1759 1649 1656	.16 .16 .16	do Not melted. do Partially melted.	$1:1 + H'_{mon} \cdot Ta_2O_{5ss}$	
35	65	1400	6	1735 1745	.08	Not melted. Partially melted. do		
40	60	1400	6	1388 1650 1660 1679 1698 1722	$ \begin{array}{c} 113\\ 1\\ 0.08\\ .16\\ .16\\ .16\\ .16\\ .16 \end{array} $	Not melted. do	$\begin{array}{l} 1\!:\!1+H_{mon}^{\prime}\!\cdot\!Ta_{2}O_{5ss}\!\cdot\\ Do.\\ 1\!:\!1\!\cdot\!Liq.+H_{mon}^{\prime}\!\cdot\!Ta_{2}O_{5ss}\!\cdot\\ Do. \end{array}$	
45	55	1400	6	1741 1388 1621 1651 1653 1660 1666 1666	$ \begin{array}{c} .16\\ 113\\ 0.16\\ .16\\ .16\\ .16\\ .16\\ .16\\ .16\\ .16\\ $	Not melted. Not melted. do. Partially melted. do. Completely melted.	$l\!:\!l+H_{mon}^{\prime}\text{-}Ta_{2}O_{5ss}.$	
46	54	1400	6	1708 1652 1662 1680	.16 .16 .16 .16	Not melted. Not melted. Partially melted. Completely melted.		

TABLE 1. Experimental data for compositions in the system TiO₂-Ta₂O₅ - Continued Part A. Ouenching data

See footnotes at end of table, p. 181.

179

Com	osition		Heat tr	eatments		Results			
Com	Josition	Init	tial ^a	Fin	al ^b	Physical observation	X-ray diffraction analyses ^c		
${\rm TiO}_2$	Ta_2O_5	Temp	Time	Temp	Time				
Mole %	Mole %	°C	Hour	°C	Hour				
47	53	1400	6	1662	16	Not melted.			
48	52	1400	6	1002	.10	Not melted.			
49	51	1400	6	1002	.10	Not melted.			
				1662	.16	Partially melted.			
50	50	1406	6	1402	10	Not melted.	$\mathbf{U} = \mathbf{U} + \mathbf{U} + \mathbf{U} + \mathbf{U}$		
(1:	1)	1400	6	1402	10	do	$1:1 + 11O_{2ss} + n_{mon} \cdot 1a_2O_{5ss}.$ 1:1.		
				1607 1626	19 16	do	Do. Do.		
			ļ	1639	0.08	do	Do.		
				1650	.16 19	do	Do. Do.		
				1664 1678	0.16	Completely melted.	1:1+Liq.		
				1690	3	do	1:1+Liq.		
55	45			1400	22 0.16	Not melted. Partially melted ^d	$1:1 + T_1O_{2ss} + H'_{mon} - Ta_2O_{5ss}$ (nonequilibrium). $1:1 + T_1O_{2ss}$.		
				1636	.16	Partially melted.	$1:1 + \text{TiO}_{2ss}$.		
				1655	.16	do	D0.		
60	40			1672 1403	.16	Completely melted.			
	10			1645	0.16	Partially melted.			
				1648	.16	Completely melted.			
				1662	.16	do			
65	35			1403	16	Not melted.	$1:1+\mathrm{TiO}_{2ss}$.		
				1606	0.16	Partially melted ^d	Do. Do.		
				1636	.16	do	1:1+Liq.		
				1647	.16	Completely melted.			
66.67	33.33			1656 1405	.16 16	Not melted.	$1:1 + TiO_{2.00}$		
				1628	0.16	Partially melted.d	# 30		
70	30			1645	.10 16	Not melted.	$1:1 + TiO_{2ss}$.		
				1611 1620	0.16	Partially melted. ^d			
				1624	.16	do			
				1629	.16	Completely melted.	·		
75	25			1649 1413	.16 19	Not melted.	$TiO_{2ee} + 1:1.$		
				1420	4	do	T:O + 1.1		
				1542	2	do	$D_{2ss} + 1:1.$		
				1611 1612	0.16	do	$TiO_{2m} + 1:1$		
				1619	0.16	do			
				1625	0.16	do	$110_{2ss} + 1:1.$ Do.		
				1633 1638	1 0.16	Partially melted.	$TiO_{n} + Lig$		
				1643	.16	do	Do.		
				1658	1.10	do			
				1689 1700	0.16	do Completely melted			
80	20			1357	16	D .: U L Id			
				1617	.25	Partially melted."			
				1623 1626	.25	do			
				1627	.25	do			
		·		1631	.25 .08	Partially melted.	$\begin{array}{c} 1_1 O_{2ss} + L_1 q. \\ D_0. \end{array}$		
				1649 1674	.25	do			
				1694	.16	do			
				1725 1742	.16	do			
85	15			1303	16	Not melted.	$TiO_{2ss} + 1:1.$		
				1627	0.16	Partially melted.d	$TiO_{288} + 1:1.$		
90	10			1630 1303	.16 16	Partially melted. Not melted.	$\operatorname{TiO}_{2ss} + \operatorname{Liq}_{2ss} + \operatorname{Iiq}_{2ss} + 1:1,$		
				1357	16 16	do			
				1620	0.25	do	$D_{2ss} + 1:1.$		
				1624 1628	1 0.16	do	$TiO_{2n} + 1:1.$		
				1632	1	Partially melted.	TiO _{2ss} + Liq.		
		1542	19	900	19		$TiO_{2ss} + 1:1.$		

 TABLE 1. Experimental data for compositions in the system TiO₂-Ta₂O₅ - Continued

 Part A. Quenching data

See footnotes at end of table, p. 181.

180

Composition			Heat tre	atments		Results		
		Initial ^a		Fina	al ^b	Physical observation	X-ray diffraction analyses ^c	
${ m TiO}_2$	$\mathrm{Ta}_{2}\mathrm{O}_{5}$	Temp	Time	Temp	Time			
Mole %	Mole %	°C	Hour	°C	Hour			
91	9			$1523 \\ 1637 \\ 1643 \\ 1653 $	19 1 0.25	Not melted. Partially melted. do	$\begin{array}{c} \text{Do.}\\ \text{TiO}_{2_{285}}+\text{Liq.} \end{array}$	
92	8			1523 1647	19 0.16	Not melted.	$\begin{array}{c} \text{TiO}_{2ss} + 1:1.\\ \text{Do.}\\ \text{TiO}_{-} + 1:z \end{array}$	
93	7			1523 1651	19 19 19	Not melted.	$\begin{array}{c} 11O_{288} + 11q. \\ TiO_{288}. \\ Do. \\ Troperty I \\ \end{array}$	
94	6			1396 1528	19 1.5 65	Not melted.	$\begin{bmatrix} TiO_{2ss} + Liq. \\ TiO_{2ss}. \end{bmatrix}$	
95	5			1659 1694 1197 1303 1357	0.16 .16 113 16 16	Partially melted. Not melted. do. do.	$\begin{array}{l} TiO_{zss}+Liq,\\ TiO_{zss}+1:1,\\ TiO_{zss},\\ Do, \end{array}$	
96	4	1357	16	$1406 \\ 1528 \\ 1623 \\ 1749 \\ 1197 \\ 1528 \\ 1657 \\ 1659 \\ 1684 \\ 1700 \\ 1750 \\ 1750 \\ 1750 \\ 1006 \\ 1750 \\ 1006 \\ $	$ \begin{array}{c} 16\\ 65\\ 2\\ 0.16\\ 113\\ 65\\ 19\\ 0.16\\ .16\\ .16\\ .16\\ \end{array} $	do. do. Partially melted. Not melted. do. do. do. do. do. do. do. do. do. do. do. do.	$\begin{array}{c} Do. \\ Do. \\ Do. \\ Do. \\ TiO_{2ss} + Liq. \\ TiO_{2ss} + 1:1. \\ TiO_{2ss}. \\ Do. \\ DO$	
97 98	3 2	1657	19	1000 1406 1303	.16 16 16	do	Do. Do. Do.	

TABLE 1. Experimental data for compositions in the system TiO2-Ta2O5-Continued Part A. Quenching data

 $^{\rm a}$ All specimens were initially calcined at 1000 °C for 10 hr with heating and cooling rates of approximately 4 °C/min. Small portions of this calcine were then reheated for the designated time of one or more designated higher temperatures and generally quenched in Pt tubes.

Pt tubes. ^b After the initial heat treatment(s) all specimens were reheated in Pt tubes to the indicated temperature. ^c The phases identified are given greatest amount first in the order of amount present at room temperature. The phases are not necessarily those present at the temperature to which the specimen was heated. H_{mon}-Ta₂O₃-Monoclinic metastable form. ^c Monor-Ta₂O₃-Triclinic metast

1:1-111a;0;.
 Liq.--Metastable phase which forms only from the quenched liquid and gives a characteristic but very poorly defined x-ray pattern.
 ss-Solid solution.
 "-Indicate that the exact stoichiometry is not known.
 Specimens appeared partially melted below the solidus and were interpolated to provide the best approach to binary equilibrium.

TABLE 1. Part B: Induction furnace data

TABLE 1. Part C: High temperature x-ray diffraction experimental data for selected compositions in the system TiO2-Ta2O5

Con siti	mpo- on ^a	Temp.	Observation	Con	mpo- ion ^a	Temp.	Observation	Composition		Previous heat treatment		Temp	Results a
${\rm TiO}_2$	Ta ₂ O ₅			TiO ₂	Ta ₂ O ₅			${\rm TiO}_2$	Ta_2O_5	Temp.	Time	r emp.	nesuns
	100	1872 1882 1891	Not melted. Do. Melted.	30	70	1861 1757 1766	Completely melted. Not melted. Do.	Mole % 0	Mole % 100	°C 1000 1220	hr 10 264	°С	L-Ta ₂ O ₅ .
5	95	1850 1861 1868 1882	Not melted. Partially melted. Do. Completely melted			1781 1801 1810 1819	Do. Do. Partially melted. Completely melted			1000	10	$25 \\ 500 \\ 1000$	Do. Do. Do.
10	90	1903 1924 1809 1821	Do. Do. Not melted. Partially melted	35 40	65 60	1762 1776 1726 1744	Partially melted. Completely melted. Partially melted. Completely melted			1640	16	25 270 300	H _{tri} ·Ta ₂ O ₅ . Do. Do.
		1840 1855 1865	Do. Do. Completely melted.	80	20	1735 1742 1757	Partially melted. Do. Completely melted.					350 350 700 750	H _{mon} Ta ₂ O _{5.} Do. Do.
15	85	1872 1840 1852	Do. Partially melted. Do.	85	15	1762 1770 1778	Do.					800 825 850	Do. Do. Do.
20	80	1864 1840 1850 1860	Completely melted. Partially melted. Completely melted. Do.	90	5	1810 1820 1840 1845	Do. Completely melted. Partially melted. Completely melted.					875 900 925 950	$\begin{array}{c} Do.\\ Do.\\ Do.\\ Do.\\ H_{max} \cdot Ta_{2} O_{2} + H_{max} \cdot Ta_{2} O_{3} \\ \end{array}$
25	75	1829 1840 1850	Partially melted. Completely melted. Do.	100		1860 1875	Not melted. Completely melted.	1	99	$\begin{array}{c} 1000 \\ 1640 \end{array}$	10 4.5	975	$\begin{split} & H_{tet} - Ta_2O_5, \\ & H_{tri} - Ta_2O_{5ss}. \end{split}$
^a All	specime	ens were	e initially calcined at 10	000 °C	for 10 hi	r with he	ating and cooling rates					125 125 200	Do. Do. Do.

ere initially calcined at 1000 °C for 10 hr with heating and cooling rates specimens of approximately 4 °C/min.

See footnotes at end of table, p. 182.

 TABLE 1. - Continued

 Part C: High temperature x-ray diffraction experimental data for selected compositions in the system TiO2-TacO5
 TABLE 1. - Continued

Comp	osition	Previou treat	us heat ment	Temp.	Results ^a	Comp	osition	Previo treat	us heat ment	Temp.	Results ^a
TiO ₂	Ta ₂ O ₅	Temp.	Time			TiO ₂	Ta ₂ O ₅	Temp.	Time		
Mole %	Mole % 98	°C 1000	hr 10	°C 250 275 700 800 825 850 875 900	$\begin{array}{c} Do.\\ H_{mon}Ta_2O_{5ss}.\\ Do.\\ Do.\\ Do.\\ Do.\\ H_{tet},Ta_{ts}O_{5ss}+H_{mon},Ta_2O_{5ss}.\\ Do.\\ H_{tet},Ta_{ts}O_{5ss}.\\ \end{array}$	Mole %	Mole % 93	°C 1000 1563	hr 10 230	°C 850 900 930 1000 25 100 200	$\begin{array}{c} Do.\\ H_{mon}, Ta_2O_{5ss} + H_{tet}, Ta_2O_{5ss}.\\ Do.\\ H_{tet}, Ta_2O_5.\\ H_{mon}, Ta_2O_{5ss}.\\ Do.\\ Do.\\ Do. \end{array}$
	07	1640	10	$\begin{array}{c} 25\\ 100\\ 125\\ 150\\ 000\\ 225\\ 600\\ 675\\ 700\\ 725\\ 750\\ 775\\ 800\\ 825\\ 850\\ 900\\ \end{array}$	$ \begin{split} & H_{trl} - 1 a_2 O_{5ss} + "30! T_{ss}. \\ & D_0, \\ & H_{trl} - Ta_2 O_{5ss} + H_{mon} - Ta_2 O_{5ss}. \\ & H_{mon} Ta_2 O_{5ss}. \\ & D_0, \\ & $	8	92	1000 1628	10 16	$\begin{array}{c} 300\\ 400\\ 450\\ 500\\ 700\\ 900\\ 1000\\ 1100\\ 225\\ 100\\ 200\\ 300\\ 400\\ 450\\ 550\\ 550\\ 600\\ 700\\ 700\\ \end{array}$	$\begin{array}{c} D0.\\ D0.\\ Ta_2O_{5s}, {}^{b}\\ D0.\\ D0.\\ D0.\\ D0.\\ D0.\\ D0.\\ D0.\\ D0.$
3	97	1000 1640		$\begin{array}{c} 25\\ 150\\ 175\\ 200\\ 235\\ 275\\ 300\\ 350\\ 400\\ 600\\ 650\\ 700\\ 750\end{array}$	$ \begin{array}{l} ``30:1"_{ss}. \\ Do. \\ H_{mon}.Ta_2O_{ss}. \\ Do. \\ H_{mon}.Ta_2O_{ss}. + H_{tet}Ta_2O_{ss}. \\ Do. \\ H_{mon}.Ta_2O_{ss} + H_{mon}.Ta_2O_{ss}. \\ H_{tet}.Ta_2O_{ss}. + H_{mon}.Ta_2O_{ss}. \\ Do. \\ \end{array} $	9	91	1000 1628	10 16	25 100 1000 1100 25 100 300 400 500 600 700 800	$\begin{array}{c} Do. \\ Ta_2O_{5ss}. \\ \end{array} \\ H_{ier}'Ta_2O_{5ss}. \\ Do. \\ Do. \\ Do. \\ Do. \\ H_{mon}'Ta_2O_{5ss}.^{b} \\ Do. \\ \end{array}$
4	96	1000 1590	10 20	775 800 25 50 200 300 350 400 500 600 700 800	$\begin{array}{c} D_{0}, \\ H_{ter} T a_2 O_{5ss}, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	10	90	1000 1560	10 168	$\begin{array}{c} 900\\ 1000\\ 1100\\ \hline \\ 25\\ 100\\ 300\\ 400\\ 500\\ 600\\ 800\\ 1000\\ 1100\\ \end{array}$	$\begin{array}{c} Do. \\ \end{array}$
5	95	1000 1486	10 16	900 25 200 100 300 400 450 500 600 700 750 800 850 900	$\begin{array}{c} Do. \\ H'_{mon} Ta_2 O_{5ss} + ``30:1''_{ss}. \\ Do. \\ Do. \\ Do. \\ Do. \\ H_{mon} Ta_2 O_{5ss}. \\ Do. \\ Do. \\ Do. \\ Do. \\ Do. \\ H_{ter} Ta_2 O_{5ss} + H_{mon} \cdot Ta_2 O_{5ss}. \\ Do. \\ H_{ter} Ta_2 O_{5ss} - H_{mon} \cdot Ta_2 O_{5ss}. \\ Do. \\ H_{ter} Ta_2 O_{5ss} - Do. \\ Do. \\ Do. \\ \end{array}$	^a L-Ta ₂ O H _{trt} -Ta ₂ O H _{mon} -Ta ₂ C H' _{mon} -Ta ₂ C "30:1" ^{SS} ^b H _{mon} -Ta similarity.	$\beta_{5} = -\text{low te} \\ \beta_{5} = -\text{a meta} \\ O_{5} = -\text{a meta} \\ B \approx \beta_{5} \\ \beta_{5ss} = -\text{a mor} \\ \beta_{aa} \\ -\text{a mor} \\ \beta_{aa} \\ -\text{a mor} \\ \beta_{ab} \\ \beta_{5ss} \\ \beta_{2}O_{5ss} \\ \beta_{5ss} \\ \beta_{2}O_{5ss} \\ \beta$	mperature s istable trick stable mont $\sqrt{2} \times 3.8$. temperatur oclinic phangle than H tastable n a_2O_5 :TiO ₂ . iolution. not be det	stable form inic form of oclinic form re tetragona ise related I _{mon} -Ta ₂ O ₅ . nonoclinic ected in th	of Ta ₂ O ₅ . Ta ₂ O ₅ with of Ta ₂ O ₅ with of Ta ₂ O ₅ re al modificat to H_{tri} -Ta ₂ t solid solu e presence	a $a \approx 3.8$ Å, $b \approx 3.8$ Å, and $c \approx 35$ Å. elated to H_{trr} -Ta ₂ O ₅ by $a \approx \sqrt{2} \times 3.8$, ion of Ta ₂ O ₅ . O ₅ by having a significant smaller tion phase occurring at about of H'_{mon} -Ta ₂ O ₅ because of β angle
6	94	1000 1628	10 16	$\begin{array}{c} 1000\\ 25\\ 100\\ 200\\ 300\\ 325\\ 400\\ 450\\ 550\\ 600\\ 550\\ 600\\ 650\\ 700\\ 750\\ 800\\ \end{array}$	$\begin{array}{c} D_{0}, \\ H'_{mon} D_{0}, \\ D_{0}, \\ D_{0}, \\ D_{0}, \\ D_{0}, \\ D_{0}, \\ T_{a}O_{5ss} + H'_{mon} \cdot T_{a_{2}}O_{5ss}, \\ H_{mon} \cdot T_{a_{2}}O_{5ss}, \\ D_{0}, \\ H_{mon} \cdot T_{a_{2}}O_{5ss}, \\ D_{0}, $	additio cell ap A typ ring at 26.24° reflecti to move range. which, 2θ shift angle li	n of Tapear to pical ex 26.53° with 1 on pos e less t Some for a t, actunes.	O_2 wh b have cample 2θ in T 0 perc itioned han 0.7 of the solid s ally sh	ereas t essent would a_2O_5 v ent Ti ⁴ at 63 l° 2 θ o low an solution nift mo	hose d ially the bead of the second	lerived from the sub- ne same spacings. liffraction line occur- vas found to occur at lition. Conversely, a D in Ta ₂ O ₅ appeared e same compositional ray diffraction lines, and exhibit the least n many of the high

p

The relative peak intensity of the x-ray powder patterns of specimens in this compositional range seem to show maximum intensity at 2 percent TiO_2 . diminishing while becoming more diffuse with increasing TiO_2 and sharpen up with a maximum of intensity at about 12 mole percent TiO2. These fine line differences, abnormal shifts in d-spacings, and intensity difference, are more characteristic of compounds than of solid solution phenomena. For these reasons, phases occurring at the approximate compositions $98Ta_2O_5:2TiO_2$ ("49:1") and $388Ta_2O_5:12TiO_2$ ("7:1") are postulated in the system. Although the exact compositions of the postulated "nonstoichiometric" compounds cannot be established by x-ray powder diffraction this method is sufficient to indicate that the solid solution interpretation is unlikely. Since the stoichiometries of the compounds are not known exactly, the compounds are dashed on figure 1.

A similar phenomenon has been found to occur in other tantalate systems. For example, in the system Ta_2O_5 - TaO_2F , Jahnberg and Andersson [15] obtained single crystal data on samples of different compositions within a field which might have been interpreted as a continuous solid solution series of the L- Ta_2O_5 type. From the single crystal data they concluded that a series of discrete compounds exist within this composition region.

Lehovec [3] described the structure of the tantalum oxide subcell with the tantalum atoms near positions (000), (1/2,1/2,0), two oxygen atoms at about (0,0,1/2) (1/2,1/2,1/2) and the other three oxygen atoms in the same plane as the tantalum atoms. He concluded that the loose packing of oxygen atoms in the plane z=1/2 could easily permit the diffusion of interstitial oxygen ions and/or the incorporation of interstitial cations and therefore the existence of oxides with cation/anion ratios differing from that of Ta₂O₅.

From x-ray powder diffraction data Moser [9] suggested that the low temperature form of Ta₂O₅ may occur in several states. On the basis of change in *d*-values of some weak powder lines, especially the one occurring between 3.6 and 3.3 Å, he arbitrarily divided low Ta₂O₅ into four "states" γ_1 , γ_2 , γ_3 , and γ_4 .

4.2. H-Ta₂O₅ and Related Metastable Phases ⁴

Lagergren and Magneli [10] reported the existence of a high temperature polymorph occurring above 1320 °C and indexed the x-ray pattern on the basis of an orthorhombic unit cell with a=35.6 Å, b=3.79 Å, c=3.735 Å. Zaslavskii et al. [5], concluded from powder data that the high temperature form was tetragonal with a=3.801 Å, c=35.67 Å.

Reisman et al. [11], postulated from fine line splits in the x-ray powder diffraction pattern that the high temperature modification had a symmetry lower than orthorhombic. They further concluded that the phase transition occurred at 1360 °C, and was sluggish but conpletely reversible. Laves and Petter [12] reported three polymorphic forms of high Ta₂O₅ from x-ray and optical data. At room temperature a monoclinic form (α'') was found to occur, with a=3.784 Å, b=3.802 Å, c=35.82 Å, and $\beta=91.00^{\circ}$. This polymorph was reported to undergo a phase transition at 320 °C (to α') with a=b=5.365 Å, c=35.85 Å, $\beta=91.00^{\circ}$ at 400 °C. A tetragonal modification was apparently obtained with long time heating at 1450 °C which, when examined at 20 °C, was found to have a=3.795 Å, c=35.54 Å.

Franklin and Wu [16] have suggested that, from room temperature single crystal data, the high temperature form of Ta₂O₅ can be interpreted as triclinic with a = 7.58 Å, b = 7.59 Å, c = 35.71 Å, $\alpha = 90.23^{\circ}$, $\beta = 91.14^{\circ}$, and $\gamma = 90.12^{\circ}$.

4.2.1. H-Ta₂O₅

In the present investigation Ta_2O_5 was found to exhibit an enantiotropic phase transition at about 1360 ± 10 °C. The addition of TiO_2 lowers the phase transition from about 1360 to about 1150 °C at 9 mole percent TiO_2 . By extrapolation from high temperature x-ray data the high temperature form is postulated to be tetragonal in its stability field rather than the monoclinic or triclinic symmetry generally observed at room temperature. The symmetry of H-Ta₂O₅ cannot be proven conclusively since the phase transition temperature is above the upper temperature limitation of the high temperature x-ray furnace used for this study.

4.2.2. Metastable Phases of Ta₂O₅

From high temperature data, Ta_2O_5 can be shown to have a number of metastable phases occurring in the stability field of the low temperature polymorph. They are indicated on figure 1 as $H_{tri}Ta_2O_5$,

FIGURE 2. Metastable phase transitions in the high temperature form of Ta_2O_5 (from high temperature x-ray data) (CuK_a).

 H_{mon} -Ta₂O₅, and H_{tet} -Ta₂O₅. A plot of temperature versus 2θ is shown in figure 2 for the family of peaks generated by symmetry changes for the tetragonal (1,0,17). The metastable phase assemblage of the high temperature form of Ta₂O₅ is significantly changed by the addition of TiO₂ and the existence of several solid solution phases was established. They are indicated on figure 1 as $30:1_{ss}$, H_{mon} -Ta₂O_{5ss}, and H'_{mon} -Ta₂O_{5ss}.

 $^{^3}$ Quotation marks around a compound indicate uncertainty in the exact composition. 4 H.Ta₂O₅ represents the high temperature polymorph of Ta₂O₅ and phases structurally related to it.

4.2.2.1. H_{tri}Ta₂O₅: Room Temperature Form

Ta₂O₅ when guenched from above the stable 1360 °C phase transition has undergone at least two metastable phase transitions (tetragonal \rightarrow monoclinic \rightarrow triclinic). "Single crystal" precession patterns show a multiplicity of crystallites partially ordered with respect to each other. If a quenched specimen is ground lightly in a mortar and pestle the x-ray powder diffraction pattern shows diffuse peaks. However, if the specimen is carefully prepared for diffraction, with a minimum of mechanical deformation, then the diffuse peaks are resolved into fine line splittings, as previously described by Reisman et al. [11]. This room temperature x-ray diffraction powder pattern (table 2)

TABLE 2. X-ray diffraction powder data for H_{tri}-Ta₂O₅ ^a (CuK_a radiation)

$d_{\rm obs}$	$d_{ m calc}$	hkl ^b	<i>I</i> / <i>I</i> ₀ ^c	dobs	$d_{ m calc}$	hkl ^b	<i>I</i> / <i>I</i> ₀ ^c
d _{obs} 8.93 4.47 3.773 3.768 3.759 3.620 3.621 3.354 3.354 3.062 3.052 3.015 2.763 2.751	d _{calc} 8.93 4.47 3.778 3.778 3.778 3.778 3.778 3.758 3.624 3.624 3.617 3.367 3.367 3.363 3.364 3.054 3.054 2.078 2.762 2.750	hkl b 004 008 101 101 011 013 013 013 015 105 015 105 017 107 107 107 107 107 107 107 109 109	<i>I</i> / <i>I</i> ⁰ ^c 6 7 58 70 55 51 30 30 30 30 30 30 30 30 30 30	d _{obs} 2,485 2,474 2,466 2,457 2,454 2,436 2,433 2,232 2,232 2,201 2,015 1,8997 1,8492 1,8492 1,8495	d _{calc} 2.485 2.474 2.455 2.453 2.453 2.453 2.433 2.243 2.231 2.224 2.231 2.224 2.231 2.224 2.231 2.224 2.022 2.016 1.9004 1.8924 1.8822 1.8825	$\begin{array}{c} hkl^{b} \\ \hline \\ 0,\bar{1},11 \\ \bar{1},0,11 \\ 1,0,11 \\ 1\bar{1}6 \\ 0,1,11 \\ 1\bar{1}6 \\ 0,1,11 \\ 1\bar{1}6 \\ 0,0,16 \\ \bar{1},0,13 \\ 1,0,13 \\ 0,1,15 \\ 1,0,15 \\ 200 \\ 0,1,17 \\ 1,0,17 \\ 1,$	<i>I</i> / <i>I</i> ⁰ ^c 12 17 26 64 73 16 61 58 4 12 9 8 4 7 7 7 27 8 14 15 9
2.739 2.717 2.586	$ \begin{array}{c} 2.741 \\ 2.718 \\ 2.578 \\ 2.575 \\ 2.562 \\ 2.559 \end{array} $	$ \begin{array}{r} 109 \\ \underline{019} \\ 1\overline{14} \\ 1\overline{14} \\ \overline{114} \\ 114 \end{array} $	5 5 3	1.8257 1.7861 1.7517 1.7461	$ \left\{\begin{array}{c} 1.8255\\ 1.7869\\ 1.7525\\ 1.7508\\ 1.7466 \end{array}\right\} $	$ \begin{array}{c} 0,1,17\\ 0,0,20\\ 0\overline{28}\\ \overline{2}08\\ 208 \end{array} $	9 3 1 1

Specimen of Ta₂O₅ heated to 1775 °C for 6 hr and guenched.

^a Specimen of 1₈₂0₈ heated to 1/15 °C for 6 hr and quenched.
^b Relative intensity.
^c Based on triclinic cell a=3.801 Å, b=3.785 Å, c=35.74 Å, α=90°54.5', β=90°11.5', and γ=89°59.9'. (The last decimal point of the angles is given for the purpose of recalculation.)

can be completely indexed on the basis of a triclinic cell with a = 3.801 Å, b = 3.785 Å, c = 35.74 Å, $\alpha = 90^{\circ}54.4', \beta = 90^{\circ}11.5', \gamma = 89^{\circ}59.9'$. In this study, the triclinic form was found to undergo a phase transition on heating at about 320 °C to a monoclinic modification (H_{mon}-Ta₂O₅).

4.2.2.2. H_{mon}-Ta₂O₅

This modification is related to the triclinic form by $a_{\rm mon} \approx \sqrt{2}a_{\rm tri}, \ b_{\rm mon} \approx \sqrt{2}b_{\rm tri}, \ c_{\rm mon} \approx c_{\rm tri}.$ This monoclinic polymorph is apparently the α' phase reported by Laves and Petter [12]. At about 950 °C on heating in the high temperature x-ray furnace, H_{mon}-Ta₂O₅ inverts to a tetragonal modification $(H_{tet}-Ta_2O_5)$.

4.2.2.3. H_{tet}Ta₂O₅

This tetragonal modification of Ta₂O₅ may be related to the tetragonal phase (α) reported by Laves and Petter [12]. According to Laves and Petter [12] a tetragonal form was obtained at room temperature by heating Ta₂O₅ for extended periods of time at

1450 °C. The high temperature (950 °C) indexed powder pattern for the tetragonal modification of Ta2O5 is given in table 3. The pattern was indexed on the basis of a tetragonal cell a=3.81 Å, c=36.09 Å. In this study, pure Ta₂O₅ could not be stabilized to room temperature. However, the stabilization could be achieved by the addition of certain impurities [17].

Table 3. High temperature x-ray diffraction powder data for $H_{tet}{}^{-}Ta_2O_5\,{}^a$ (CuK_a radiation)

$d_{ m obs}$	$d_{ m calc}$	hkl ^b	<i>I</i> / <i>I</i> ₀ ^c
$\begin{array}{c} 4.55\\ 3.80\\ 3.65\\ 3.37\\ 3.07\\ 3.02\\ 2.76\\ 2.491\\ 2.461\\ 2.256\\ 2.247\\ 2.039\\ 1.907\\ 1.900\\ 1.855\\ 1.702\\ 1.687\end{array}$	$\begin{array}{c} 4.51\\ 3.79\\ 3.64\\ 3.37\\ 3.07\\ 3.01\\ 2.76\\ 2.487\\ 2.461\\ 2.256\\ 2.245\\ 2.035\\ 1.907\\ 1.897\\ 1.855\\ 1.704\\ 1.700\\ 1.690\\ \end{array}$	$\begin{array}{c} 008\\ 101\\ 103\\ 105\\ 107\\ 0,0,12\\ 109\\ 1,0,11\\ 116\\ 0,0,16\\ 1,0,13\\ 105\\ 200\\ 202\\ 1,0,17\\ 211\\ 1,0,19\\ 213 \end{array}$	$\begin{array}{c} 7\\ 93\\ 37\\ 80\\ 54\\ 80\\ 10\\ 53\\ 100\\ 10\\ 10\\ 17\\ 7\\ 43\\ 47\\ 37\\ 23\\ 7\\ 7\\ 23\\ 7\end{array}$

^a X-ray taken at 950 °C.

^b Based on tetragonal cell a = b = 3.81 Å, c = 36.09 Å.

^c Relative intensity.

4.2.3. Metastable Solid Solutions

4.2.3.1. H_{mon}-Ta₂O_{5ss}

The effect of TiO_2 additions was investigated by both high temperature x-ray and conventional quenching techniques. From high temperature x-ray data, Ta_2O_5 accepts in excess of 7 mole percent TiO_2 at 470 °C to form a metastable solid solution phase $(H_{mon}-Ta_2O_{5ss}, fig. 1).$

The metastable tetragonal ≠ monoclinic transition indicated in figure 1 as continuing to temperatures above 1000 °C may possibly be stable in the field labeled H-Ta₂O_{5ss}. An ultra-high temperature x-ray study would be needed to establish the equilibrium conditions in this region.

4.2.3.2. H'_{mon} -Ta₂O_{5ss}

The H_{mon} -Ta₂O_{5ss} phase has an apparent morphotropic phase transition to another metastable monoclinic form (H'_{mon} -Ta₂O_{5ss}, fig. 1). The monoclinic angle of H'_{mon} -Ta₂O_{5ss} apparently changes with composition and temperature, and grades into that of the other monoclinic form at about 550 °C and 9 mole percent TiO₂. The x-ray diffraction pattern for H'_{mon} -Ta₂O_{5ss} from the 9:1 composition at room temperature is given in table 4. The specimen was indexed from powder data on the basis of a monoclinic cell with a = 5.367 Å, b = 5.368 Å, c = 35.70 Å, and

TABLE 4. X-ray diffraction powder data for the phase H'_{mon} -Ta₂O₅ (10TiO₂:90Ta₂O₅)^a (CuK₂ radiation)

		,	
$d_{ m obs}$	$d_{ m calc}$	hkl ^b	I/I0 c
4.469	4.461	008	8
3.771	3.781		100
3.638	3.637	$111 \\ 113 \\ 112$	38
3.380	3.379	$113 \\ 115 \\ 115 \\ 115$	65 50
3.076 3.014	3.075 3.014	$\frac{110}{117}$	$20 \\ 25$
2.973 2.714	$2.973 \\ 2.713$		95 15
2.492 2.472	$2.492 \\ 2.472$	1,1,11 206	28 38
2.444 2.418 2.247	2.441 2.418	$\frac{1}{206}$	$\begin{array}{c} 63 \\ 43 \\ 2 \end{array}$
2.232 2.203	2.231	0,0,16 1,1,13	3 8 5
2.036	2.035	1,1,15 220	5 63

^a Specimen heated to 1640 °C for 16 hr and quenched.

^b Based on monoclinic cell a=5.367 Å, b=5.368 Å, c=35.707 Å and $\beta=91^{\circ}42'$.

^c Relative intensity.

 $\beta = 91^{\circ}42'$. This phase is apparently related to H_{tri} -Ta₂O₅ in the following manner:

$$a_{\text{mon}} \approx \sqrt{2} a_{\text{tri}}, \ b_{\text{mon}} \approx \sqrt{2} b_{\text{tri}}, \ c_{\text{mon}} \approx c_{\text{tri}}.$$

4.2.3.3. "30:1_{""}"

From high temperature x-ray data, another phase was found to occur from about 2.5 to 4.5 mole percent TiO₂ and to have a maximum dissociation temperature of about 375 °C. This metastable solid solution phase is apparently related to H_{tri} -Ta₂O₅ and can be indexed on the basis of a monoclinic cell a=3.794 Å, b=3.807 Å, c=35.70 Å, $\beta=90^{\circ}51'$. This phase corresponds closely to the α'' form of Laves and Petter [12]. The indexed x-ray powder pattern for the 3 mole percent TiO₂ specimen is given in table 5. It should be emphasized again that the high temperature tetragonal form of Ta₂O₅ is not quenched-in and that it is the various metastable phases which are detected when specimens are quenched from elevated temperatures and examined at room temperature by x-ray diffraction.

4.3. $TiO_2 \cdot Ta_2O_5(TiTa_2O_7)$

The intermediate compound $\text{TiO}_2 \cdot \text{Ta}_2\text{O}_5$ was found to occur in the system and to melt congruently at about 1662 °C. From x-ray diffraction data, table 6, the compound can be indexed on a monoclinic basis a=20.397 Å, b=3.804 Å, c=11.831 Å, $\beta=120^{\circ}14'$ and is apparently isostructural to the compound TiNb₂O₇ reported previously by Roth and Coughanhour [18] and by Wadsley [19]. It is interesting to note that phases analogous to those compounds richer in Nb₂O₅

LABLE 5.	X-ray diffraction powder data for	the	phase
	" $30:1_{ss}$ " ($3TiO_2:97Ta_2O_5$) ^a		
	(CuK radiation)		

$d_{ m obs}$	$d_{ m calc}$	hkl ^b	I/I ₀ c
4.46	4.46	008	3
3.78	3.79 3.78 3.78	$\begin{bmatrix} 011\\101\\101\end{bmatrix}$	80
3.63	3.63		15
$3.373 \\ 3.361$	3.371 3.359	$105 \\ 105 \\ 015$	$\begin{array}{c} 13 \\ 60 \end{array}$
$3.330 \\ 3.066 \\ 3.050$	$3.329 \\ 3.066 \\ 3.051$	$ \begin{array}{r} 105 \\ \overline{107} \\ 017 \end{array} $	11 5 13
3.022 2.974 2.761	3.022 2.975 2.762	$107 \\ 0.0,12 \\ \overline{100}$	6 100
2.747 2.722	2.746 2.721	$ \begin{array}{c} 109 \\ 019 \\ 109 \\ 109 \\ 109 \end{array} $	3
2.484	2.484 2.470 (2.459	(0,1,11) (0,1,11) (16)	6 15
2.451 2.313	$\begin{cases} 2.448 \\ 2.439 \\ 2.313 \end{cases}$	$1,0,11 \\ 116 \\ 118$	50 2
2.241 2.231 2.227	2.240 2.231 2.227	1,0,13 0,0,16 0,1,12	264
2.227 2.210 2.030	2.227 2.209 2.030	1,0,13 1,0,13 1,0,15	2 2
2.018 1.9034 1.8964	2.018 1.9034 1.8967	$0,1,15 \\ 020 \\ 200$	$\begin{array}{c}2\\11\\13\end{array}$
1.8926 1.8885 1.8486	1.8927 1.8891 1.8488	$ \begin{array}{c} 022 \\ \underline{2}02 \\ \overline{1}.0.17 \end{array} $	7 3 5
$ 1.8394 \\ 1.8257 \\ 1.7846 $	1.8386 1.8256 1.7848	$\begin{array}{c} 0,1,17\\ 1,0,17\\ 0,0,20\end{array}$	

 a Specimen of $3TiO_2{:}97Ta_2O_5$ heated to 1640 °C for 40 hr and quenched.

^b Relative intensity.

^c Based on monoclinic cell a=3.794 Å, b=3.307 Å, c=35.70 Å, and $\beta=90^{\circ}51'$.

than $TiNb_2O_7$ [20, 21] were not found to occur in the $TiO_2 - Ta_2O_5$ system under the conditions studied. Two eutectics were found to occur in the system (fig. 1) at approximately 54 mole percent Ta_2O_5 and 1650 °C and 31 mole percent Ta₂O₅ and 1630 °C, respectively. Some difficulty was encountered in establishing the solidus curve near the higher TiO₂ eutectic composition since the surface of specimens quenched in this compositional region appeared glazed or partially melted below the solidus. For this reason these data were interpolated to provide the best approach to binary equilibrium. This phenomena is probably due to partial reduction in the subsolidus near the melting point of the phase assemblage. The possible deviations in stoichiometry should be investigated at higher oxygen pressures and temperatures.

4.4. TiO₂ Solid Solutions

Titanium dioxide was found to exhibit maximum solubility of 10 mole percent Ta_2O_5 at 1625 °C. The

TABLE 6. X-ray diffraction powder data for $TiO_2 \cdot Ta_2O_5$ ($TiTa_2O_7$)^a (CuK_a radiation)

$d_{ m obs}$	$d_{ m calc}$	hkl ^b	<i>I/I</i> ₀ ^c
10.24	10.22	001	2
9.42	9.42	$20\overline{1}$	5
5.11	5.11	002	55
5.07	5.08	401	24
4.70	4.71	402	7
4.41	4.41	400	2
3.714	{ 3.718	110}	83
2 (10	t 3.689	202)	10
3.619	3.620	111	12
3.401	3.462	401	12
2 200	3.407	603	100
5.590	3.388	111	100
3 317	2 3 3 1 7	211	19
3 207	3 208	601	12
2 949	2 946		12
2.866	2.865	112	38
	(2.760	511	
2.754	2.753	$51\overline{2}$	48
2.725	2.723	$60\overline{4}$	14
2.658	2.657	113	38
2.560	2.556	004	7
2.540	2.541	802	5
2.507	2.508	601	23
2.427	2.426	312	5
2.390	2.389	113	7 .
2.312	2.312	511	51
2 200	2.310	00 <u>5</u> J	10
2.290	2.209	005	19
2.039	2.044	10 0 3	25
2.005	2.006	10.0.2	25
2.000	2.004	515	5
1.9019	1.9020	020	29
1.8797	$\begin{cases} 1.8822 \\ 1.8777 \end{cases}$	$80\bar{6}$	7
1.8447	1.8440	404	5
1.8185	1.8177	603	5
1.7825	1.7825	022	7
1.7621	1.7623	10,0,0	7
1.7403	1.7410	910	7
1.7178	1.7162	115	14
1.7066	1.7064	712	8
1.6939	$ \begin{cases} 1.6940 \\ 1.6938 \end{cases} $	$12,0,\bar{4}$ $12,0,\bar{3}$	19
1.6653	1.6658	11,1.3	29
1.6620	1.6621	807	36
1.0020			

^a Specimen heated to 1620 °C for 16 hr and quenched.

^b Based on monoclinic cell a = 20.397 Å, b = 3.804 Å, c = 11.831 Å and $\beta = 120^{\circ}14'$.

^c Relative intensity.

amount of titanium dioxide solid solution (TiO_{2ss}, fig. 1) at the solidus of 1630 °C decreases with both increasing and decreasing temperatures. The extent of solid solution was delineated by both the disappearing phase

and parametric surface methods. The *a* parameters in A for the various selected compositions used in the study are shown in figure 1.

Any discussion of the nature of the solid solution would be pure speculation; however, an investigation of the physical properties might prove enlightening in characterizing this solid solution.

5. Future Study

This study has established that although ions of a size similar to Ta⁺⁵ but with different valence apparently enter into solid solution with H-Ta₂O₅ they form discrete phases with L-Ta₂O₅. However, the reasons for this type of interaction cannot be determined without a knowledge of the crystal structures of both forms. The crystal structures cannot be determined without single crystals. Single crystals of pure Ta₂O₅ apparently cannot be grown in either of the two main polymorphic forms. We, therefore, propose that a study of other systems will be of help in determining proper compositions to be used in the growth of single crystals of phases having structures similar to the polymorphs of Ta_2O_5 . Such studies are in progress and will be reported at a future date.

The authors wish to thank Mrs. E. K. Hubbard of the National Bureau of Standards for the spectrochemical analysis.

6. References

- [1] G. Brauer, Z. Anorg. Allgem. Chem. 82, 373 (1913).
- [2] R. Hahn, J. Am. Chem. Soc. 73, 5091 (1951).
- K. Lehovec, J. Less-Common Met. 7, 397 (1964). [3]
- X-ray Powder File Card 8-255, ASTM. [4]
- [5] A. Zaslavskii, Dokl. Akad. Nauk SSSR, 104 (1955).
- [6] J. Harvey and H. Wilman, Acta Cryst. 14, 1278 (1961).
- L. Frevel and H. Kinn, Analyt. Chem. 27, 1329 (1955).
- [8] N. Terao, Japan, J. Appl. Phys. 6, 21 (1967)
- [9] R. Moser, Schweiz. Mineral. Petrog. Mitt. 45, [1], 35 (1965).
- [10] S. Lagergren and A. Magneli, Acta Chem. Scand 6, 444 (1952); and ASTM Card 5-0258.
- [11] A. Reisman, F. Holtzberg, M. Berkenblit, and M. Berry, J. Am. Chem. Soc. **78**, 4514 (1956). [12] F. Laves and W. Petter, Naturw. **51**, 633 (1964).
- [13] O. Ruff, Z. Anorg. Allgem. Chem. 82, 373 (1913).
- [14] S. J. Schneider, NBS Monograph 68 (1963).
- [15] L. Jahnberg and S. Andersson, Acta Chem. Scand. 21, 615 (1967).
- [16] E. Franklin and V. Wu, Owens-Illinois Technical Center, personal communication.
- [17] To be published.
- [18] R. S. Roth and L. Coughanhour, J. Res. NBS 55, No. 4, 209-211 (1955) (RP2621).
- [19] A. D. Wadsley, Acta Cryst. 14, 660 (1961).
- [20] A. D. Wadsley, Acta Cryst. 14, 664 (1961).
- [21] R. S. Roth and A. D. Wadsley, Acta Cryst. 18, 724 (1965).

(Paper 72A2-493)