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The frequency spectrum of density fluctuations is calculated for a fluid whose molecules possess
an internal degree of freedom which is weakly coupled to the translational degree of freedom of the
fluid. Irreversible thermodynamics is used to obtain an equation of motion for the internal degree of
freedom. This equation plus the linearized hydrodynamic equations are solved for the frequency spec-
trum of density fluctuations. The results are compared with a similar calculation involving a frequency
dependent volume viscosity. The results are identical for structural relaxation but there is a difference
for thermal relaxation. The origin of the difference is discussed and the magnitude of the difference

is examined for CCl, and for CS,.
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1. Introduction

The spectrum of light scattered by density fluctua-
tions in a fluid is proportional to frequency spectrum
of density fluctuations [1]." The development of the
gas laser has made it possible to measure the spectra
of long wavelength density fluctuations and thereby
study fluids in the frequency region of a few giga-
cycles down to essentially zero cycles/sec.

For dense fluids this frequency region corresponds
to slowly varying processes whose time dependence
may be reasonably expected to be described by the
equations of irreversible thermodynainics. When
considering density fluctuations the appropriate
equations are the linearized equations of hydrody-
namics plus two additional relations among the vari-
ables so that a solution to the initial value (or boundary
value) problem is possible.

In this paper we shall consider density fluctuations
in a fluid whose molecules possess an internal degree
of freedom which relaxes toward local equilibrium with
the density and/or the temperature [2, 3]. This is carried
out in section 2. In section 3 this calculation is com-
pared with an earlier calculation [1] where the internal
degree of freedom was assumed to result in a frequency
dependent volume viscosity. The introduction of a
frequency dependent volume viscosity is based on
statistical mechanical arguments [4, 5].

*This work was sponsored by the Advanced Research Projects Agency of the Department
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The comparison is made in two limiting cases. In
the first case it is assumed that the internal variable
depends only on the local temperature (thermal
relaxation). It is found that the two calculations yield
similar, but not identical, results. The origin and magni-
tude of the difference are examined. Carbon tetra-
chloride and carbon disulfide are used to illustrate the
discussion. In the second case it is assumed that the
internal variable depends only on the local density
(structural relaxation). The two calculations vyield
‘identical results.

No comparison is made when both thermal relaxa-
tion and structural relaxation are present.

2. Calculation

The thermodynamic statement relating the param-
eters for our system is [6]

dU=TdS+ lgv’ dp+Aedt (1)
0

where U is the energy, S is the entropy, 7 is the
temperature, p is the density, py is the equilibrium
value of the density, p is the pressure, £ represents an
internal degree of freedom and A; is the partial deriva-
tive of the Helmholtz free energy with respect to &,

Ae=0A/3¢é)p. 1. (2)
We shall further require that 4: =0 when the internal
degree of freedom is in local equilibrium with the



density and the temperature (whether or not the dens-
ity and temperature have reached equilibrium values).
This may be expressed as

Af(pv Tv E) =

where

g=§(p,T)

is the local equilibrium value of &.

A kinetic equation for £ is obtained by applying the
methods of irreversible thermodynamics to the sys-
tem with the result

@)

a¢lot=—LA, 5)
where the kinetic coefficient L is > 0. As we are con-
cerned with small deviations from equilibrium, A is
expanded to obtain

d
Y e LlAe(p—po) + 4ea(T~To) + Aus(t—£0)]  6)
where Ag,= (04¢/0p)r, ¢, ete. If we expand eq (3) and

substitute this in eq (6) we obtain

0¢lat=—LAee (£ —F). (7)

The equations of motion for the system are the lin-
earized hydrodynamic equations:

ap/at+ pe=0, 8)
. 4
mpodP/ot=—\/?p + (g ns+ 7)1~> V2 9)
and
pnT(,BS/(?l = )\va (10)

Here yy=div v, n, is the shear viscosity, 7, is the vol-
ume viscosity and A is the thermal conductivity and
m is the mass of a molecule. We relate the pressure
and entropy to the density, temperature and ¢ by the
thermodynamic relations

dp—(i—ﬁ)r dp+<%[7),) (ZT+<8§>,) d¢  (11)

and
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The internal variable £ is eliminated by combining
eqs (6), (11), and (12). For the pressure we find
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where

A similar equation is obtained for the entropy.
(o) |+ ]
T, €
aS 2l
+(6T>p,g[dT+T ]

ot
aS Aer ]
e ol
<3§)n.r[ Ay

Equations (8), (9), (10), (13), and (14) constitute a
complete set of equations. The next step is to obtain
the Fourier-Laplace (space-time) transform of this
set of equations. The result is
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Here we have made use of thermodynamic relation-

ships which are developed in the appendix. The trans-
formed quantities are

pr(z) ZL);lte*z' f dre™ " [p(r,t) —po]. (18)



Ty (z) and Y (z

) are obtained in the same way. In eq
4
(16) by= (—{ m+n,-> /mpo, Cy is the low-frequency

sound speed, 7 is the ratio of specific heats,
A= piAecélm,

Br is the isothermal coefficient of thermal expansion,
f,, /45,,//4.»;{ and fr——AgT/Agg In eq (17) C,—T“Ag@,
and a=\/pyC,. The quantity C, represents the con-
tribution of the internal degree of freedom to the
specific heat when the density is held constant.

The right-hand sides of eqs (16) and (17) may be
simplified by noting that in equilibrium

= e
L dp= C8 ) +(‘°Bl dT (19)
mpo YPo Y
and
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A Ip+dT 20
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This simplification is permissible because we are
interested in computing the correlation function
(prp-r(z)) in terms of the equilibrium correlation
function (|pr|?).

To obtain {prp_r(z)) we solve eqs (15—17) for pi (z)
in terms of the initial values py, T and 5. Only the
terms involving p, are of interest because

(prT-1) = {prPr)=0.

3. Comparison With a Calculation Using
a Frequency Dependent, Single Relax-
ation Time, Volume Viscosity

3.1. Thermal Relaxation

We are interested in the case where the relaxing

parameter is independent of the density, i.e., &,=0.
The correlation function is found to be
(prp-i(2)) F(z)
> == 21
(o G2) e
where
C
F(z)=2r (1 —(—’)
+2%[1 + ak*r+ bok*r (1 —C,/C,) ]
1
=7 [(l/\'2 + bok?* + abokit + Cik3r (1 —;)]
+ abok*+ C3k2 (1 —1/y) (22)
and
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G(z) =z7(1—-Ci/C,)
+ 22[1 + ak®r + bok?*r (1 — C,/C,) ]
+ 22[ak® + bok* + abok*t + C3k*r (1 — C,/C,) ]
+ z[abok*+ C3k* (1 + ak?r/y) ]
+ ak2C3k3|y. (23)
For purposes of comparison let us recall the corre-

sponding expressions derived earlier for the case of a
frequency dependent volume viscosity [1]. There

F(z) =237+ 22[1+ 7(ak®+ bok?) ]

+ z[ak® + bok? + bik*+ abok*t+ C3k27 (1 —1/v) ]
+ abok*+ abik*+ C3k* (1 — 1/y). (24)
and
()(z) =7zt +22[1+7(ak?+ bok?) ]
~+ 22 [ak®+ bok®+ bik% + ';(C}“’./f“’ + abok?) ]
+ z[C3k% + abok* + ab k* + TC¥k2ak?/y]
+ C2k2ak?(y. (25)

[Quantities with a tilde refer to the calculation in ref. 1.]
Here b, is the nonrelaxing part of the kinematic vis-
cosity, the relaxing part is b,/(1 + iwT)

o ((:p - (4‘1‘)(1‘1 9= <
where b= (C,—C)C, cHG, Cir. (26)

Direct comparison of G and G shows that the two
expressions are not equivalent. This may be realized
by noting that G contains the combination

2bok?r (1 — C,/C,) +22C3k2 (1 — C,/Cp) T

while the corresponding terms in G are
2bok?7 + 22C3k2T

If we consider the limiting case where the internal
degree of freedom provides the only loss mechanism
for translational degrees of freedom it is possible to

make G and G into equivalent expressions. In this limit
where a=b,=0

G(z)=27(1—C,)/C,) + 2B
+ 22C3k*r (1 — C,/C)) + 2C3k* (27)

and
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A simple comparison shows that if
7=7(1-C//C,) (29)

then G = G in this limit. It also can be shown that F=F
under these conditions.

In an experiment what is measured is not F (z)/G(z)
but the real part of F/G when z=iw:

{pep-r(@)) _p Fliw)
(lpx*) G(iw)

A comparison of the complete expressions requires
that we compare

(30)

Re LU®) Lo Re FU),
Gliw) G(iw)
To do this we write
]"(l(l)) LV] SF l.f,v;g 1}\le| T No[)-)
= = e 31
Re Cliw) R D%~ D D8 ©h
and

Re €(Lw) :J'Vl D] “'1\]2[)2' (32}

Gliw) D+ D3
From eqs (22) and (23) it follows that
Ni=—?[1+ ak*r+bok*7] + abok* + C3k2(1 — 1/v)
No=— w7+ w[ak®+ bok*+ abok't + C3k*r (1 —1/y)]
D\ = o't — &?[ak*+ bok* + abok*t+ C3k*r (1 —C,/C)) ]
+ ak*C3k* |y (33)

and

Dy =— w*[1 + ak*t+ byk*7]

Here use has been made of eq (29).
The corresponding expressions for N, etc., are

Ny =— 0*[1 + ak®F + bok*7] + abok*

C 2
+ 3k (1= 1) + Ghk2ak®s & (1= 1)

No=— %+ Lak?+ bok? + abok*T+ C3k2r (1 —1/v) ]

D, = o*7 — w?[ak?+ bok* + abyk'T+ C3k*r(1—C)/C,) ]

+ C3k2ak*y (34)

and
Dy =—o[1 4 ak?7 + bok?7]

+w [C{%l{z (l + ak? 5) + abyk?

Ce \

Examination of these expressions reveals; (a) they are
not identical term for term, (b) there will be no sig-
nificant difference in their values if

+ ak*rC3}k? b (l —%)]

a=ak*rC,/C, (35)
is small compared to 1.

Using the parameters listed in ref. 1. we find that «
is 6.4 X10~* for CCly at 20 °C and is 2.0 X10-2 for
CS; at 20 °C. The wavevector was taken to be 10° cm~—".
This could be increased to = 0.2 for CS. if we con-
sider scattering angles on the order of 180° using the
He — Ne laser as the light source.

The spectra predicted by eqs (31) and (32) have
been evaluated for CCly and CS. using the parameters
listed in ref. 1. For CCl, there is no difference between
the two curves. This is not surprising considering the
small value of a.

The two curves are not identical for

CSy(k=3X10° cm™}).

The central components are shown in figure 1. The

[ I T T I

3x10°

2x16°

1X10°°

w,108 rad. /sec

Fl(;UR]:: L. The central component of light scattered from CS, as
predicted by eq (32), curve A and as predicted by eq (31) curve B.

The parameters are taken from table of ref. 1. The wave vector =3 X 105 ¢m -
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curve labeled 4 was obtained using a frequency de-
pendent volume viscosity (eq 32). The curve labeled B
was obtained using the results of this calculation
(eq 31). The difference in the amplitude at =10 is
due entirely to the term

C
C3 Zakz'rc—' (1—1/y)

in V. Such a quantity is missing in N;. It occurs as a
result of multiplying the thermal diffusivity and the
frequency dependent volume viscosity. We note for
w=0, the present calculation yields the same ampli-
tude as the theory which does not include internal
relaxation processes.

The Brillouin components for CS, are shown in
figure 2. The differences are due to the relatively
large value of « and to the different values of wpr
where wp is the Brillouin frequency. For curve A,
wp7="78 while for curve B, wgT=113. The large value
of a is the dominant feature as wy depends most
strongly on k& when wyr > 1.

The possibility of finding a situation where « is
appreciably greater than 0.2 appears to be remote.
Longer relaxation times exist for rotational isomers
[3], however, C;/C, is very small so « is still much
less than unity.

3.2. Structural Relaxation

Next let us examine briefly the other limiting case
which involves a structural relaxation rather than a
thermal relaxation. A purely structural relaxation
occurs when & =0. The examination is speedily con-
cluded by observing that if we formally identify A in
eq (16) with b/7r=C2 —C3 (see eq (22) of ref. 1) then
this case and the frequency dependent volume vis-
cosity calculation yield identical results. Also no
scaling of the relaxation times is needed.

1x16°
5x16'° |-
| I l
3.65 3.70 L)
w,10'° rad. /sec
FIGURE 2. The Brillouin components of light scattered from CS, as
predicted by eq (32), curve A and as predicted by eq (31) curve B.
The parameters taken from table of ref. 1. The wave vector £=3 X 10> cm . The hori-
zontal lines indicate the full width at half maximum for the components.
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4. Summary and Discussion

The frequency spectrum of density fluctuations in a
fluid containing an internal degree of freedom has
been calculated. The procedure used was to obtain an
equation of motion for the internal variable & by the
methods of irreversible thermodynamics and then to
solve the resulting set of coupled equations for the
spectrum of the density fluctuations.

This calculation was compared with an earlier
calculation which treated the internal decree of
freedom as a frequency dependent volume viscosity
rather than as a separate variable with an equation
of motion of its own. Two limiting cases were examined.
The structural relaxation case, £,=0 was found to
yield identical results when compared with the
earlier calculation. The thermal relaxation case,
£,=0 does not agree exactly with the earlier calcula-
tion. The difference results from the ways the stresses
due to the internal variable are treated. In the present
calculation the stresses are additive only to first order
[7]. In the earlier calculation they were strictly additive.

The equation of motion approach worked out in
this paper has an intuitive appeal in that one can see
directly how the internal variable enters the problem
and how it is related to the temperature and the
density. The introduction of a frequency dependent
volume viscosity in the case of thermal relaxation is
required by statistical mechanical considerations
[4. 5] and is therefore the preferred way to handle
internal degrees of freedom which are weakly coupled
to the translational degrees of freedom.

This calculation could be adapted to a chemically
reacting system. This aspect of fluctuation theory and
light scattering is discussed at length in recent publica-
tions [8, 9] so we shall not discuss it here.

5. Appendix

Starting with eq (1) the differential expression for
the Helmholtz free energy is

dA :—S(1T+# dp+ Acdé. (36)
0
The Maxwell relations implied by eq (36) are
aS -
(e, e
o5) __L(en) .
(ap)r.f p; ((')T P, & 37)

and

1 /4
S <M) - 4{’;)-
Py \OE/p. T



In equilibrium A¢=0 so that
dA¢=Aepdp+ AerdT + Aee dE=0.
It follows that
Agp=—Aec€p
and
Aer=—Aeeér

where &,=(0¢/0p)r and Er=(9€[0T),.
If we c,(;mbine these results with eqs (11) and (12) we

obtain
o) _(22) + g
<ap>7<_§ ap/r piAect;
ai) :@ﬂ) + pideel br
<3T o oT), piAze€pén
(Qi> :((ﬁ> — Aeebréy (38)
Ip/r, e ap/r

and
5) —(5) —tutt
o) _(3S\ _ 4.
<6T)v.§ aT), ee&j
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Finally we note that

mC3 <@)
Y ap/r
mpoBrC3

and

(as) == (‘v/ﬁ - C‘r
3P T poTﬁ'/' ’

A most interesting discussion with G. I. A. Stegeman
provided the stimulus for this work.
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