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The phase diagram of the uranium-iridium sys tem was co nstructed from da ta obtained by thermal 
ana lysis , metaUographic examination , and x-ray diffraction . The sys te m is characterized by five inter
metallic compounds: U3Ir, form ed peritectically near 945 °C and decomposing e utec toida lly near 758 
°C; U3Ir" formed peritectically near 1121 °C; Ulr, melting congrue ntly at about 1470 °C; UIr" form ed 
peritectically above 1850 °C; and UIr3, having a congruent melting point above 1950 °C U"lr, has a 
solid state transition near 898 °C. One eu tecti c occurs at 914 °C at about 15 atom percent (a/o) iridium 
between uranium and U,Ir; a second occurs between UIr and Ulr, near 1450 °C; and a third occurs 
between UIr3 and iridium at about 1950 0c. The so lid solubility of iridium in gamma-uranium is about 
5.5 aID and of uranium in iridium is unde r 3 a/D. Iridium lowe rs the gamma-beta uranium transformation 
to about 681 °C and the beta-alpha transformation to about 565°C 
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1. Introduction 

This report is one of a group concerned with the 
binary equilibrium diagram of uranium with the indi
vidual elements of the platinide elements, Group VIII 
of the periodic chart- The work was performed for the 
Atomic Energy Commission, and the data were ob
tained by thermal analysis, metallographic examina
tion, and x-ray diffraction_ The studies of the uranium 
reactions have resulted in a correlation between solid 
solubili ty, atomic radius, and the crystal lattice of the 
solvent, which will be presented in the final report of 
this series_ 

2 . Previous Work 

The compilation of the constitution diagrams of 
uranium and thorium alloys by Rough and Bauer 
[11 3 reported the existence of the intermetalli c com
pound UIr2 with the C15, MgCU2, type structure. The 
summary by Hansen and Anderko [2] reported that 
,$-uranium could be stabilized by the addition of 
2 percent iridium_ The supplement on binary constitu
tion diagrams by Elliott [3] reported the existence of 
the Ulr3 compound with the c ubic structure and also 
that the maximum solubility of iridium in uranium is 
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19 

about 2 percent- The Ulr3 compound is isotypic with 
CU3Au, as reported by Dwight , Downey, and Conner [4]_ 

3. Preparation of Alloys 

The component metals consisted of uranium metal 
of about 99.9 percent purity (Mallinkrodt Biscuit) 
obtained from the Atomic Energy Commission and 
iridium powder of about 99_5 percent purity_ A qualita
tive spectrochemical anaJysis of the powder by 
Hubbard at NBS showed that palladium, platinum, 
and osmium were present in the range of 0_01 to 0_1 
percent and that rhodium was present in the range of 
0_001 to 0_01 percent- Additional metallic impurities 
were estimated as fQllows: copper, iron, nickel, and 
silicon as 0_01 to 0_1 perce nt each; silver and magne
sium as 0_001 to 0.01 percent each; and aluminum, 
calcium, and chromium as 0_0001 to 0_001 percent 
each _ Prior to melting the powder was pelletized_ 

Some of the alloys in the range 0 to 24 atomic percent 
(a/o) Ir were prepared by induction melting under 
vacuum in beryllia crucibles_ During induction 
melting of alloys containing above 6 a/o Ir, there usually 
occurred a violent reaction which was strong enough 
to eject some of the alloy from the crucible_ For thi s 
reason the majority of the alloys above 6 a/o were 
prepared by arc melting which was carried out on a 
water-cooled copper hearth using a tungsten electrode 
and under a helium atmosphere; these alloys were 



melted at least three times , being turned over and re
melted after each solidification. 

The specimens for microscopic analysis were 
mounted in an acrylic plastic and rough finished on a 
series of silicon carbide papers ending with a 600 grit 
paper. The specimens were then polished on lubricated 
laps with a serie~ of diamond abrasives ending with 
l,u and occasionally with 1f4,u diamond paste. 

The structures of most of the u'raniu'm rich alloys 
were revealed by elec trolyti c etching using about 30 
V dc and 10 A/cm2 in an electrolyte containing 5 parts 
orthophosphoric acid, 8 parts ethyl alcohol and 8 
parts ethylene glycol. Alloys of high iridium content 
were etched electrolytically using a 5 percent sodium 
cyanide electrolyte with 10 Vac and a current density 
of approximately 10 A/cm2 • Depending on the par
ti cular sample, the microstructures of the remaining 
alloys were revealed by several etching techniques 
with a variety of reagents. These included immersion 
in HN03 (60% by volu me), electrolytic e tching with 
hydrochlori c acid in ethyl alcohol (1: 9) at 10 A/cm2 , 

swabbing with aqua regia, and electrolytic etching 
with 10 V dc and 1 A/cm2 in a pe'rchloric acid elec
trolyte (60% by volume). 

Th e thermal analysis, heat treatments , and x-ray 
diffraction procedures were identical to those em 
ployed in the study of the uranium-ruthenium system 
[5]. 

4. Experimental Results 

4.1 . The Alloys of 0 - 24.7 a/o Iridium 

The aUoys of low iridium content are characterized 
by the existence of sluggish reactions. This sluggish
ness was apparent from the thermal analysis data ; in 
many instances the uranium arrests were easily evident 
in the recording of the heating trace, but on the cooling 
cycle these arrests, particularly for the f3 -'» a trans
formation, were rather weak. Repeated thermal 
analyses runs were made, and th ese included ones at 
different heating or cooling rates . 

The presence of iridium in uranium has a significant 
effect upon the uranium transformations, depressing 
them considerably during a cooling process. The 
thermal analysis results for the 1.2 a/o iridium alloy 
will be useful in showing the effect of iridium upon 
uranium. This alloy had been pre melted in a beryllia 
thermal analysis crucible prior to loading into the 
thermal analysis apparatus and the run was made 
under vacuum. The sample was heated at the rate of 
3.8 °C/ min on the first run: and the a-'» f3 transfor
mation began at 643°C , the f3 -'» Y transformation 
began at 759 °C and melting started at 1100 °e, each 
arrest being very strong_ The maximum temperature 
was 1217 0c. On cooling, at a rate of 3°C/min, freezing 
started with a strong arrest at 1114 °e, the Y-'» f3 
transformation began at 750°C, also with a strong 
arrest, and the f3-'» a transformation gave a weak 
arrest at 536°C. This thermal analysis run was re
peated the following day under the identical condi
tions, the sample having remained in the furnace under 
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vacuum. The heating trace again showed three s trong 
arrests, while the cooling trace exhibited two s trong 
arrests plus a weak f3 -'» a arrest. 

In order to investigate the uranium transformations 
further , this same alloy was first reheated to above 
the a -'» f3 transformation and then cooled . In this 
partial run, the a -'» f3 transformation started at 631 °C 
on the heating cycle . The sample was heated to a 
maximum of 760 °C (no f3 ~ y arrest was evident 
though it may have occurred) and was held above 
675°C for 2 hr and 10 min. T he sample was cooled 
at 2.5 °C/min. On cooling, the f3 -'» a arrest was of 
medium strength and was initiated at 542°C. This 
sample was cooled to only 457 °e and was immediately 
reheated to above the f3 -'» Y transformation. On heat
ing, the a -'» f3 transformation started at 646 °C and 
the f3-'» y transformation started at 756 °e, with the 
maximum temperature being 861°C. The sample was 
cooled at 0.8 °C/min and it was above 815 °C for 80 
min. At this cooling rate, the y-'» f3 transformation 
started at 751 °C and the f3-'» a transformation started 
at 560 0C. _ 

These results indicate that iridium has a pronounced 
effec t upon the ura nium transformations and upon 
the a -'» f3 transformation particularly. The hysteresis 
between heating and cooling of this 1.2 a/o iridium 
alloy is notable also , for in heating at the 3°C/min rate 
the transformations occur at an average of 641 and at 
758 °e and on cooling at 3°C/min they occur at an 
average of 536 and 750 °e . 
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In additional th ermal a nalysis runs, it was dete r
min ed th at th e {3 ~ a transformation shifted consider
ab ly with a c ha nge in cooling rate_ The transformation 
started at 542°C and was raised to 560 °C as the 
coolin g rate was changed from 2_5 °C/min to 0.8 
°C/ min. A change in the cooling rate did not appreci
ably affec t the y ~ {3 transformation . 

The above effects were noted in alloys of up to 12.0 
a/o iridium. The thermal analysis results are give n 
in table 1 a nd some data are presented in figure 1. 
These res ults show that the addition of iridium to 
uranium lowers the melting point of the alloy to a 
eutectic located near 15 a/o iridium and at a te mpera
ture of 914 °C. The y ~ {3 urani um transformation is 
lowered gradually by the addition of iridium to a mini 
mum near 681°C, thi s horizontal bei ng stabilized at 
thi s te mperature by about 6 a/o iridium. The {3 ~ a 
uranium transformation was most drastically affected. 
This particular transformation is rather sluggish on 
coolin g, as evidenced by a minimum temperature of 
538°C for the 0.3 a/o iridium alloy and 536°C for the 
1.2 a/o iridium alloy. This behavior was not observed 
in the previous studies of the uraniu m-ruthenium [5] 
and uranium-rhodium [6] systems. Further additions 
of iridium rai sed the transformat ion temperature to 
near 565°C . The transformation occurs at 570 °C in 
the 6.1 a/o iridium alloy and at 560°C in a slowly cooled 
aHoy of 1.2 a/o iridium, giving an average of 565°C. 

'TABLE 1. Th ermol analysis results. U· lr ({/loys 

Reactions °C 

% lr Fusion Arre s t y-> {3 

0 11 31 767 
0.3 1121 766 
1.2 1114 750 

75 1 
3. 1 1098 726 
6.1 1061 679 

12.0 955 922 685 
19.6 941 910 758 
24.7 945 910 757 
33.0 1126 
39.9 11 21 898 
44.2 901 
51.3 1447 
60.2 1450 

Optical P yromete r Measuremen ts: 
51.3 ,, / .. I,· Melted at 1470 ± 20 °c 
60.2 .,/ .. I r Melted a t 1800 
68.8 dIll I r Not melted a t ]850 
75.3 a/u I,. Not melted at 1850 
82.0 a/ II I,. Not melted a t 1830 
95. 1 a /o I r NOI melted at 1950 
96.8 a/II I,. NO I me lted a t 2075 

{3->a 

657 
538 
536 (tooled at 3 DC/min) 
560 (cooled at 0.8 (Ie/min) 
544 
570 

684 
685 

The uranium transformations were less eas ily de
tected in the cooling curves as the iridium conte nt 
in creased to more than 12 a/o. The {3 ~ a arrest in 
the 19.6 and 24.7 a/o iridium alloys on cooling were 
not readily apparen t, but the heating curves for these 
alloys showed good arrests for the ex ~ {3 and the 
{3 ~ y transformation s. Despite the absence of the 
{3 -l> a arrests the x-ray diffraction patterns and the 
thermal analysis heating c urves showed that uranium 
is prese nt at room temperature in alloys of up to 24.7 
a/o iridium. 
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The solId solubility of iridium in a lpha- ura nium is 
extremel y low, as indica ted by the s harp depression 
of the {3 ~ a transformation with the add ition of 0.3 a/o 
iridium. At quenc h temperatures of 650°C and belo w, 
the 0.3 a/o iridium specimens eac h contained a pre 
cipita te phase, presumably the adjacen t compound , 
indicating that the maximum solid so lubility of iridium 
in alpha-uranium is under 0.3 a/o . 

The solid solubility of iridium in beta-uraniu m is also 
relatively low. The maximum solid solubility is on the 
order of 0.4 a/o, as determined from the metallog
raphic appearance of alloys of 0.3 and 0.6 a/o iridium . 
The 0.3 a/o iridium alloy was probably single phase in 
the specimen quenched from 700°C, though a small 
amo unt of a contaminant phase was visible. The all oy 
of 0.6 a/o iridium was definitely two-phase . The x-ray 
data revealed that beta-uranium could be retai ned to 
room temperature by quenching, although some had 
transformed to alpha-uranium. In some instances the 
beta-uranium peaks were present even though the 
sample had been quenched from the gamma-uranium 
solid solution field, as in the 1.2 and the 3.1 a/o iridium 
samples quenched from 1000 °C. 

The solid solubility of iridium in gamma-uranium is 
relatively high being on the order of 5.5 a/o iridium. 
The presence of a very small amount of precipitate 
phase in the 6.1 a/o iridium alloy quenched from 910 
°C indicates an .upper limit of solid solubility. The 
intersection of the eutectic line near 914 °C with the 
solidu s line, as determined from the appearance of 
fusion in quenched specimens of lower iridium co n
tent, placed the maximum solid so lubility near 5.5 
a/o iridium_ The solidus line rises almost vertically 
from the minimum y ~ {3 transformation temperature 
to in tersec t with the projected solv us line. The 
quenched specimens of 6.1 a/o iridium did not indicate 
that the solvus line had been crossed, since in each 
specimen a small amount of precipitate phase was 
present. 

The alloys of 19.6 and of 24.7 a/o iridium conte nt 
each had strong arrests near 945, 910, 758, and 685 
0C. The arrest of 910°C was determined to be the 
e utectic arrest and the 685 °C arrest was the y -l> {3 
eutectoid horizontal. The other two arrests are asso
ciated with the V~1r compound_ The data for the 
uranium-rich alloys are assembled in figure 1. 

4 .2. The U:1 1r Phase 

The existence of the intermetallic compound at 
25 a/o iridium was determined initially from extended 
heat treatments of an alloy of 24_7 a/o iridium. A 
series of alloys of 19.6 to 51.3 a/o iridium were heat 
treated at 820°C for 65 hr. The specim en of 24.7 
a/o iridium unexpectedly appeared to be almost a 
single phase. These samples had been sealed in silica 
tubing and were pulled from the furnace to cool in 
circulating air while still encapsulated . In order to 
confirm the existence of the VaIr phase the heat 
treatments were repeated using additional specimens; 
in each instance, once at 815°C for 70 hr and again 
at 830°C for 120 hr, the 24.7 a/o iridium alloy showed 
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a considerable change and was nearly single phase 
(fig. 2a, b). The alloys of 19.6 a/o and of 33.0 a/o 
iridium each consisted of two phases (fig. 2c, d) and 
each contained a phase whose x-ray diffraction pattern 
matched that of the 24.7 a/o iridium specimen. A 
compound in the ratio of three uranium atoms to one 
of the platinide elements had not previously been 
reported. 

The U;Ir phase appears to be stable only between 
945 and 758°C as determined from thermal analysis 

(0) 

( C) 

data_ Quenched specimens also revealed incipient 
fusion in specimens of 24_7 and 33.0 a/o iridium 
quenched from 950 °C. Th e phase also reac ts rather 
slowly on heating; this was indicated by thermal 
analysis data where in a number of heating curves of 
the 19.6 and 24.7 a/a iridium alloys two strong arrests 
appeared on heating but only one strong arrest on 
cooling. 

The U;1r phase does not persist to room te mpera
ture. This is confirmed by a metallographic exam ina-

(b) 

(d) 

FIGURE 2. Uranium-iridium aLLoys. 
a. As cast structure of 24.7 a/o iridium alloy. Unetched. X 100. 
h. Alloy of 24.7 a/o iridium a fter 65 hours at 820 °C, predominantly the ~lr phase, 

with small areas of contaminat ion. Starting mate riaJ was the arc melted material (fig. 2A). 
Glycol etch. X 1000. 

c. Alloy of 19.6 a/o iridium , after 65 hr at 820°C. Etched in 5 percent II F. X 100. 
d. Alloy of 33.0 a/o iridium , after 65 hr a l 820°C. Etched in 5 percent nitric acid in a l

cohol. X 100. 
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tion of the thermal analysis sample and of quenched 
pecimen which consists of two phases; these phases 

were id e ntified by their x-ray diffraction patt erns as 
alph a- uranium_ and the U lIr2 phase. The c harac ter
is ti c x-ray pattern of the UJr phase is given in table 2 .. 

The x-ray pallerns of the 19.6 and 24.7 a/o iridium 
a ll oys in th e as cas t (arc me lted) cond ition were 
Ilrea tl y different from that determined for the U;;lr 
phase. it was subseq ue ntly determined that the 
predominant phase in the as cast conditi on was the 
U;IIr~ co mpound. The U2Ir compound reported by 
Berndt a nd Dwight [71 was not detected. 

(a ) 

( c ) 

4_3_ The U;l lr2 Phase 

The existence of the U3lrz phase was postulated on 
the evidence obtained from extended heat treatments 
of the alloys, including one of 39_9 a/o iridium. This 
specimen was heated at 820°C for 6S hr and it con
sisted of one predominant phase upon metallographic 
examination. The x-ray data and the metallographic 
appearances of alloys adjacent to this composition 
indicated that the compound was placed at 40 a/o 
iridium_ _ 

The thermal an~lysis data reveals that the formation 

( b) 

( d ) 

FIGURE 3. Uranium-iridium alloys. 
a. Alloy of 39.? a/o }r}d,ium after 9,3 hr at 915:C. Modified glycol etch. X 100. 
b. Alloy of 44.2 a/o lrI.d~u~ after 93 hr a t 9 15 ~. Modified glycol e tc h. X 100. 
c. AII?y of, 51.3 a~o IfIdlllm , melted at 1450 C. Etched electrolytically in 60 percent 

perchlonc aC id solu tion . X 100. 
d. Alloy of96.8 alo iridium , healed 10 2075 0c. Glycol etch. X 100. 
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TABLE 2. Characteristic x-ray patterns for U-Jr compounds information on this compound was useful in deter

L 10 a-U;: l r~ /l- l,ir, Ul r 

d I d I d I d I 

2.87 vw 2.73 111 2.79 vw 2.90 vw 
2.73 vw 2.62 5 2.69 vw 2.52 5 
2.70 vw 2.44 111 2.54 vw 2.31 vw 
2.62 w 2.31 w 2.49 vw 1.82 111 

2.59 w 2.22 5 2.42 5 1.62 w 
2.55 5 1.92 w 2.36 m 1.49 w 
2.43 vw 1.64 vw 2.12 vw 1.43 w 
2.33 e 1.59 vw 2.04 vw 1.41 w 
2.30 m 1.56 m 1.88 m 1.39 5 

2. 13 111 1.49 111 1.86 vw 1.15 m 
2.08 w 1.39 s 1.77 111 0.97 w 
1.93 vw 1.37 m 1.53 m 

1.54 w 1.28 w 1.43 vw 

1.52 m 1.19 w 1.42 vw 

1.48 w 1.15 5 1.31 111 

1.39 w 1.27 m 

1.37 m 1.23 m 

1.33 m 1.16 w 

1.2i w 1.00 vw 

1.24 m 0.95 vw 
1.18 w 
1.12 w 

w 0.92 
~--

temperature of this compound is near 1121 0c. In · 
addition, thermal analysis of alloys from 33.0 to 44.2 
a/o iridium (fig. 3a, b) also revealed the presence of a 
reaction horizontal at about 898°C. This arrest is due 
to a solid· state transformation of the U3Ir2 compound 
as revealed by the changed x-ray diffraction pattern 
for a specimen held at 915 °C for 93 hr as opposed to 
one held at 820 °C for 65 hr. The x-ray diffraction data 
are presented in table 2. 

4.4. The Ulr Phase 

The alloy of 51.3 a/o iridium in the as cast condition 
contained only a small amount of a second phase , pres
ent as eutectic. The melting point of this alloy was 
determined by optical pyrometer measurements to be 
1470 ± 20°C , from two melting point readings of 1450 
and 1490 °C (fig. 3c). In addition, thermal analysis of 
this alloy gave only one arrest, near 1447 °C. The ther
mal anaylsis run of the 60.2 a/o iridium alloy had one 
arrest only, near 1450 °C, while its melting point from 
optical pyrometer measurements was determined to 
be at 1800 0c. Thus it was concluded that a eutectic 
horizontal is located at 1450 °C and that the melting 
point of the UIr compound is 1470 0c. The metal
lographic appearances of the 51.3 a/o iridium speci
mens was not significantly changed by various heat 
treatments and quenches. 

The x-ray diffraction pattern for this phase (table 2) 
was detected in the diffraction charts for alloys of 
from 44.2 to 60.2 a/o iridium. The metallographic ap
pearances of the alloys in this range showed decreas
ing amounts of a second phase as the 50 a/o iridium 
compOSitIOn was approached, and the specific x-ray 
diffraction peaks became more definite also. 

4.5. The Ulr~ Phase 

The existence of the Ulr2 phase (66.67 a/o iridium) 
was reported by Heal and Williams [8]; this compound 
has the face centered cubic lattice, a = 7.4939. The 
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mining that no compound existed between the UIr 
and the UIr2 phases. This was confirmed by the fact 
that the specimens of 60.2 a/o iridium always exhibited 
the x-ray diffraction peaks of these two particular 
phases. 

The melting point of this compound is above 1850 
°C as determined by optical pyrometer measurements. 
The compound apparently is formed peritectically, 
because no evidence of eutectic was present in the 
alloy of 68.8 a/o iridium for the various heated speci· 
mens. 

4.6. The 75-100 a/o Iridium Region 

This particular portion of the phase diagram was 
determined through the use of alloys of 75.3, 82.0, 
95.1, 96.8, and 100 a/o iridium. The UIr3 compound 
has the face centered cubic structure, a = 4.023, as 
reported by Dwight et al. [4]. 

The Ulr3 phase is the compound adjacent to the 
iridium solid solubility field. Only the iridium and the 
Ulr3 diffraction peaks were observed in the x-ray pat
terns of alloys in the 75.3- 100 a/o iridium range. The 
melting point of the Ulr3 phase is apparently above 
1850 °C, for no evidence of fusion of this phase was 
found in an examination of a specimen of 75.3 a/o 
iridium heated to this temperature. In addition, the 
alloy of 82.0 a/o iridium was heated to 1830 °C with 
no evidence of fusion. The maximum temperature 
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attained for this series of specimens was 2075 °C 
[or the 96.8 a/o iridium alloy; the sample had not vi s
ibly me lted and it was still two phase, though some 
grain growth had occurred and certain areas showed 
evid ence of fusion (fig. 3d). In the 95.1 a/o iridium 
alloy heated to 1950 °C, fusion was also found and 
evidence of eutectic areas were noted. It seems likely 
that UIr3 melts congruently and that a eutectic hori
zontal exists at about 1950 0c. 

The solid solubility of uranium in iridium is quite 
low and is certainly under 3 a/o since the 96.8 a/o 
iridium alloy was two phase after being heated to 
2075 0c. The x-ray diffraction patterns of alloys of 
over 95 a/o iridium showed practically no shift of the 
iridium peaks in the various heat treated specimens. 

5. Summary 

The liquidus for uranium-iridium cons ists of a e u
tecti c between uranium and U3Ir near 15 a/o iridium 
and 914 °e, from whence it rises to a maximum at 
the melting point of the UIr phase at 1470 °e, de
creases slightly to the e utectic at 1450 °e between 
UIr and UIr2 , rises to the melting point of the UIr3 
phase which is probably at some temperature above 
2000°C and then to a postulated eutec ti c near 1950 °C 
be tween UIr3 and iridium (fig. 4). The U3Ir phase: 
is form ed peritectically at 945 °C from U3Ir2 and it 
decomposes at 758 °C into y-uranium and U3Ir2 . U3Ir2 

is formed peritectically [rom UIr at 1121 °C a nd is 
stable to room temperature though it has a solid
state transformation at 898 °C. 1 lIr melts rongruently 
at 1470 °C, Ulr2 is believed to be formed peritectically 
from UIr3, and UIr3 is believed to have a congruent 
melting point. 

lridium depresses the y~ [3 uranium transfor
mation to 681°C and depresses the [3 ~ a trans
formation to 565°C. The maximum solid solubility 
of iridium in y-uranium is 5.5 a/o, in [3-uranium is 
about 0.5 a/o, and in a-uranium is less than 0.3 a/o. 
The solid solubility of uranium in iridium is less than 
3 a/o. 
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