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A class of Newton forms 

P(x )= ao + a,(x-xo)+ ... + a,, (x-xo) . . . (x- x ,,_ .) 

are di scussed whic h admit a stable evaluation algorithm in an interval [A , B l. Stability is defined in 
the pape r. The estimate 

where L: = B - A and M(x): = laol + ladx + .. . + la"lx", is shown to hold for the rela tive error of 
e valuation of P (x) in fA, Bl. 
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There are algorithms for polynomial evaluation 
which require fewer operations (Motzkin [4] ,1 Belaga 
[1], Pan [6], Cheney [2], Knuth [3]), but these algorithms 
are prone to lose significance. The Horner scheme 
itself lea ves much to be desired in this respect, and thi s 
fact has led to the study of methods whi ch reduce the 
loss of s ignificance, but may require additional opera
tions (Ri ce [7], Lawson [9]). 

An evaluation algorithm de pends on the form in 
whi ch the polynomial is given. Forms on which a 
"stable" evaluation algorithm can be based are called 
" well-conditioned." This note calls attention to a 
class of well-conditioned Newton form s.2 These form s 
involve more parameters and require more operations 
for evaluation than the normal form described above. 
The number of operations is about the same as for 
evaluating an expansion by T chebychef polynomials, 
but in general more parameters are required. 

Loosely speaking, an algorithm is "unstable" if 
one obs erves for some arguments an excessive loss 
of significance. A rigorous, but somewhat narrow, 
definition of stability will be based on an idealized 
floating point arithmetic and an error analysis similar 
to the one carri ed out by v. Neumann and Goldstine 
[5], however referring to the relative rather than the 
absolute error. The arithmetic will be finite in that 
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1 Figures in brac kets ind ica te the Li tera ture refe rences a t the e nd of thi s pape r. 

it will res tri ct itself to numbers which are " represent
able" with manti ssae of a fixed finite length. 3 It will 
be infinite in that it will permit arbitrarily large positive 
and negative exponents. Thus there will be infinitely 
many representable numbers. Some of the theoretical 
results of thi s paper hinge on this idealization, and 
might be considered artifi cial. Nevertheless , these 
results point in the direction of desirable improve
ments, and provide a reasonable classification of 
algorithms from the view point of stability. 

Our definition of condition and stability differs 
from that given by Rice [7]-

1. Minimal Newton forms. The evaluation algo
rithms to be considered are based on the 

Newton form 

of polynomials : 

P(X) = ao+ al(x - x o) + a2(X - xo) (x - xd+. 

+an(X-Xo) . . . (X-Xn - ') . (1.1 ) 

Polynomials in this form are evaluated by the follow
ing adaption of the Horner scheme : 

Dn: = an 
Di: = ai+(x-xi)Di + I, 

P(x): = Do. 
i=n - 1, ... ,0, 

(1.2) 

2 O ur s tud y of t hese forms was s t imulated by a disc uss ion wit h J. Rice o n po lyno mia l 
evalua tion. It profi te d from d isc ll ss ions wi th A. J. Go ldman , who a lso de tec ted a major 3 0 .531015 is re presenta ble in decimal arithme tic of m a nti ssa le n gth s~2; 0.1 10 is not 
mis take i ll th e prev ious versio n of thi s paper. represent a ble in a n y bina r y arithmeti c. 
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Instability can arise when adding the coefficients ai 
and when subtracting the "critical values" Xi. There 
are three reasons for being less concerned with the 
effect of the subtractions: 

First, if the values X and Xi are both representable 
in the given finite arithmetic, then forming the dif· 
ferences X - Xi is a "stable" operation. A similar 
advantage does not obtain for the addition, even if 
the coefficients ai are representable. Furthermore, 
the effect of replacing X and Xi by representable num· 
bers close to them, in other words, the effect of 
"rounding," can be estimated by means of the dif· 
ferential formula: 

dP = [D,]d(x - xo) + [D2(x- xo)]d(x - Xl)+ . 

... + [Dn(x - xo) . .. (x - Xn - 2)]d(x - Xn). 

Here the Di are the intermediate results of (1.2). 
Second, if the terms of the sum Di: = ai + (x - xi)Di + 1 

are of the same sign, then the effect of the relative 
error of (x - xi)D i +, on the relative error of Di will 
be weighed by the ratio I(X-Xi)Di + ,ID;j. The rela· 
tive error of x - Xi tends to be large when Ix - xii 
becomes small. Thus the relative error caused by 
forming the difference is toned down by the above 
ratio precisely when it tends to be high. On the other 
hand, if x and - Xi have the same sign, then one does 
not observe a similar toning down of the relative error 
incurred by the preceding addition. 

Third, we give a theoretical reason. We shall be 
able to show that x - Xi can be evaluated "stably" 
if additional coefficients and operations are intro· 
duced, provided x is representable , even if Xi is not 
representable. 

Recognizing the additions as the main cause of 
instability, the idea is to neutralize them by choosing 
the critical values Xi so as to ensure that ai has always 
the same sign as (x - Xi) Di + ,. 

This is indeed possible in any given interval of 
evaluation [A, B]. The first step of constructing such 
a Newton form is to divide out all zeros of the poly· 
nomial P(x) in [A , B J: 

P(X) =:(X-Xo) ... (X-XIII)P*(X). 

One then defines ao = a, =. . . = am = 0, and the 
problem is clearly reduced to finding a suitable Newton 
form for P*(x). 

Let us therefore assume that P(x) ¥ 0 in [A, B]. 
If P(x) is given in Newton form (1.1), and if au has the 
same sign as the sum of the remaining terms for all x 
in [A, B], then sign (ao) = sign (P(x)), and laol ~ IP(x) 1 
in [A, B]. This suggests the following definition of ao: 

laol : = min {IP(x)llxE[A,BJ} 

sign (ao) : = sign (P(x)). 
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Then P(x) - ao has zeroes 

III [A, B]. Zeroes are represented as often as their 
multiplicity indicates. If, for instance, y is a double 
zero of P(x) in [A , B] then y occurs twice among the 
Xi. We have 

P(x)=Do(x)=a()+(x-xo~ . .. (x-xk - ,)Ddx). 

The polynomial Ddx) does not vanish in [A , B J, and 
can therefore be treated in the same way as P(x). 
The coefficient ak is defined by 

and 

lakl: =min {IDk(x)11 xE[A, BJ} 
sign (ad: = sign (Dk(x)), 

xk, ... ,x/_, 

are the zeroes of Dk(x) - a/c . We have again 

and so on. We call the Newton form so constructed 
the 

minimal Newton form 

of the polynomial P(x) in [A , B]. 
If all zeros of P(x) are in [A, B], then the minimal 

Newton form of P(x) in [A, B] coincides with the "prod· 
uct form" anl1(x-x;) of the polynomial. If P(x) does 
not vanish in [A, B], then all zeros of odd multiplicity 
encountered in the construction of the minimal Newton 
form are at the ends of the interval [A, B]. 

We shall show later that a minimal Newton form can 
be evaluated in a "stable" manner if the argument x is 
representable. 

2. On transformations into stable forms. It is quite 
clear that the process of determining the minimal 
Newton form is, in itself, a very unstable process, 
which has to be carried out in double or even triple 
preCISIOn. This appears to be a principle: the con
stants of a better conditioned form contain more 
"information," and if one wants this additional informa
tion, then one has to work for it. 

For this reason, we shall not concern ourselves with 
the difficulties of finding the constants of algorithms. 
These difficulties are bound to increase with the quality 
of the end-product. Besides, minimal Newton forms 
will be used only if a polynomial has to be evaluated 
repeatedly, as for instance in function subroutines. 

3. Evaluation of derivatives . The Horner scheme is 
frequently extended to determine the value of the first 
derivative of a polynomial, using the algorithm: 

En: =D" 

i=n-1 , ... ,1, (3.1) 

'< 
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P '(x):= E 1 , 

whe re the D; denote the interm ediate res ults of the 
Horner scheme fopP(x). We shall use thi s fact in 
sec tion II for deriving an error eS Lim ate. 

Similar algorithms exist for e wton form s. If the 
D; are the intermediate results of algorithm (1.2) 
applied for a given x, then: 

P'(x) = D I + D 2(x -xo)+ 

+ D,, (x -xo) ... (X-X n -2), 

which suggests the algorithm : 

En: = Dn 

i = n - l , ... , 1 

P'(x) : = £1. 

This algorithm is in general not s table, eve n if th e 
or iginal polynomi al P is in minimal Newton form. 

4. N umerical example. 4 Consider the ill·condi· 
tion ed polynomial ao + ... + x 5 with the coefficie nts : 

ao= 4. 10074 70239 8387 
al =- 11. 29173 84073 737 
a2 = 8. 42475 03796 1924 
a3 = O. 92113 31318 58071 
a4 = - 3. 05937 81605 8204. 

Its minimal Newton form in th e interval [0 , 1] has the 
following coeffi cients and criti cal values: 

bo = 0.00103 19917 44066 05 
bl = O.O 
b2 = 3.41269 84126 9841 
b:l = - 1.87912 08791 2088 
b4 = 0.60784 31372 54902 
b5 = 1.0 
Xo= 0.83361 06489 18469 
X I =Xo 
X2 = X3 = 1.0 
X4 = 0.0. 

To compare the loss of significance incurred in 
e valuating the polynomial in normal form and minimal 
Newton form, the interval [0, 1] was divided into 50 
su bintervals, in eac h of which 50 random arguments 
were generated. The maximum number of significant 
digits lost was plotted for each subinterval (fig:, 1). 

5. Representable numbers. This and the following 
sections will contain so me theoretical examinations. 
An arithmetic will be specified , with respect to which 
we s hall define stability . Actual error es timates are 
then derived for the evaluation of minimal Newton 
form s. 

~ The co mpute r lime for thi s ca lcu lati on was s upport ed by the Compute r Science Center 
of the Unive rs it y of Mary la nd unde r G rant NsG 398 from the National Aero nau tics and 
S pace Ad minis tratio n. 
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Co nsid er a floatin g point arithm et ic with number 
base {3 and mantissa length s, and ass um e that there 
are no res tric tions on the s ize of the expon e nts. 
Denote by 

th e set of all numbers which are represe ntable in thi s 
arithmeti c. To each real number x, we assign a num
ber xEl s uc h thal no other number in l is closer to x . 
Thus 

Ix - ~I ~ Ix - yl for all YEl. (5 .1) 

In particular, x = x if xEl. We assume that (=x) 
= - x, therefore - l = l. 

With the notation 

( ). _ {O if xEl 
a x . - 1 otherwise 

one verifies that 5 

Ix - xl ~ lila(x) E ~ Ixl E where E: = ~ {3 - s+ I (5.2) 

(Scarborough's Theorem I [8J p. 3). Note that (5.2) 
holds only if the arithmetic does not res trict the size 
of the exponents. Indeed, it follows from (5.2) that: 

x=O implies x= O. (5.3) 

~ Ac tual ly a s harpe r es timat e holds: Ix - xl :s;; E{3' whe re t: = nog,8 Ixll. that is . l is the 
g reatest integer s ma lle r tha n loge Ixl. 



In other words, zero is the only number which gives 
zero when rounded. This is clearly only true if 
negative exponents of arbitrarily large modulus are 
admitted. 

6. Stable algorithms. We now assume that each 
addition , subtraction, multiplication , and division of 
two numbers in 2, is carried out exac tly , and that the 
result is rounded afterwards. Furthermore, each 
given number which is not in 2, must be rounded before 
it enters an operation. These rules appear to be a 
reasonable idealization of a floating point arithmetic 
which combines two registers to hold the result of 
each operation, normalizing and rounding to single 
precision subsequently. 

An algorithm aims at computing a result r as a func
tion of given parameters a, b, c, ... , but in reality 
computes a quantity T. The error that is generated 
in the course of the algorithm then is defined by 

~r: =l r - ;l 

Consider, for instance, the algorithm which consists 
of multiplying two given numbers u and v: 

p: = uv 

Then p: = uv, and (5.2) gives 

Ip - pi = I uv - uv + uv - Ul; + Ul; - p I 

In view of 

lui ~ lui + lu- ul ~(1 +E)lul , 

luvl ~ Ipl+luv- pi ~ (1 + E)lpl , 

one has 

(6.1) 

The upper bound of the above error term does not 
depend on u and v. Hence we say that the formation 
of the product uv from given numbers u and v is 
"stable. " 

In general, we call an algorithm which computes r 
from given parameters a, b, c, 

stable, 

if there exists an error estimate of the form 

where k does not depend on the values of the param
eters a , b, c, ... 

We turn now to the addition of two given numbers 
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u and v: 

s= u+v. 

Then s= ll +v, and one has after a similar calculation: 

(6.2) 

The estimate (6.2) can be improved. For instance, the 
first term in (6.2) can be deleted if Is I ~ min {I ul, Ivl }. 
However , no matter how refined the estimate, it will 
always depend on u and v. Indeed, u+ v ~ ° and 
s= ° may both hold simultaneously, precluding any 
finite bound. The addition of two numbers is therefore 
not stable. . 

In the special case a(u) = a(v) = 0, that is, if both 
u and v are representable, then (6.2) proves the addition 
to be stable. This is also true if u and v have the same 
sign. 

7. Simplifying error es timates. He nceforth we shall 
a ssume that E is very small. Thus we shall delete E 

in expressions of the form k + lE, if both k and l are 
parameter independent: 

k+ lE == k. (7.1) 

This leads us, for instance, to equate 1;1 with Irl, since 

Irl ~ Irl-Ir-rl ~ Irl-kElrl = Irl(l-kE) 
and similarly ITI ~ I rl(l- kE), provided the algorithm 
producing r is stable. 

We state without proof that, if an algorithm is shown 
stable with the help of rule (7.1), then it could have 
been shown stable without it. 

8. Error propagation. Suppose that p, u , and vare 
intermediate results of some algorithm, and that 

p=uv 

according to this algorithm. We want to estimate the 
error of p in terms of ~u and ~v, and the error generated 

by rounding and multiplying. Now p = ilv , and analo· 
gous to the derivation of (6.1) we have 

If the intermediate results u and v were arrived at in a 
stable manner, then thi s is also true for p. By (7.1) 
we can therefore consider lui and lui, as well as Ipl and 
Ipl, to be equal. Similar considerations hold for the 
division of two intermediate results. We conclude: 
If u and v are intermediate results of the algorithm 
which are obtained in a stable manner, then 

(8.1) 



The estimate (8.1) is usually pos tulated without 
assumptions about the algorithm. It is argued that 
tln tlv M and 1;r are comparable to E in mag nitude, ... a 

claim that comes close to ass uming stability of 
the algorithm ... , and that therefore the term 
tlu tlv 
Elul . Elv l E may be neglec ted. 

The following estimate can be derived without 
s tability assumptions: 

tl(u ±v) ~ l +_lu_I_ . tlu +_lv_I_ . tlv 
Elu±vl lu ±vl Elu l lu ±vl Elvl· 

(8.2) 

9. Stability of minimal Newton forms. Let u" now 
turn to algorithm s for the evaluation of polynomials. 
Once and for all we will assum e that 

(9 .1 ) the argument x for which a polynomial P(x) is to 
be evaluated is representable. 

Co nsider the e valuation of a polynomial in minimal 
Newton form by th e adapted Horner scheme (1.2). 
All operations in thi s algorithm are stable except the 
subtrac tions x - Xi. The existe nce of a s table evalua· 
tion thus depends on the possibility of evaluating the 
differences x - Xi in a s table manner. 

To evaluate th e difference x - y , we split y into its 
representable part and remaind er 

y=y + ,-, 

and evaluate (x - y) - r. Since x and yare both 
representable, and therefore tlx = tly= 0, we have by 
(8.2) : 

" Then again by (8 .2): 

tl(x - y) ~ 1 
Elx-yl . 

tl(x-y) ~ 1+ Ix-Yl . tl(x-y) 
Elx-yl Ix-yl Elx-yl 

In view of Ix - yl = Ix - y+ ,- I ~ Ix - yl + Ir l this gives 

Now according to (5 .1) 

Irl = Iy-yl ~ Ix-yl, 
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s ince x is representable. He nce 

tl(x- y) 
-:'--'-' ~ 4 
Elx-yl . 

(9.2) 

The algorithm s «x-)7)+s)-,- and (x - )7)+(s - r) , 
where x is not required to be r eprese nta ble and whe re s 
denotes the re mai nder te rm X - x of x, are not s table. 
Indeed, if x = y, then both algorithms cons ist of si m ply 
subtracting ,- from s , which was see n to be uns table in 
section 6. 

Consider the algorithm (1.2) for evaluating Newton 
forms. Since all other operations of (1.2) are stab le, 
the entire algorithm (1.2) is stable provided the dif· 
fe rences x - Xi are evaluated in the stable manner 
described above. 

For the step 

Di :=ai+(x-x;)Di + 1 , 

we have by (9.2), (8.1), and (8.2) 

Since minimal Newton form s are cons tructed so as to 
e nsure that lad+l(x-x;)Di+ II= ID;I, we finally have 

(9.3) 

from whic h one immedia tely concludes that 

Since tlDn ~ IDn IE, we have finally 

tlP 
EIP I ~ 6n + l , (9.4) 

where n is the degree of the polynomial P(x). 
Note that application of the estimate (8.2) is justi

fied since the factors of the products (x - Xi)D i + 1 have 
been arrived at in a stable manner. 



10. Product forms. Every polynomial with real co- If we introduce the polynomial 
efficients can be written in product form: 

1> - 1 k+I- 1 

P(x) = a" IT (x - x;) IT (di + (x - Xi)2), 
; = 0 i = k 

di>O, k + 2L = 11. (10.1) 

A stable evaluation algorithm results if the differences 
x - Xi are evaluated in the stable manner described 
in section 9. The algorithm involves not more than 
2n + 1 parameters, 2n additions, and n multiplications. 
The following error estimate follows from (9.2), (8 .1), 
and (8.2): 

6.P 
EIP I ~ 5k + llL + 1 ~ 611. (10.2) 

11. Improved estimate. The reader observes not 
only, that the error estimate (10.2) is better than the 
es timate (9.4) for minimal Newton forms, but also that 
fewer operations are required. It is therefore ques
tionable whether minimal Newton forms should be 
considered at all, unless the error estimate (9.4) can 
be improved. We proceed to show that this is indeed 
possible. 

Let L denote the length of the interval [A , B] and 
define 

Bi := la ;/+l ai+IIL + ... +l a" IL"- ;, 

Then I Dd~ B;in [A , B] since 

i = O, . .. , n. 

Di = ai + ai+l(x - Xi) + ... + a,,(x - x;) ... (x - XII _I). 

Therefore 

I(X-Xi)D;+11 

IDi l 

and (9.3) reduces to 

Consequently 

and therefore 

+ BI ... Bn Lit 
. Bo ... B"_I ' 

Then the Hi are the intermediate results of the Horner 
scheme applied to M(L). Thus Bo = M(L). More
over, we obtain from (3.1) that BI + ... + BnL" - 1 
= M'(L), and we may rewrite (11.1) as follows: 

6.P ~2+6M'(L)L . 
EIP I M(L) 

(11.2) 

This error estimate establishes a preference for 
minimal Newton forms in small intervals. 

Polynomials with nonnegative coefficients are 
minimal Newton forms for all intervals [0, x] with 
x> 0. For such polynomials one derives analogously 
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6.P ~ 2 + 2 P'(L )L. 
EIP I P(L ) 

12. Approximately minimal Newton forms. Each 
sequence of n critical values Xi determines a unique 
Newton representation of a given polynomial P(x). 
If the values xi approximate the points Xi which deter
mine the minimal Newton form, then the Newton form 

P(x) = ari + a;(x - xri) + . 

which is determined by the values xi is approximately 
minimal , and for all practical purposes, it is s table. 

For certain polynomials of low degree approximately 
minimal Newton forms may be even rigorously stable 
in the sense of section 6. Consider for instance the 
quadratic polynomial in minimal Newton form 

Q(x) = ao + (x-z)2, ao> 0. 

The Newton represe ntation of Q(x) determined by the 
rounded value z takes the form: 

(12.1) 

where bo> r2, b l = - 2r, with r:= z - z. We proceed 
to prove that the evaluation of (12.1) by algorithm 
(1.2) is stable. We put s := x - z. Then 

D := bl + (x-Z) = -2r + s 

Q = bo+ (x-z)D=bo+sD. 

We have 

6.D ~ 2 Ir IE+sI EI+ ID IE 

6.sD ~ 2IsD IE+lsl 6.D ~ 3 IsD/E+ 2 lrs lE+s2E 



and 

D.Q ~l bojE +3 I sDIE+ 2Irs IE+s2E+ QE 

By (5.1), I s-rl=l x-zl~lz-zl=l r l . Hence 

Q = ao + (x - zF = (uo - r2) + (s - rF ~ 60 

(12.2) 

for all representable x. This in turn implies 
Q ~ sD ~ 0. As a consequence, we may delete mos t 
of the absolute bars in (12.2): 

If rs ~ 0, then 2Irsl+s~=s2 - 2rs = sD. Hence 

D.Q ~ 2Q +3sD ~ SQ. 
E 

If rs > O, then I s l~ 2Ir l . Indeed (s- r)2~r2 implies 
21's ~ 52, and if rs > 0, then we have also 2IrI151~ls I2 . 
Fu rthermore, sD + 2lrsl= sD + 21's = 52. Finally, we 
note that 
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Hence 

This estimate is as good as the one derived from (10.2) 
taking into account the fact that a2 = 1. 
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