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An improved formula is derived for accurately computing the near-zone magnetic field of a small
circular transmitting loop antenna. Such a field can serve as a reference standard for calibrating
field-strength meters employing small receiving loop antennas in the frequency range 30 Hz to 30 MHz.

This formula includes correction terms for frequency (due to the finite time of propagation), as
well as corrections for the finite radii of both the transmitting and receiving loops. Other formulas
appearing in the literature often fail to include such corrections which can result in errors of up to
20 percent and more in computing standard-field values.

The NBS formula is derived by expanding the integrand of the retarded vector potential into an
infinite series of spherical Hankel functions of increasing order. The resulting series expression is in
error by less than 0.2 percent, is rapidly converging and simple to use without recourse to a table of

functions or a computer.

Key Words: Loop-antenna field strength, magnetic field-strength standard. mutual inductance of
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1. Introduction

The purpose of this paper is to present a derivation of
an improved high-frequency formula intended for use
in accurately computing the near-zone magnetic com-
ponent of the electromagnetic field of a small circular
transmitting loop. Such a field can serve as a reference
standard for calibrating field-strength meters employ-
ing small receiving loop antennas in the frequency
range 30 Hz to 30 MHz. The new formula includes
correction terms for frequency (due to the finite time
of propagation), as well as corrections for the finite
radii of both the transmitting and receiving loops.
Formulas used by other workers in the field often do
not include such corrections. This new formula is a
rapidly converging infinite series. It is simple in form
and easy to use by workers in the field without recourse
to a table of functions, or to a computer.

An earlier formula, which prompted this derivation,
has been used during the past 15 or 20 years at the
National Bureau of Standards [1].! It has served as the
basis for the NBS calibration service for commercial
and military CW field-strength meters over the above
frequency range. This formula was a single-term ex-
pression and was first obtained from a detailed numeri-
cal analysis of the existing low-frequency formulas, of
which there were many in the literature [2]. Most of
these were in the form of an infinite series. Many were
slowly converging and required the use of at least two
or three terms of the series to yield the accuracy

*Radio Standards Engineering Division, National Bureau of Standards, Boulder, Colo.
80302.
! Figures in brackets indicate the literature references at the end of this paper.

achieved in the single term of the earlier NBS formula,
over the usual range of the parameters involved.

From the form and symmetry of this single-term
expression, it became apparent that it might be the
leading term of a rapidly converging infinite-series
expression for the magnetic field of the loop. Efforts
were then directed toward finding an analytical solu-
tion in series form having the earlier formula as its
leading term. A number of methods were tried without
success. The one that finally achieved the desired re-
sult is based on expanding the integrand of the re-
tarded-vector-potential into an infinite series of spheri-
cal Hankel functions of increasing order. While this
approach must have occurred to other workers in the
past, the author has been unable to find any record of a
high-frequency derivation in this particular series
form in the literature.

All time-varying quantities used in this paper are
expressed in terms of their rms values. Rationalized
mks units are used throughout.

2. Calibration and Use of a Small Loop

The physical arrangement used at NBS for cali-
brating small receiving loop antennas is shown in
ficure 1. The standard magnetic field is produced by
a small, single-turn, circular transmitting loop of
radius, r; meters, in which a current, I/ amperes, is
flowing. The small receiving loop being calibrated
has a radius, r» meters, and is positioned coaxially
with respect to the transmitting. loop. The two loops
are spaced an axial distance, d meters, apart during
the calibration. It is assumed that the distance of
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FIGURE 1. Coaxial arrangement of transmitting loop antenna
(radius ry meters), and receiving loop antenna (radius r, meters),
spacing d meters, in the NBS calibration setup.

An RF current, I amperes, flows in the transmitting loop.

separation, d, is small compared to the wavelength,
A, and that near-field conditions prevail.

The response or indication of the field-strength
meter is directly proportional to the voltage induced
in the receiving loop. The induced voltage is, in turn,
proportional to the time-rate of change of the total
flux cutting the loop. This is given by Faraday’s law
of electromagnetic induction, written here for the
sinusoidal time-varying case (with the time factor
el*t understood),

The voltage induced in the loop is given by the left-
hand side of eq (1), which is the line integral of the
tangential component of the incident electric field, E,
around the periphery, s», of the receiving loop; B
is the magnetic-flux density at any point on the plane
surface, S», bounded by the circular receiving loop;
w=27f, and j=V 1.

When making a field-strength measurement, one
does not know the spatial distribution of B over the
area, S, and it cannot be resolved by the loop. The
response can therefore only be expressed in terms of
the average field over the area of the loop, and eq (1)
becomes

V:_ijav R (2)

where V is the induced voltage and B,, is the normal
component of B averaged over the area, S., of the
receiving loop. This assumes that the relative orienta-
tion of the receiving loop with respect to the electric-
field vector, E, is such that the electric-dipole response
is negligible [3].

3. Retarded Vector Potential of a Circular

Transmitting Loop

The basic far-field properties of a small transmitting
loop antenna are usually derived for conditions under
which second-order corrections to the field due to the
finite radii, r; and r», of the transmitting and receiving
loops, can be neglected. In near-field use, however,
ri and r» are usually not negligible compared to the

distance of separation, d, between the loops. There-
fore, corresponding corrections must be provided in
the field magnitudes involved by including both of
these radii in the derivation.

The expression for the axial magnetic component
of the near field of the electrically-small (27r; <\)
transmitting loop antenna will now be derived. It will
be assumed for the present, that the loop current is
constant in amplitude and phase around the loop, and
that the radius of the wire with which the loop is wound
is negligible compared to the loop radius, ry, itself.
The effect of a non-uniform current distribution on the
accuracy of the resulting field formulas at frequencies
above 5 or 10 MHz will be discussed later in section 5.
The effect of the finite time of propagation will be
included in the derivation. -

The magnetic-flux density, B, at any point, P, on
the surface, S,, of the receiving loop, is given by the
curl of the retarded vector potential, 4, at the same
point [4], i.e.,

A=l (3)

The geometry involved is shown in figure 2. The aver-
age value of the normal component of B will be given by

where [4]

_ —JjBR —

A:%J’eé dsy, (5)
and

w=permeability of free-space (w=4m-10~", henry/
meter)

I = transmitting-loop current, rms amperes
B = wavelength constant (8=2m/\)
A= free-space wavelength, meters

f=ftrequency, hertz
J=V -1

It can easily be shown that the vector potential will
have only a component, Ay, which is azimuthal at the
point, P. Let P be chosen arbitrarily to lie in the xz
plane where ¢ = 0. Equidistant line elements of length
ds; at +¢ and —¢ are paired. These elements can
each be resolved into a component, ds; sin ¢, parallel
to the xz plane and a component, ds; cos ¢, normal to
the xz plane. In taking the resultant, the former com-
ponents will cancel, while the latter (azimuthal with
respect to the point P) will add. Equation (5) can
therefore be rewritten [5], letting ds; = rid¢,

wlry [T e B
A e
& 277 0 R

cos ¢ do. (6)
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By Stokes’s Theorem [6], the integral of the normal
component of the curl of 4 over the surface S» bounded
by the receiving loop can be transformed into the line
integral of the tangential component of 4 around its
periphery, i.e.,

f f VXA - &= fﬁ Ay(P)dss, )

where A4(P) is the value of the vector potential at the
point, P, now assumed to lie on the periphery of the
receiving loop of radius, p=r.. Substituting eq (7)
in eq (4) gives

B3 fﬁ Ay(P)dss. ®

Since the receiving and transmitting loops are coaxial,
it can be seen from the circular symmetry involved,
that A4(P) will be constant around the periphery of
the receiving loop, so that eq (8) becomes simply

27rs

Bay =23 A(P). ©

Substituting eq (6) in eq (9), letting B,, =
S = 1rr3, gives

uH,y and

Iy [T e PR

(10)
w2 Jo R

cos ¢ do,

where now

R=[d*+ri+r3—2rr: cos ¢|'2, (11)
as can be determined from figure 2. H,, is the average
normal component of magnetic field strength over the

area of the circular receiving loop.

4. Evaluation of the Complex Integral

The problem, now, is to evaluate the integral in
eq (10). Maxwell [7] was the first to accomplish this for
the static case (8=0), using elliptic integrals which
can be expressed in several series forms [8]. Numerous
other workers have since evaluated this integral in
various ways for the static case. Literally, over one-
hundred different series expressions appear in the
literature [9] for the mutual inductance between
coaxial circular filaments, to which the present prob-
lem is directly related.

To the above will now be added still another series
solution, this time also including the effect of retarded
time. Equation (10) will be evaluated using the rela-
tionship [10]

e*jBR
—JBR
where AZ(BR) is the zero-order spherical Hankel

function of the second kind. Such a function is often
used to represent an outward-traveling (+) wave,

= hBR), (12)

FIGURE 2. Geometry used for determining the vector potential and
near-zone magnetic field of a small circular transmitting loop.

The loop lies in a plane normal to the xz plane with its center at the origin of coordinates.

whereas a similar function of the first kind, 2)(8R),
would have been used to represent an inward-travel-
ing (—) wave. The function, /3 (BR). will now be
expanded into an infinite series of higher order spheri-
cal Hankel functions. These will be substituted back
into eq (10) and integrated term by term.

The expansion can be accomplished using the fol-
lowing relationship based on Erdélyi [11],

= h@)( \/—)_E : ] A ( \/_).

l
(2) —
LGRS = N'{z\f

(13)

where m is an integer. This series converges when
|u|>|v|. Let

Vu+v=B(R§—2rir: cos ¢)'2, (14)
where Ri=d?+ r} +r3. (15)
Let = 32R3, (16)
and v=—L2(2rir2 cos ¢). (17)
Substituting eq (16) and eq (17) in eq (13) gives
=l rirs
(2) — Skl (2) m
Hp(R) = 3 [ e | Ry cos 6.1z
Substituting eq (18) back into eq (10) gives
Ir, (™ =
H,,=— B T 2 my|: r1rz] A2 (BRo) cos™* ddep.
(19)
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The infinite series in eq (19) will converge [11] when
R§>2rir; if $=0 or if ¢ ==. Furthermore it can be
shown [12] using, for example, the Weierstrass M
Test, that eq (19) will converge uniformly in the inter-
val 0 < ¢ <. Equation (19) can then be integrated
term by term, yielding

Havz_j BITI i .

Tre m!

[;3 "’z] K2 (BR,) f cos™1 ¢ deb.
(20)

The integral in eq (20) can be evaluated from the follow-
ing relations [13]:

f " cost ddd=0, Gf p is odd)
0 21)
f cos” d)(ld)— i Z .l T, (if p is even)
0 . . P (22)

When these results are substituted into eq (20), with an
appropriate change in the index of summation, eq (20)
becomes

1-3-5 C29m+1 B’ll’ 2m+1 h( 2) (BR )
H, — : 2m+1 0 P
&N J (7 E (2n1+])'246 5. 2m+2[ R():' (23)

The spherical Hankel functions in eq (23) can now be
changed into their exponentlal polynomial forms as
given by eq (All) to eq (A16) in the Appendix. When
this is done, eq (23) can be written

Sl { <,.1r2)2[ . 6 . i / ] | .]
H,,= 1+/BR + =] | 1+jBRo—-= B*RE—j-—=B*R¢
a [ JB 0] RZ JBRy 15,8 0 J ISB 0
515 rira B 5 _ 10 BT R 4 -l 5
T o o } e—IBRy amperes/meter. (24)

Under the conditions that BR,=< 1.0, and rir/R2
=< 1/16, terms in BRy higher than the first power can
be ignored without introducing an error in eq (24) of
more than 0.2 percent. Therefore, if the term (1+j8R,)
is factored out of eq (24), the magnitude of eq (24) can
be written as

1S, 15 /rir\* | 315 111 TN ’

This is the desired expression for the normal com-
ponent of the magnetic field averaged over the area,
Ss. of the receiving loop.

The effect of the neglected terms in SRy on the
accuracy of eq (25) decreases rapidly as BR, is pro-
gressively decreased below 1.0, other factors remaining
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the same. At the lower frequencies where correc-
tions due to BR, can be neglected entirely (BR, < 1),
the mathematical accuracy of eq (25) is limited only
by the number of terms used in the infinite series.

For the conditions previously given, the first cor-
rection term in the infinite series of eq (25) will con-
tribute less than 1 percent, so that for this case eq (25)
can be further simplified to

IS,
27R§

|H = (26)

(14 B*R§)"?, amperes/meter.

It should be noted that eq (26) is essentially identical
to the expression for the axial component of the
magnetic field of a classical, infinitesimal magnetic
dipole. The difference is that the distance factor, Ry,
in eq (26) includes correction terms for the finite radii,
ri and r», of the transmitting and receiving loops,
respectively, as given by eq (15).

As previously stated, the response of a field-strength
meter employing a small-loop antenna is directly
proportional to the average normal component of the
magnetic field strength, H,., incident on the loop.
However. for many years it has been customary to
express the calibration of such an instrument in terms
of the equivalent electric field strength, £, that would
be associated with H for the case of a uniform plane
wave (where E =1207H). This relationship, when
substituted in eq (26) with S, =7r?, gives

607l

Ry (1 BRE™,

E.|= volts/meter. (27)

Needless to say, this manner of expressing the re-
sponse will be valid only when the field-strength meter
is used to measure a uniform plane wave. The meas-
urement will be of questionable value for all cases in
which the local |[E/H| ratio departs from the free-space
value [14].

Standard-field formulas appearing in the literature

[15] to [17] often fail to correct for the finite radii of

the transmitting or receiving loop antennas, or for
frequency. It is of interest to evaluate the errors
resulting from the failure to apply these corrections,
all of which are included in the formulas derived in
this paper.

Failure to correct for the radius, rs, of the receiving
loop will result in an error of from 1.0 percent (for
d=1.25 m, r,=0.1 m), to 20 percent (when d=0.5 m,
r»=0.2 m). Failure to simultaneously correct for the
radius, ry, of the transmitting loop will approximately
double these errors.

The value of field strength given by eq (25) to
eq (27) is essentially independent of frequency at
the lower frequencies (where BR,<1). Failure to
apply the frequency correction indicated, at the higher
frequencies, will introduce an error of, e.g., 1.0 per-
cent at 5 MHz, which increases to approximately 27
percent at 30 MHz (when d=1.25m, ri=r,=0.1m).
If the transmitting loop circumference exceeds
approximately A/16, the effect of a nonuniform current

FIGURE 3. Geometry used to analyze the current distribution on a

circular transmitting loop antenna.

The loop is treated as a circular balanced transmission line, fed at points 1, 2, and short-
circuited at the receiving end (point 3). Distance along the loop periphery, /= 0r, meters,
is measured from point 3.

distribution will also have to be taken into account,
as discussed in the next section.

5. Loop-Antenna Current Distribution

In the preceding derivation, the loop current distri-
bution was assumed, for simplicity, to be constant in
amplitude and phase around the loop. Actually, a
standing wave of current exists on the loop, and
the assumption of a constant current will not be valid
unless the loop is small electrically (i.e., unless
27r; < N).

The complete solution to this problem for an
arbitrary current distribution [18] is quite complex.
However, the effect of a nonuniform current distribu-
tion at frequencies from roughly 5 to 30 MHz can be
determined from the following approximate analysis.
The single-turn loop can be considered as a circular,
balanced transmission line fed at points 1, 2, as
indicated in figure 3, and short-circuited at its receiving
end (point 3).

If the radius of the wire with which the loop is wound
is small compared to the loop radius, r;, it can be
assumed that the current distribution around the loop
is, to a first approximation, of the hyperbolic-cosine
form [19],

I=1, cosh vyl (28)

where

ly=reference current at point 3 (fig. 3)

Y = propagation constant= «+ j3

« = attenuation constant, nepers/meter

B=wavelength constant=27x/A, radians per meter

A= free-space wavelength, meters

[ = peripheral distance, in meters, measured from
point 3.
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The loop will be considered sufficiently loss free
that a« can be assumed negligible compared to .
This is a reasonable assumption for the type of loop
used, so that eq (28) can be written

I =1, cosh (jBl) =1, cos Bl. (29)
As can be seen from eq (29) the current will have a
constant phase around the loop for this case.

For the size loop of interest here, the magnitude of
the magnetic field strength given by eq (24) to eq (26)
will be, to a first approximation, proportional to the
average value of the current around the transmitting
loop. The average current is given by

+h 31
T f B R gy L
=l

BL

where [,=half the loop circumference, meters and
[= 6r; meters from ficure 3.

Iy = (30)

20,

TABLE 1. Percent difference between 1,, and 1,
271y ( l.,v)
- =
A Iy
Loop Current
circumference, difference,
wavelengths percent
1/2 36
1/4 10
1/8 2.6
1/16 0.64
1/32 .16

Table 1, which is based on eq (30), shows the
approximate percentage difference between [,, and
I, for several sizes of low-loss loops (a <), with
their circumferences expressed in fractions of a
wavelength, 27rri/\. As can be seen, the correction
due to the nonuniform current distribution will be
less than 1.0 percent at the highest operating fre-
quency, provided the loop circumference does not
exceed A/16. This correction decreases rapidly
with decreasing frequency, becoming less than 0.2
percent at frequencies below 15 MHz for a loop
having a radius r;=20.1 m.

These corrections, based on an assumed cosinus-
oidal current distribution around the loop, are in quite
close agreement with similar corrections based on a
recent theoretical analysis by T. T. Wu [20]. The dif-
ference in the correction values obtained by the two
methods in less than 0.02 percent for the conditions
involved here. It is interesting to note that for this case
the loop current distribution obtained by Wu reduces
essentially to the cosine form given by eq (29) above.
This is shown in figure 4 for a loop having a radius
ri=0.1 m operating at a frequency /=30 MHz.
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FIGURE 4. Relative current distribution around a small circular
transmitting loop antenna having a radius ry=0.1 m, for a fre-
quency f=230 MHz.

The current distribution, based on an analysis by T. T. Wu [20]. is compared with an
assumed cosine distribution determined from eq (29) in the text. where /= 6r, from figure 3.
A wire radius « =0.001 m was used in the Wu analysis.

6. An Alternate Method for Evaluating the
Integral

The infinite series of eq (25) can be easily verified
for the static case (8= 0) using a much simpler method.
This is done by rewriting eq (10) in the form

I
H, v—ﬂé(‘ﬁf F(¢) cos bdd, (31)
.. —1/2
where  F(g) =(1-202 800 9) (32)
0

The binomial expansion of eq (32) is then substituted
back into eq (31) and the result integrated term by
term, yielding the infinite series of eq (25) directly,
provided R} > 2rir, as before. The first few terms of
the binomial expansion of eq (32) are as follows:

P :]+<I.11:_,) 43 <zlh> 052
() R cos ¢ 2\ R cos® ¢

rirs 3 ;L‘) <I1I3)
: cos® p+— (=
(F) o 0+ (5

68—3 <1‘11;1>" cos®> p+. . .

0

b)
+2

(33)

Substituting eq (33) back into eq (31) and perform-
ing the required integration, making use of eq (21)
and eq (22), yields for the static case
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IS 115 (rlrg);’ 315 (r.rg)‘ ]
av = = — = Ao o o 34
Ha =50k [1 e\ T \ R (34)

which is identical to the infinite series in eq (25).

7. Summary and Conclusions

An improved high-frequency formula has been de-
rived for accurately computing the near-zone magnetic
field of a small (27rr; <)), circular, transmitting
loop antenna. Such a field is used as a reference
standard at NBS for the calibration of field-strength
meters [1], [14] employing small receiving loop an-
tennas in the frequency range 30 Hz to 30 MHz.

The new formula is in the form of an infinite series
and includes correction terms for frequency (due to
the finite time of propagation), as well as corrections
for the finite radii of both the transmitting and receiv-
ing loops. The derivation is based on a current of
constant amplitude and phase around the transmitting
loop. However, the effect of a nonuniform current dis-
tribution at frequencies above 5 or 10 MHz is also
analyzed. Formulas used by other workers in the field
[15] to [17] often fail to include these refinements
which can result in errors of up to 20 percent and more
in computing standard-field values.

The accuracy of the new formula is basically limited
only by the number of terms used in the series. At the
highest frequency normally employed, 30 MHz, the
error in one of the approximate forms given does not
exceed 0.2 percent for the conditions stated and de-
creases rapidly with decreasing frequency. The series
expression is rapidly converging and simple to use by
workers in the field without recourse to a table of
functions or a computer.

The author thanks William H. Lupton (formerly
with the NBS Radio Standards Laboratory) as well as
Otto N. Strand and others (formerly with the NBS
mathematics group) for their assistance and helpful
suggestions relating to this problem. The author also
acknowledges with thanks the assistance of Ezra B.
Larsen who made a detailed numerical analysis of
T. T. Wu’s work which was used in the preparation

of figure 4.

8. Appendix

For the convenience of the reader, explicit expres-
sions for the various Bessel functions used herein, but
not commonly found in compilations, are listed below.

The spherical Hankel functions of the second kind,
used in this paper, are defined in terms of Bessel func-
tions of the first and second kinds, /J,(x) and N,(x)
respectively, by the relation [21]

,I',;',)(X) = \/1 (./n + I/Z(X) _an i 1/2(1()),

2% G

Bessel functions of odd half order have particularly
simple forms in terms of trignometric functions [22].
A few of these relationships are as follows:

Jip(x)= \/i sin x
X

.]3/2(9(): \/i (Sln x—('ns X)
X\ X
2 /T2 .3

Jsp2(x)= \/% ([;— l] sin x . cos x) (A4)

Nl/z(x)Z\/% (— cos x)

Nyj2(x)= 2 (__ o T cos x)

(A2)

(A3)

(A5)

(A6)

mX X

2/ 3 . 3
Nsj2(x)= \/ﬂ'_x (—; sin x—[;— l] cos x) (A7)

The recurrence relations for calculating these func-
tions for higher orders are [23]

2
Jn+1 (»“):Ag.ln(-r) —Ju-1(x) (A8)
-Vn + 1 (J') == :zrﬂ ‘N’II (X) - »““’VH 1 (,X') . (/\‘))

If these two relations are substituted into the definition
of the spherical Hankel functions, given by eq (A1) of
this appendix, the recurrence relation for spherical
Hankel functions is obtained as [24]

:2n+l
X

hnt1(x) hn(x) —hn—1(x). (A10)

Using the above relations several spherical Hankel
functions of higher order can be determined.

) e T .

B (x) = » (+)) (A11)

h6D (x) = ¥<— 1 +i) (A12)
X X,
=ik L8, L&

1 () = <—j——+1—,> (A13)
X X X<
i 6 15 .15

}lg-’)(x):e ( = ]_{> (A14)
X X X<

325



,—Jr .10 .45 105  .105
hg—”(x):" <+J+——]—_,——_=+J—4) (A15)
X X X St X
=5 15 105 420 945 945
k= d <—1+J—+—.—1-—.———+J—.>.
’ x x x2 x3 x4 x>
(A16)

It should be noted that the expression for each of
the above functions is exact, each being a polynomial
of degree (n+1). These Hankel functions can also
be derived somewhat more directly from the following
relation based on Erdélyi [25]:

n —jx
D () = (=1 )™ <i> £

xdx a7

(A17)
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