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Generation — Applications to the Determination of Thermal
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Expressions are developed which permit calculation of the temperature-dependent thermal con-
ductivity of a cylindrical specimen in which heat is generated internally, e.g., by radioactive decay.
The information needed consists of the experimentally determined temperature distributions on the
surfaces of the cylinder, the heat flow through a central circular area at one end of the cylinder, and
the rate of internal heat generation (which in general may be position-dependent). Numerical coefficients
are tabulated for the case of uniform internal heat generation. The application of this calculation pro-
cedure to published methods of thermal conductivity determination is shown and an example is given.
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1. Introduction

Subsequent to the publication of a paper [1|! in
which a mathematical analysis of heat flow in a right
circular cylinder with arbitrary temperature boundary
conditions was made, we were requested by D. L.
McElroy of the Oak Ridge National Laboratory to con-
sider the problem of determining the thermal conduc-
tivity of a cylinder in which internal heat generation
is also present. Since most methods of experimentally
measuring thermal conductivity are npot readily applica-
ble to self-heating specimens, and since there is a real
need for determining the thermal properties of radio-
active materials or of materials which are being irradi-
ated, we felt the present analysis to be of sufficient
interest to warrant publication even in the absence of
any experimental data.

2. Mathematical Development

Consider a homogeneous, isotropic, opaque, solid
right circular cylinder of radius, b, and thickness, [,
with position-dependent heat generation, W (r), per
unit volume per unit time, where r is the position vec-
tor. In general, the thermal conductivity of the cylinder
material may vary with temperature. The steady-state
heat flow equation in cylindrical coordinates is
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! Figures in brackets indicate the literature references at the end of this paper.

where temperature above an arbitrary datum is de-
noted by the symbol, v, the temperature-dependent
thermal conductivity by /(v), and the radial, longi-
tudinal, and angular coordinates by r, z. and 6, respec-
tively. Equation (1) can be reduced to a simpler form
by introduction of a new variable, «, defined by the
relation

: j F')dv' . 2)
0

where £* is the value of A(v) at v= 0. Making the sub-
stitution (2), (1) reduces to

’u 1 ou  d*u 1 0%u W(r) .
= - S (3)
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For Dirichlet boundary conditions (i.e., the tempera-

ture distribution on the surface is specified), the solu-
tion of (3) can be written as

u=y+w, (4)
where
N oG '),
y=vr,z, 0)=—k*Q ulr')———dS (5)
S dan
and
w=w(r, z, G)ZJ Wx")G(x; v')dr'. (6)
7
In (5), n' is the outward drawn normal to the surface,

dS" is an element of area on the surface, and the
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integration is taken over the entire surface of the
cylinder. In (6), d7’ is an element of volume and the
integration is taken over the whole volume of the
cylinder. The quantity G(r; r') is a time-independent
Green’s function which we choose to express in the
two alternative forms [2, 3, 4, 5, 6]:
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where /,, is the ordinary Bessel function of the first
kind and order m, au, is the nth positive root of
Jlamn) =0, z- is the lesser of z' or z, and z- is the
greater of z’ or z;
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where [, and K,, are the modified Bessel functions
of the first and second kind, respectively, and order
m, r< is the lesser of r’ or r, and r- is the greater of
r'orr.

The physical meaning of the two components of
(4) is easily seen. If we set W (r')=0 for all r', we see
that w vanishes so that u=y. Thus y is the potential
distribution due to the boundary conditions in the
absence of internal heat generation. If we set u(r')=0
for all " on the surface of the cylinder, we see that
y vanishes so that u=w. Thus w is the potential
distribution due to the internal heat generation with
the boundaries held at zero potential.

Equations (7) and (8) are completely equivalent;
however, in some cases one may be preferred over the
other, either because the integrations indicated in (5)
or (6) are easier or because the infinite series resulting
from these integrations are more rapidly convergent.
If the surface integration of (5) or the volume integra-
tion of (6) cannot be obtained analytically, y(r) or w(r)
can be determined by numerical integration.

Since we are considering the case of a homogeneous,
isotropic material, W(r') would usually be expected
to be axially symmetric for materials which self-heat
by radio-active decay. In general W(r') would not be
axially symmetric for cylinders which are heated by
absorption of energy from an external source, e.g.,

irradiation by neutrons. For the specific case of
axial symmetry, we assume the following boundary
conditions:

z=0 O0sr<b u=f(r
z=1 O0<r<sb u=gl 9)
e u:f(b)+[g(b)—f<b)|§+h(z),

where f(r) and g(r) are arbitrary potential distributions
on the flat surfaces of the disk, and where, in order to
insure continuity, we shall require that the function
h(z) vanishes at the flat surfaces of the disk, so that
h(0)=h(l)=0. We can substitute these boundary
conditions into (5) and obtain

i, 2 =110)+ | &) =f ) 3]
+ i Jo (a,, %) [A,, sinh <a,, '2-)+B,, sinh (a,, [b_—z>]

n=1
% , k 4 . A
+ E Cily (——7,> sin <—7[Tz> , (10)

k=1

where a, = ay, and the coefficients 4, B,, and C; are
given by

e 2
" b2J3(ew) sinh (a,l/b)
b
x| {a(r)—&(b)}r]o(a,r/b)dr, (11)
e 2
" b%J%(a,) sinh (ayl/b)
b
X K {f(N—F ) }rJo(anr/b)dr, (12)
and

s, 2 "hia sin (K72
Ck—llo(/.'rrb/l) fo h(z) sin ( / )a’z. (13)

In obtaining (10) from (5), we elected to use (7) to rep-
resent G(r; r') on the flat surfaces of the cylinder and
to use (8) on the convex surface. Equation (10) can also
be written down without recourse to Green’s functions;
this was done in [1].

In the specific case of axial symmetry, we can inte-
grate over 6 in (6) and obtain

1 b
w(r, z2)=21m J dz' f dr'r'Wr', 2')G(r,z; r', 2'),  (14)
0 0

where the Green’s function now takes the two alterna-
tive forms:
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2.1. Uniform Heat Generation

For the special case where W(r)=W,. a constant,
substituting (15) into (14) and performing the indicated
integrations yields

:2[)”,/”0 z Jolayr/b)

wir, 2) k* =1 a;?./l(an)
cosh [a,(l —22)/2b I}
_ . 7
* [] cosh (o, [/2b) an
Making use of the identity [7],
= J(b‘a:h\') .
2 a3 (o) ey
eq (17) can be written in the form
) o [)2”7() ‘L:
wir 2)="= (' /ﬂ)
_20*Wy & Jolawr/b) cosh [an(l—22)/2b] (19)
k* &~ aii)i(an)  cosh (. l/2b)

The alternative expression for w(r, z), derived from
(16), is
412W 2 1 . [nmz

w(r,z)ZTk*‘) > _Emn( )

n=1,3,5.

Io(nﬂ'r/l)}
===tk 20
l: Io(nmb/l) (20)
where the notation n=1, 3, 5, under the summation
sign indicates that the series is to be summed over
odd values of n only. Making use of the identity

8 %

i)

o sin (n7rx) = x(1 —x),
T
n=1,3,5,

(21)

which can easily be derived, eq (10) can be written
in the form

u:/()

wir, 2) =575 z({ —2)
AW, &1 Lonarfl) . <@
& Ll S\ ) (2)

Equations (19) and (22) could have been derived
without recourse to Green’s functions for this specific
case where W(r)=W, since the leading terms in
these two equations are particular solutions to Pois-
son’s equation for this case and are sufficiently simple
to be written by inspection. In general, however, this
could not be done. In principle, eq (6) provides us
with a solution for w(r) regardless of the particular
form of W (r) and hence is completely general.

A practical case in which W (r) is essentially constant
(and therefore (19) and (22) are applicable) is that of
a sample which self-heats by radioactive decay and
for which the mean free path of a fission fragment is
much less than the dimensions of the sample.

3. Calculation of Thermal Conductivity

The total heat flow through a circle of radius a. where
a=b,at z=01is

¢ ”:27TJ' rk(v) <ﬂ> dr
0 02/ z2=0

= 2mk* f r (ﬂ) dr.  (23)
0 dz2/z2=0
From (4), this can be written as
Q'=0+0Q", (24)

where

« S /oy
Q=27wk* f r <d—}> dr=ma*k* <(—X> (25)
0 dz/2=0 02/ 2=0

and
Q' =2rk* J.” r (@) dr=ma*k* <dl> . (26)
0 0z/2=0 0z/ 2=0
From (24), (25), and (26) we obtain
R Y Y
/;*:0 ma*k*(Ow/dz) -0 @7

ma{0y/0z) 20

This equation gives the thermal conductivity in terms
of measurable or calculable quantities. Q" is the meas-
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ured total heat flow through the circle r=<a at z=0.
The quantity (dy/dz)-—¢, which is the average tem-
perature gradient which would exist over the circle
r<a at z=0 due solely to the boundary conditions
but with no internal heat generation, can be computed
from the observed temperature distribution on the
surface of the cylinder using (5) and (25). The quantity
(9w/dz)-—o. which is the average temperature gradient
which would exist over the circle r<« at z=0 due
solely to the internal heat generation but with the
boundaries maintained at zero potential, can be com-
puted from the (assumed known) rate of heat genera-
tion, W (r), in the cylinder using (6) and (26). Note that
w(r) is inversely proportional to A so that the quantity
k*(0w/dz).—o on the right-hand side of (27) is actually
mdependent of k*

If we again ((mSIder the specific case of axial sym-
metry, (10) can be substituted into (25) to obtain

0= ma?k* [< o0

2 ) AN
+a E /1<a,, ){A,,—B,, cosh (a,, b)f

=il
9 e kma
+ZI‘ZI CI;I]( [ )]

where A,. B,. and Cj are given by (11), (12), and (13).
In the case of constant internal heat generation,
W(r)=W,, and (26) becomes

(28)

Q' = wa2lW (29)

where Q=Q(a/b; I/b) has two forms corresponding to
(19) and (22), respectively:

a [\ _4* & Jilawalb) ( A
. <b . b> B al 121 a;;'.ll(an) tanh o 21 /j ’ (30)
a 18 & homadd
& <b ’ b) 2 wa ”:%L , wily(nabll) GL)

In the special case, [/b— 0, (30) reduces tc
2b & Jilewalb) 1 .
& (b 0) a = (@97 l(an);zh 5
where we have made use of the identity [8],

4 2 Ji(ox) _ (33)

—1 a%]l(an)

n

If//b — 0, (31) also reduces to Q= "a.
In the special case, a/b— 0, the two forms of () are

n( ) 2 gttt B2

n=1

tanh (a,!/2b)
n/ an)

l 1 4 > 1
Q0; S )l==—1—= N —F
(05) 2= 2wy O
For large values of /b, (30) approaches
b
Q—a D, (36)
where
Jilayalb)
=16 h—. ¢
"21 ((t/b n./l(an) (37)

Values of @ are given in table 3 of [1]. There is an
error in table 3 of [1]in the value tabulated for /b= 0.5,
which should be 1.96630.

Using a digital computer, numerical values for ()
have been calculated for a range of values of a/b and
l/b and are given in table 1. Values were calculated
using both (30) and (31) and the resultant two sets of
values agreed to the number of significant figures
given in table 1. Representative values are plotted
in figure 1.

As discussed in [1], the thermal conductivity, £*,
corresponds to the reference temperature, 7%, from
which the variable, v, is measured. In principle, T*
may be arbitrarily selected and the mathematics will
yield the corresponding value of A*. Thermal con-
ductivity values may have to be computed by iteration
as discussed in sections 4.2 and 5.2 of [1].

4. Example

The above analysis is applicable to the several
methods of determining thermal conductivity which

0.5

0.4

0.3 —
0.2 =
a/b=1.0
ONIN—
oo N B B
(o} | 2 3 4 5
L7b
FIGURE 1. The coefficient Q) for the case of uniform heat generation.
The values of Q corresponding to intermediate vales of a/b lie between the two curves
shown.

296



were discussed in [1] and also to other steady-state
methods utilizing Dirichlet boundary conditions in
which the temperatures at all points on the boundary
are specified. In [1], we discussed methods of thermal
conductivity determination in which the investigators
had assumed parabolic radial potential distributions
on the flat surfaces of a cylinder and a linear longi-
tudinal potential on the convex surface. This is a case
having radial symmetry so that (10) can be used with
the boundary conditions (9), in which f(r), g(r), and
h(z) are given by

2
f("):Y()+Eu F

,.2
gnN=Y1+E; —,

7 (38)

and

where Y, and Y, are the potentials (corresponding to y)
at the centers of the faces of the disk, and £, and E,
are the potential differences between the edge and the
center of the disk at z=0 and z= /. respectively. For
these boundary conditions, (28) becomes

() = 77'(12 ’/.7 I Y = )’(; aF I':|\l,[ o I’;U\II()J . (39)
in which
o = Jilayalb) /by ,
=1 ”21 (alb)a ] (e,) sinh (e, l/b) @
and
1 & .ll(an([/b) (//b) .
Wo=1 16 gl (a/b)ap]i(ay) tanh (e, l/b) L2

are factors which depend only on the geometry of the
cylinder and on the fraction of the disk from which the
heat flow is measured. Numerical values of ¥, and W,
are given in tables 1 and 2 of [1] for a range of values

of a/b and [/b.

In [1] we did not discuss the effect of internal heat
generation. For the special case of parabolic radial
potential distributions on the flat surface of the cylin-
der, a linear longitudinal potential on the convex
surface, and uniform heat generation throughout the
cylinder, (27) becomes

TABLE 1. The coefficient Q as a function of /b and a[b for uniform heat generation
1/b alb
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
b /b
0.0 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.0
ol .50000 50000 50000 50000 50000 .50000 50000 50000 149993 49872 47328 .1
2 50000 50000 50000 50000 149998 49995 49980 49924 49700 48786 44742 2
.8 149991 49989 149985 49974 49949 49894 49766 49466 .48745 46973 42244 o)
4 149891 149883 149854 49796 49689 149495 49138 48477 47234 44841 39836 4
0.5 149535 149511 49437 49295 49057 48670 48044 45368 .42584 3623 0.5
.6 48796 48754 48623 48384 48003 47423 46554 43303 140301 35309 .6
q 47657 47597 47413 47084 46577 45836 44779 41148 38051 33201 1
.8 46181 46107 45878 45478 44873 44015 42828 41205 .38980 .35872 31205 .8
9 44463 44378 44118 43666 42995 42059 40793 39105 36851 .33789 .29327 9
1.0 142599 42507 42226 41742 41030 40050 38747 .37038 .34800 31819 27570 1.0
2 .38740 .38643 .38346 .37840 37103 .36108 .34809 33144 31014 28250 .24421 }.2
1.4 .35038 .34942 .34651 .34156 .33441 .32483 .31247 29681 27706 .25180 21737 1.4
1.6 .31690 .31598 831130 .30853 .30180 .29282 .28130 .26683 .24870 22571 19469 1.6
1.8 .28749 .28664 .28406 .27969 .27343 226511 .25448 24117 .22459 .20366 17558 1.8
2.0 .26202 26123 .25884 .25479 .24900 24132 23153 21930 20411 .18499 .15944 2.0
2.2 .24006 .23932 23711 233317 .22802 .22093 21190 .20064 18668 16914 14575 20
2.4 22111 .22043 .21838 .21491 .20996 20339 19505 18465 17176 15559 13406 2.4
2.6 20471 .20408 20217 19895 19435 18825 18050 17086 15891 14394 12401 2.6
2.8 .19044. 18985 18807 18506 18077 17509 16788 15889 14777 13384 11530 2.8
3.0 17794 17739 17573 17292 .16890 16359 15684 14844 13804 12502 10770 3.0
3.0 15272 15224 15081 . 14840 . 14495 14038 13458 2747 11844 10726 .09240 3.5
4.0 13368 13326 13201 12990 12687 .12288 11780 11148 10367 .09388 .08088 4.0
h 11884 11847 11736 11548 11279 10923 10472 .09910 09216 .08346 07190 4.5
5.0 10696 10663 10562 .10393 10151 .09831 .09425 .08920 .08294 .07511 06471 5.0
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
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. Q" —ma*lW )
(@)Y, = Yo+ EWV, — EgWV, |

LK

(42)

As a specific example of the use of (42), we consider
the method described by Hoch et al. [9], in which the
heat flux from the flat surfaces of the disk is calculated
from the temperature and the total hemispherical
emittance of the specimen surface, using the Stefan-
Boltzmann radiation law. That is, the heat flow, Q", is
given by

Q"= nateaT* (43)

where € is the total hemispherical emittance, o is the

Stefan-Boltzmann constant, and T* is the average value
of T* on the surface over the circle of radius a. Sub-
stitution of (43) into (42) results in

[[EO’T:_/WOQ]
Yi—Yo+E ¥V, —EW,

k* = (44)

With the simplified boundary conditions assumed by
Hoch et al., namely Y, =Y, and E,=FE), this reduces
to

. leaT =W,
B =t e, 45

oW, — Wy (32)
If this is evaluated at the center of the disk (i.e., a=0),
as was done by Hoch et al., the thermal conductivity
is given by

lleo Ty — W ()]

Fort oy
SN (46)
where T is the (absolute) temperature at the center of
the disk at z=0, and W, ¥, and (Q are to be evaluated
at a/b=0. If there is no heat generation (i.e., W,=0),
equation (46) reduces to a form which is exactly equiv-
alent to eq (13) of Hoch et al. [9].

We postulate the following data as having been
acquired experimentally:

b=1.00 cm [=1.80 cm
€e=0.17 Wy=14.3 W/cm?
T(; = 2360 OK En =28 deg

From tables 1 and 2 of [1] for the case a/b=0.0 and
[/[b=1.8, we obtain

W, =0.87364 Wy =—2.85220.

From table 1 of the present paper, we obtain
1 =0.28749.

Using 0 =>5.6697 X 10~ 2 W/cm? deg!, substitution of
the above values into (46) yields

k*=0.388 W/cm deg

as the thermal conductivity of the sample at the tem-
perature corresponding to v= 0.
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