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1. Introduction

Standards and standard reference materials are the
basis of a consistent and accurate measuring system.
The need for standard reference materials in thermal
conductivity measurements is two-fold. In the first
place, such materials are required for comparative

measurements in which the thermal conductivity of
the material under test is determined in terms of that of

the standard reference material. Secondly, such ma-

terials are required in evaluating the accuracy of

apparatus designed for thermal conductivity measure-
ments. The degree to which the measured value of the
thermal conductivity of the standard reference ma-
terial agrees with the accepted value is a check on the
accuracy of the apparatus in which the measurements
were made.

The basic requirements for any standard reference
material are that it be stable, reproducible and appro-
priate for the measurements at hand, and that the
property in question be uniform throughout the ma-
terial. In the case of standard reference materials for
thermal conductivity other desirable requirements are
that the standard be usable over a wide range of tem-
perature, that it be chemically inert so as not to be
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affected by or affect other materials in the system and
that the thermal conductivity of the reference material
be close in value to that of the materials which are to
be measured in terms of it.

The advantages of using platinum as a thermal con-
ductivity reference material have been pointed out by
Powell and Tye [1|' and by Slack [2]. Platinum is
available in high purity in pieces of substantial size.
It has a fairly high melting point (1769 °C on the 1948
International Practical Temperature Scale), has no
known transition points, and is relatively stable chem-
ically in air and other atmospheres, with the excep-
tion of hydrogen, even at high temperatures [3, 4].
Its thermal conductivity, although relatively high for
use as a reference material with nonmetals, is about
the geometric mean for metals and alloys.

Since the thermal conductivity of a pure metal is
strongly correlated with the electrical conductivity of
the metal, it is highly desirable that the electrical con-
ductivity of a metal which is intended for use as a
thermal conductivity reference material be very
stable under varying heat treatments. The stability of
the electrical conductivity of platinum is evidenced by
the fact that the International Practical Temperature
Scale is defined by a platinum resistance thermometer
in the temperature range —182.97 to +630.5 °C [5, 6].
Studies are currently underway at NBS [7] and other
laboratories to investigate the possibility of extending
to the gold-point (1063 °C) the range over which a
platinum resistance thermometer is used to define the
temperature scale.

' Figures in brackets indicate the literature references at the end of this paper.
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Platinum appears to be, in every way save one, an
ideal material to use as a thermal conductivity refer-
ence standard. The exception is that the spread among
the literature values for the thermal conductivity of
platinum is considerable, to say the least.

Powell, Ho, and Liley [8] show a plot of essentially
all of the published thermal conductivity data for
platinum through the year 1965. The spread in the
data increases from about 10 percent at room tempera-
ture to over 30 percent at 1000 °C. Even if many of
the older data are discounted, the picture is not par-
ticularly improved. O’Hagan [9] has summarized the
methods used for previous measurements of the
thermal conductivity of platinum and also has sum-
marized the characterizations of the various samples.

Prior to the measurements of Powell and Tye [1], all
thermal conductivity values reported for platinum at
temperatures above 100 °C were obtained by methods
in which the temperature gradient in the specimen was
produced by Joule heating due to passage of an electric
current directly through the specimen. While the re-
sults of all but one [10] of these higher temperature
investigations employing electrical methods essen-
tially agree with one another, they disagree with those
of later investigations [1, 11, 12], which employed
nonelectrical methods. This raised the question as to
whether or not electrical methods yield results that are
intrinsically different from those of nonelectrical
methods. This could mean that the theory which has
been used in analyzing electrical methods is in error,
or it could mean that heat conduction is significantly
dependent on electric current density, at least in the
case of platinum.

The considerations discussed above pointed to the
need for a comprehensive investigation of the thermal
conductivity of platinum. It was felt that both an
absolute steady-state method without an electric cur-
rent flowing in the specimen, and also an absolute
steady-state method with a current flowing in the
specimen should be employed.

" As regards the nonelectrical method, experience at
NBS with guarded longitudinal heat flow methods in-
dicated that such a method could be made to yield
accurate results on a material having as high a thermal
conductivity as platinum, provided a specimen of
sufficient cross-sectional area was used. With a fairly
conductive metal, there were no particular advantages
in going to a radial heat flow method; furthermore, to
do so would have required a much larger sample.

As regards the electrical method, an arrangement
utilizing quite large current densities would be more
likely to reveal deviations due to a dependence of
thermal conductivity on current density. It was also
desirable to use the same method as that used by most
of the previous investigators. Fortunately, these two
desiderata both pointed to the necked-down sample
configuration utilized for measurements on platinum
by Holm and Stérmer [13], by Hopkins [14], and by
Cutler, et al. [15].

To give a direct and accurate comparison between
the two methods it was considered desirable to com-
bine both sets of measurements in one apparatus and

on the same specimen thereby eliminating a number of
uncertainties which would arise in comparing data
derived from measurements in different apparatus
and on different specimens. The above considerations
led to an apparatus, described in section 3, in which
thermal conductivity measurements can be made by
both the usual longitudinal heat low method and by an
electrical method.

It was also felt that thermal conductivity measure-
ments should be made on platinum samples of at least
two purities. Samples were obtained of a high purity
platinum (resistance thermometer grade) and of a
somewhat lower purity platinum (commercial grade).
As of this writing, only the measurements on the lower
purity platinum sample have been completed. The
results obtained on that sample are presented in this
paper and are compared with the results of other
investigators.

2. Description of Sample

In order for a valid comparison to be made between
the results of different investigators who measure on a
particular kind of material, it is necessary that their
specimens be characterized as extensively as possible
so that differences in specimens may be accounted for.
For this reason a number of pertinent measurements
were made in an attempt to characterize the speci-
men used in the present investigation. These meas-
urements and the results thereof are described below.

The platinum was provided by Englehard Industries,
Inc., in the form of a solid bar 2.04 cm in diameter by
31 e¢m long, and was classified as being of commercial
purity. The fabrication and cleaning procedures used
in preparing the platinum have been described by
O’Hagan [9].

The as-received bar was annealed in air for 5.5 hr at
770 °C in a horizontal tubular furnace and furnace
cooled at a rate of approximately 120 deg/hr. Shortly
thereafter the bar was accidentally dropped causing
it to deform slightly at one end. After correcting the
damage the bar was reannealed for 1.5 hr at 680 °C
and furnace cooled at a rate of approximately 90 deg/hr.
Its thermal conductivity was then measured in the
NBS Metals Apparatus [34, 35] over the temperature
range — 160 to + 810 °C [32].

Following these measurements the bar was ma-
chined and ground to 25.4 cm long by 2.000 cm
diam. The density of this bar was measured (see
below) and the electrical resistance was measured
at ice and liquid helium temperatures (see below).
The thermal conductivity specimen (18.4 e¢m long by
2.000 cm diam) was then fabricated from one end of
this bar. A length of 6.4 ¢cm was cut from the other
end for separate low temperature thermal conductivity
measurements [33]. The remaining disk, approxi-
mately 1 ¢cm long, was reserved for metallographic and
spectrographic analyses.

A thin neck, approximately 0.1 ¢m in diameter and
0.3 cm long, was machined in the thermal conductivity
specimen at approximately 4 c¢m from one end. To
cleanse this necked-down region of oil and any con-
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tamination contracted from the cutting tools, the fol-
lowing cleaning procedure was followed. Degreasing
was effected by immersion for half an hour in tri-
chlorethylene vapor. The neck was then pickled for
10 min in hot 50 percent nitric acid. Following this
the neck was washed in distilled water, pickled for
10 min in 50 percent hot hydrochloric acid, and again
washed in distilled water. There was equal likelihood
of the rest of the specimen having slight surface con-
tamination as a result of machining but its effect on
the bulk properties of the specimen would not be nearly
as grave as the corresponding effect in the neck region.
It was considered sufficient to clean the surface of the
specimen with toluene and carbon tetrachloride.

A general qualitative spectrographic analysis, per-
formed by the NBS Spectrochemical Analysis Section
on the 2-cm-diam by l-cm-long platinum disk men-
tioned above, detected Ag (10-100 ppm), Pd (10-100
ppm), Fe (< 10 ppm), and Mg (< 10 ppm). O’Hagan [9]
reported the results of a quantitative spectrographic
analysis made on a portion of a 0.05 em wire drawn
from the same platinum ingot as the thermal con-
ductivity specimen.

Photomicrographs were also made of the platinum
disk cut from the bar sample. They showed grain size
to be of the order of 0.02 ¢m. No evidence appeared
of inclusions of foreign matter or of any irregularities
in microstructure. Hardness measurements were made
on the original platinum bar, after the second anneal,
using a Vickers Pyramidal Diamond Tester with a 10 kg
load. Values ranged from 36.5 to 38.0 Vickers hardness

number. ) ) ;
The density of the bar, when it was 25.4 cm long,

was determined by mass and dimensional measure-
ments to be 21.384 g/cm? at 21 °C, accurate to within
+0.002 g/cm?. This density is an average value for the
whole bar and there is no guarantee that the density
was uniform to that degree throughout the bar.

The ratio of the resistance at the ice-point tempera-
ture to that at the boiling point of helium at atmospheric
pressure is a measure of the extent and condition of
impurities in a material and of the crystallographic
state of the material. This ratio was determined on the
2-cm-diam bar.

The ice-point resistances were measured both be-
fore and after the helium point measurements. The
current was supplied from a regulated d-c power
supply and was measured using a calibrated resistor
and a precision potentiometer. The voltage drops in
the specimens were measured on a high precision
6-dial potentiometer. In each case the resistance was
measured at three or four different current levels and
the value corresponding to zero current obtained by
extrapolation. The ratio of the resistance of the sample
at the ice-point to that at the helium-point was found to
be 393. This value is believed to be accurate to within
1 percent. However, it corresponds to an average
value over a considerable length of the sample and the
sample may not have been uniform in purity throughout.

A set of knife edges of known separation was fas-
tened to the 2-cm bar during the first set of ice-point
resistance measurements. The knife edges acted as po-
tential taps. Using the known separation of the knife

edges and the cross-sectional area of the bar, the ice-
point resistivity, corrected to 0 °C dimensions, was
determined to be 9.847uf) c¢m, accurate to within
+0.010182 cm.

A length of 0.05 ¢m platinum wire, drawn from the
same ingot as the thermal conductivity sample, was
electrically annealed in air for 1 hr at about 1450 °C.
The electromotive force of this wire versus the plati-
num standard Pt 27 [16] was measured by the NBS
Temperature Section with the reference junctions at
0 °C. The values obtained (at 100 deg intervals) in-
creased in an essentially linear manner from 0 pV at
0 °C to +15 uV at 1100 °C. This indicates that the
sample used in the present investigation was less pure
than Pt 27.

The temperature coefficient of resistance,
a=(Ri00—Ro)/100Ry, between the ice-point and the
steam-point is often used as an indication of the purity
of resistance thermometer grade platinum. The limiting
value of « for extremely pure platinum is given by
Berry [17] to be 0.003928,. The size and low resistance
of the thermal conductivity specimen precluded a
highly accurate direct determination of « on the speci-
men using existing equipment. On the basis of the
electrical resistivity measurements (described later)
on the necked-down portion of the specimen, « had a
value in the range 0.003876<«a=<0.003916. The rela-
tively large uncertainty in « arises from the use of
platinum versus platinum—10 percent rhodium ther-
mocouples to measure the temperature near 100 °C.
Berry [17] gives a plot which correlates a with the ratio
of the resistance of a sample at absolute zero to that
at the ice-point. He also correlates the resistance at
absolute zero with that at the helium-point. On the
basis of Berry’s correlations, the ice-point to helium-
point resistance ratio for the thermal conductivity
specimen used in the present investigation corre-
sponds to 0.003907=a=0.003916. This is not incon-
sistent with the range of values obtained from the
electrical resistivity measurements.

Although « could have been measured directly with
high accuracy on the 0.05 ¢m platinum wire, this was
not done since the results would not necessarily be
valid for the 2 ¢m bar, owing to possible differences in
purity and annealing. Corruccini [18] gives an em-
pirical expression, due to Wm. F. Roeser, correlating
« with the electromotive force versus Pt 27 with the
junction at 1200 °C and the reference junctions at
0 °C. Extrapolation of the emf measurements men-
tioned above, indicates an emf of +16 wV at 1200
°C, corresponding on the basis of Roeser’s expres-
sion, to a = 0.003914 for the 0.05 ¢cm wire drawn from
the same material as was used to fabricate the thermal
conductivity specimen.

A cooperative project, involving NBS and several
producers of thermometric grade platinum, is cur-
rently underway to study the properties of pure plat-
inum. If as a result of this project, it appears that
further characterization is indicated for the platinum
used in the present investigation, such characteriza-
tion will be performed on material which is being
reserved for that purpose.
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3. Method and Apparatus

3.1. Method

As discussed in the introduction, it was decided to
build a single apparatus in which thermal conductivity
could be measured by both an absolute guarded longi-
tudinal heat flow method (nonelectrical method) and
by a method in which a necked-down portion of the
sample was heated directly by passage of an electric
current (electrical method). The specimen configura-
tion selected for these measurements is shown in fig-
ure 1. The specimen (A) was raised to the desired
temperature level by means of the heaters (; and
Q3. In the longitudinal heat flow method, the heater,
Q.. located slightly above the center of the bar pro-
duced a temperature gradient along the portion of the
bar below (.. Heat from this heater was prevented
from flowing up the bar by adjusting Q3 so that there
was negligible temperature difference across the
necked-down region of the specimen. Lateral heat
losses from the bar were minimized by matching the
temperature distribution along the guard to that along
the specimen. Thermal conductivity was calculated
from the measured temperature distribution along the
lower portion of the bar, the power input to the central
heater, and the geometry.
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FIGURE 1.

In the electrical method, where the sample was
directly heated by passage of an electric current,
the voltage drop across the necked-down region of the
specimen was measured as a function of current, while
the maximum temperature rise in the neck was com-
puted from the change in electrical resistance (due to
a given change in current) and the temperature coef-
ficient of resistance of the material. The thermal
conductivity was determined from the voltage drop
across the neck, the computed maximum temperature
rise in it, and the electrical resistivity of the material.

The apparatus is described in detail in this section.
The experimental test procedures and calculation pro-
cedures for the nonelectrical method are described in
sections 4.1 and 4.2; those for the electrical method
are described in sections 5.1 and 5.2.

3.2. Mechanical Configuration

The mechanical configuration of the apparatus is
illustrated diagrammatically in figure 2 and described
in detail below.

a. Specimen

The specimen (A) was a bar 2 ¢cm in diameter by
18.4 ¢cm long with a 0.11 ¢m diam by 0.33 ¢m long neck
machined in it 4.1 e¢m from the upper end. A special
technique, described by O’Hagan [9], had to be de-

veloped for machining the neck due to its structural
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FIGURE 2. The apparatus (components are identified in the text).
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weakness. Hollow molybdenum extensions (B) of the
same diameter as the specimen were screwed to the
specimen (A) at both ends. The open ends were brazed
to copper blocks (C) that served as heat sinks. The
molybdenum extensions were filled with high purity
“coral” alumina. The lower end of the specimen as-
sembly (B—A-B) was bolted to, but electrically in-
sulated from, a brass flange which was welded to a
water-cooled brass column (D). This column was
firmly bolted to plate (E) which served as a base for
the apparatus.

One of the major problems with the necked-down
specimen was that of protecting the neck from mechan-
ical strain due to tension, compression, torsion, or
bending. Any clamp supporting the neck would have
had to be electrically insulated from the specimen and
differential thermal expansion between the clamp and
specimen could have introduced strain in the neck.
As an alternative to a clamp it was decided to counter-
balance the load on the neck due to the weight above
it so that there would be only a small net force on the
neck. The weight of platinum above the center of the
neck was computed from dimensional measurements
and from the measured density of the specimen, and
the components extending from the upper end of the
specimen were weighed before assembly.

The counterweight (W) was suspended from a string
which passed over two pulleys and attached to an
aluminum hanger (H). The pulley wheels were mounted
on low-friction bearings having a starting force of less
than 1 g each. A molybdenum well (F), which was
brazed to the upper copper block (C), passed through
a linear bearing (L) which served to maintain the up-
per part of the specimen in precise alinement with the
lower part, and presented negligible resistance to the
free vertical motion of the specimen resulting from
thermal expansion. This bearing was mounted on the
upper plate (E) but electrically insulated from it. The
two aluminum plates (E, E) were connected by three
tie bars (K) to form a rigid framework for maintaining
proper specimen alinement. An auxiliary device, de-
scribed by O’Hagan [9], prevented the upper part of the
specimen from rotating but still allowed free vertical
motion. Current was introduced to the specimen via a
copper rod (N) at the lower end and through a hollow
molybdenum electrode (O) at the upper end. The upper
electrode was brazed to a copper support (S) which was
fastened to, but electrically insulated from, the upper
plate (E). The molybdenum well (F) contained a liquid
metal alloy into which the electrode dipped thereby
affording a flexible current connection. The buoyant
force of the liquid metal on the electrode contributed
to the load on the neck and was compensated for in the
counterweight. The electrode was fixed but the molyb-
denum well moved upwards with the specimen due to
thermal expansion during test runs. This changed the
buoyant force and consequently put a load on the neck.
The maximum change in buoyant force was only 3 g,
however, which would not strain the neck signifi-
cantly. The liquid metal used was a gallium-indium
eutectic alloy chosen primarily for its low vapor pres-
sure and its comparatively low freezing temperature of

15.7 °C. The requirement for low vapor pressure was
dictated by a need to evacuate the system. Preliminary
tests were run to evaluate the uncertainty in buoyant
force due to surface tension and sticking of the gallium-
indium to the molybdenum surfaces. A very definite
hysteresis effect was observed as the electrode was
moved relative to the well and then returned to its
initial position. The largest uncertainty in buoyant force
was determined to be about 4 g. The choice of molyb-
denum as the electrode and well material stemmed
from its compatability with gallium, which reacts with
most other metals, and from the fact that molybdenum
is wetted by gallium. The current feed-in system also
served as a heat sink for the upper part of the speci-
men assembly. The hollow molybdenum electrode was
internally cooled by circulating water at a temperature
higher than the freezing point of the gallium-indium
eutectic alloy.

b. Furnace and Guard

The inner core (G), or the guard as it is called, was
a molybdenum tube of 5.7 ¢m inside diameter. Since
the inner core acted as a thermal guard to prevent
heat losses from the specimen, it was considered more
desirable to make it from metal rather than from ce-
ramic so that the temperature distribution along it
could be more easily controlled and more accurately
measured. The bottom of the guard was attached to a
water-cooled brass plate (P). A water-cooled brass ring
(Q) was attached to the upper end of the guard. The
outer furnace core (V) was an aluminum oxide tube
supported top and bottom by three l-cm diam alumi-
num oxide rods (U).

The exterior portion of the furnace consisted of a
water-cooled shell (X) supported between two water-
cooled plates (P). Attached to the upper plate of the
furnace was a split nut. This nut engaged a lead screw
mounted between the plates (E, E) and by turning the
screw the furnace could be moved up or down. Ready
access to the specimen was thereby afforded. The
three rods (K) acted as guide rods for the furnace.
Six linear bearings (Y) attached to the furnace plates
ensured alinement and permitted the furnace to move
up and down freely. The correct vertical location of the
guard relative to the specimen was determined when
a probe attached to the upper end of the guard made
electrical contact with a plate attached to the molyb-
denum well at the ypper end of the specimen assem-
bly. When the furnace had been positioned, the indi-
cating probe attached to the guard was removed.

The space between the specimen and the molyb-
denum guard and that between the guard and the
water-cooled shell were filled with fine high-purity
aluminum oxide powder of low thermal conductivity
and low bulk density (0.16 g/cm?).

c. Environmental System

The entire apparatus was mounted inside a 24-in
diam metal bell jar to enable operation in an inert
atmosphere. A 4-in oil diffusion pump and a 5 cfm
mechanical pump were used to evacuate the system
prior to refilling with argon or helium. Initial evacua-
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FIGURE 3.

tion was controlled to avoid disturbance of the fine
powder insulation.

3.3. Thermal Configuration

The heater and thermocouple locations on the
specimen and guard are shown in figure 1.

a. Specimen

The heaters, Q; and Qj;, used to raise the mean tem-
perature of the sample were located in the molybde-
num extensions. These heaters consisted of six
series-connected helical coils of 0.02 ¢m diam plat-
inum—thirty percent rhodium wire insulated from the
surrounding metal by thin-wall aluminum oxide tubing.
Platinel 2 thermocouples were attached adjacent to
heaters Q; and Q3 for use in controlling the tempera-
tures at these locations.

The central heater, Q,, was contained in six holes
drilled through the platinum bar and was constructed
as shown in figure 3. The inner four holes were 0.1 ¢cm
in diameter and accommodated helical elements con-
tained in thin-wall aluminum oxide tubing. The ele-
ments were made from 0.013 em diam platinum—10
percent rhodium wire, the outside diameter of the helix
being 0.05 ¢m and the pitch 0.025 ¢cm. The outer two
holes were 0.16 cm in diameter and accommodated
“swaged elements” having platinum—I10 percent
rhodium sheaths insulated from platinum —10 percent
rhodium heater wires by compacted MgO powder in-
sulation. The swaged elements were a snug fit in the
holes so that there was good thermal contact between
the sheath and the bar, and consequently good thermal
coupling between the heater and the bar. The six ele-
ments were connected in series as in heaters Q; and
Q;. Platinum heater leads, 0.05 cm in diameter,
were welded to the ends of the swaged elements.
The good thermal contact in the swaged elements en-
sured that the temperature at the ends of the heater

2 Platinel has a high thermal emf. approximately that of Chromel P versus Alumel.
The negative leg of the thermocouple is 65 percent Au. 35 percent Pd alloy (Platinel 5355)
and the positive leg is 55 percent Pd. 31 percent Pt. and 14 percent Au (Platinel 7674).

closely approximated that of the specimen. Moreover,
the current leads extended radially from the heater in
an isothermal plane. The combined result was to mini-
mize heat losses via the leads. Two 0.02 ¢cm platinum—
10 percent rhodium potential leads were welded to each
of the current leads, one at the junction of the heater
and the current lead, and the other about 1 cm back
along the current lead. The two platinum—10 percent
rhodium potential leads together with the intervening
section of platinum current lead served as a differential
thermocouple to determine the temperature gradient
in the current lead. By taking potential readings with
the current flowing in the forward and reverse direc-
tions, the IR drop in the current leads could be ac-
counted for and the temperature gradients therein
determined. These data were used in computing heat
flows along the leads. The potential drop across the
inner taps was used in computing the power generated
in the heater. The distances from the heaters to the
nearest thermocouples and potential taps were such
that perturbations in heat flow and electric current
flow generated by the presence of the heaters decayed
to an insignificant level at the position of the thermo-
couples or potential taps (see appendix B of O’Hagan
[9)).

Five thermocouples, spaced 2 e¢m apart, were lo-
cated in the gradient zone of the specimen, with the
lowermost one (designated 4 in fig. 1) being 2 em from
the end of the specimen. The thermocouples were
fabricated from 0.020 cm diam platinum and platinum —
10 percent rhodium wires which were annealed
in air at about 1450 °C for Y2 hr and then butt-welded
together. They were pressed into 0.018 ¢m wide by
0.023 e¢m deep horizontal slits in the surface of the
specimen thereby replacing the metal removed in
machining the slits. By virtue of the fact that the speci-
men was fairly pure platinum with essentially the same
absolute thermoelectric power as the platinum leg of
the thermocouple the junction of each thermocouple
was effectively at the point where the platinum—10
percent rhodium leg first made contact with the speci-
men, and the temperature measured was the tempera-
ture at that point. The platinum—10 percent rhodium
wire emerging from its groove extended a short way
around the specimen in the same isothermal plane—
insulated from the specimen in broken ceramic tub-
ing—so as to minimize the amount of heat conducted
away from the junction. Similar thermocouples were
located in the molybdenum extensions, three in each,
to measure the temperature distribution along them.
This information was essential to the mathematical
analysis of the system.

Additional thermocouples were located on either
side of the neck (locations 9, 10, 11, and 12 in fig. 1).
These were fabricated from annealed 0.038 ¢cm diam
platinum and platinum—10 percent rhodium wire and
pressed into slits. In addition to measuring tempera-
ture, these thermocouples were wired at the selector
switches so that the platinum legs could be used to
measure voltage drops across the neck when an electric
current was flowing through the neck. With no current
flowing, the platinum—I10 percent rhodium legs, in
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conjunction with the platinum neck, could be used as a
differential thermocouple to control the differential
temperature across the neck in the longitudinal heat
flow method of measurement.

b. Guard
The guard had three heaters, Qi, Qs, and Qg, at

positions corresponding to those on the specimen
assembly. All three were swaged heaters with plat-
inum—10 percent rhodium sheaths and heating ele-
ments, and MgO insulation. They were pressed into
grooves machined in the guard, thus giving good ther-
mal contact. The end heaters (Q4 and Qs) were used to
keep the guard at the desired temperature. The cen-
tral heater (Q;) was used to produce a temperature
gradient in the guard matching that in the specimen.

The guard was electrically grounded but the heaters
were isolated. Platinel control thermocouples were
peened into the guard adjacent to each of the heaters.

Twelve thermocouples were located on the guard,
three in the gradient zone, three in the isothermal zone,
and three in each of the end zones. All the thermo-
couples were 0.038 ¢m platinum versus platinum— 10
percent rhodium with the junctions pressed into slits
machined in the guard. The thermocouple wires were
taken one turn around the guard in broken ceramic tub-
ing in an isothermal plane and cemented to the guard
with high purity alumina cement. This helped to temper
the thermocouple leads and reduce the amount of heat
conducted away from the junction by the leads. Within
the furnace all the thermocouples were insulated in
single-bore ceramic tubes. For the remainder of their
lengths the wires were insulated in flexible fiber-glass
sleeving. All the thermocouples, both from the guard
and the specimen assembly, went to a junction box
mounted on the inside of the feedthrough ring. There
they were torch welded to identical wires which were
taken through wax vacuum seals to an ice bath. All
the Platinel control couples went to terminal strips on
the upper plate of the furnace. There they were spot-
welded to Chromel P and Alumel wires coming from
the temperature controllers.

The aluminum oxide outer core (V) was provided
with a heater winding (0.1 ¢cm diam molybdenum) to
bring the furnace as a whole to temperature and to
reduce heat losses from the molybdenum guard and
the power load on its heaters. A Platinel control
thermocouple was mounted on the outer core (V).

3.4. Instrumentation
a. Temperature Control

In the longitudinal heat flow method of measuring
thermal conductivity, the platinum—10 percent rho-
dium legs of the outer pair of thermocouples in the
neck region were used in conjunction with the necked-
down portion of the specimen as a differential thermo-
couple to control the power to heater Qs, and thus
maintain essentially a zero temperature differential
across the neck. The signal from this thermocouple
was amplified by a chopper-stabilized d-c amplifier

and fed into a current-adjusting-type proportional con-
troller incorporating automatic reset control and rate
control. The output of the proportional controller regu-
lated the power to the heater by means of a transistor-
ized current amplifier fed by a regulated d-c power
supply. In the electrical method of measuring thermal
conductivity, an electric current flowed through the
specimen and the above system of control could not
be employed. In this case the Platinel control couple
adjacent to heater Q3 was put in series opposition with
a signal from an adjustable constant voltage source
and the resultant signal fed to the proportional con-
troller which regulated the power to Qs;. The external
signal was manually adjusted to give zero temperature
differential across the neck.

The specimen heater ((),) was fed constant voltage
(%£0.01%) from a regulated d-c power supply. Power
to heater Q, and to the three guard heaters (Q,,
Qs, and Q) was supplied by variable-voltage trans-
formers, which in turn were fed by voltage-regulated
isolation transformers. Power to each heater was
regulated by individual thermocouple-actuated con-
trollers. Power to the heater winding (Q;) on the
alumina core was supplied by a variable-voltage trans-
former fed by a voltage-regulated isolation transformer.
The current was manually ratioed among the three
heater sections. The total power to this heater was
regulated by a single thermocouple-actuated con-
troller. All heaters were supplied by separate isola-
tion transformers or power supplies to minimize
current leakage effects.

b. Temperature Measurement

The noble metal leads of the thermocouples were
brought to an ice bath, where they were individually
joined to copper leads. The copper leads went in
shielded cables to a bank of double-pole selector
switches of the type used in precision potentiometers.
The selector switches were housed in a thermally
insulated aluminum box with 1 e¢m thick walls. The
copper leads were thermally grounded to (but elec-
trically insulated from) the switch box to minimize
heat transfer directly to the switches. The emfs of the
specimen thermocouples were read on a calibrated
six-dial high-precision potentiometer to 0.01 uV, using
a photocell galvanometer amplifier and a secondary
galvanometer as a null detector. (Due to thermal emfs
in the potentiometer and circuitry, these emfs were
probably not meaningful to better than =0.05 uV.)
The emfs of all other thermocouples were read on a
second precision potentiometer to 0.1 wV using an
electronic null detector.

c. Power Measurement

Power input to the specimen heater was measured
using a potentiometer in conjunction with a high-
resistance volt box to measure the drop across the
inner set of potential taps, and a standard resistor in
series with the heater to measure the current.
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d. Resistance Measurement

All electrical resistance measurements were made
by measuring the current (from a 0-100 A regulated
d-c power supply) flowing through the specimen,
utilizing a calibrated 0.001 Q standard resistor, and
by measuring the appropriate voltage drop in the sneci-
men, using a potentiometer.

4. Longitudinal Heat Flow Method

4.1. Experimental Procedure

a. Preliminaries

The furnace was heated to 150 °C and the system
evacuated to 3 X 10~* torr. Initial pump-down was
through a needle valve to give a sufficiently low rate so
as not to disturb the very light powder insulation.
When the pressure had fallen below 10! torr, the dif-
fusion pump was turned on, pumping initially through
the needle valve, and, when the pressure was below
10-2 torr, through the 4-in port. After pumping for
24 hr, the pumps were turned off and the system back-
filled with high purity (99.99%) argon. The argon was
bled in slowly through a needle valve to avoid dis-
turbing the powder. The pressure was allowed to build
up to almost 1 atm before the valves were shut off
and the cycle of evacuating and backfilling repeated.
The final argon pressure after the second backfilling
was about three-quarters of an atmosphere.

The cooling-water flows to the system were adjusted
to the desired levels as indicated on flow-meters. The
water was pressure-regulated to maintain constant flow
rate. A control thermocouple on the specimen was
wired to shut all the heaters off if its temperature ex-
ceeded a predetermined level. This was a safety pre-
caution in the event of an interruption in the cooling-
water flow.

The test procedures are described in detail below.
To facilitate the discussion let us refer to figure 1.
The region of the specimen below the specimen heater,
Q:, will be referred to as the lower part of the speci-
men, and the region above Q. as the upper part of the
specimen.

b. Description of Tests

In the longitudinal heat flow method of measuring
the thermal conductivity each datum point was com-
puted by simultaneous solution of three tests:

1. an ““isothermal” test with no power input to the
specimen heater (Q.) and with the temperature distri-
bution on the guard adjusted to closely match that on
the specimen.

2. a “matched” gradient test with sufficient power
input to the specimen heater to maintain the desired
longitudinal temperature gradient in the specimen and
with a matched temperature distribution on the
guard.

3. an “‘unmatched” gradient test with the power
input to the specimen heater and the temperature at
the center of the measuring span the same as in the
“matched” gradient test, and with the temperature
distribution on the guard parallel to that on the speci-
men but 10 deg cooler.

Matched Gradient Test

The furnace temperature was raised by means of
heater Q;. The power to the specimen heater, Q.,
was adjusted to give a temperature gradient of 5
deg/cm in the lower part of the specimen. Power to
Qs was automatically controlled, using a propor-
tional controller, to maintain a minimum tempera-
ture drop across the neck. The Pt-10 percent Rh
legs of thermocouples 9 and 12 were used in con-
junction with the necked-down portion of the speci-
men as a differential thermocouple activating the
proportional controller. The temperature drop across
the neck never exceeded 0.1 deg. The specimen was
maintained at the required mean temperature by
thermostatting the power to the lower heater Q.

The temperature distribution along the guard was
forced to match that along the specimen by adjusting
the controllers for heaters Q., Qs, and Qs. Tempera-
tures at corresponding locations on the specimen and
the guard generally agreed to within 1 deg.

After allowing time for the system to come to equi-
librium, readings were taken of the thermocouple
emfs and the voltage and current to the specimen
heater, Q.. Normally these data were taken three
times over a period of about 2 hr. The temperatures
never drifted more than a few hundredths of a degree
from one set of readings to the next and the three
sets of data were averaged. When the drift between
the first and second sets of readings was less than
0.01 deg, the third set of readings was not taken.
On completion of the last set of readings, the voltage
drops between the inner and outer taps of each cur-
rent lead were measured with the heater current
flowing normally and then reversed.

Unmatched Gradient Test

Upon completion of the “matched” gradient test
the controllers for the guard heaters Q. Q;, and
Qs were adjusted to lower the temperatures on the
guard by 10 deg while maintaining the temperature
distribution parallel to that on the specimen. With
the guard at the lower temperature heat losses from
the specimen to the surrounding insulation were sig-
nificantly increased and the heat flow in the specimen
reduced. As a result, the temperature gradient in the
specimen and its mean temperature were decreased.
The power to heater Q; was adjusted to restore the
specimen to the initial mean temperature. The system
was then allowed to equilibrate and the same data
were taken as for the “matched” gradient test.

Isothermal Test

For the “isothermal” test heater Q. was shut off
and heater Q; adjusted until the specimen was approxi-
mately isothermal. No adjustments had to be made to
Q; as the controller automatically adjusted to maintain
Ty —T1o=0. The guard heaters were likewise adjusted
until the temperature distribution on the guard once
again matched that on the specimen. When the sys-
tem was in equilibrium, the data mentioned above were
taken, with the exception of the power to the specimen
heater which was shut off.
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At 1100 °C an additional “matched” gradient test was
run after the three regular tests were completed. The
extra data obtained in this test served as a check on
drifts in thermocouple calibrations during the testing
period.

c. Testing Sequence

All of the measurements described above were
made at a number of temperatures. Tests were first
run in air at 100 °C, then in argon at 100, 300, 500,
700, 600, 400, and 200 °C in that order. One of the
guard heaters would short out at about 750 °C and
consequently the upper limit on the first run was
700 °C. After completing that run in argon the system
was evacuated and backfilled with helium (99.99%
pure) to a pressure of about three-quarters of an atmos-
phere. The helium, having a much higher thermal
conductivity than argon, changed the effective thermal
conductivity of the insulation surrounding the speci-
men. Tests were run in helium at 200 and 400 °C to
experimentally evaluate heat losses from the specimen
to the insulation. The system was then opened up and
the trouble with the guard heater corrected. The fur-
nace was filled with fresh powder insulation, the pow-
der being packed lightly around the neck to ensure
that the necked-down region was uniformly filled with
insulation. The system was refilled with argon as de-
scribed at the beginning of this section and tests were
run at 300, 700, 900, and 1100 °C. Heater Q3 burned
out while tests were being conducted at 1100 °C by
the electrical method and those tests were incomplete.
The thermocouples started drifting at 1100 °C and
losing their calibration due to contamination. Conse-
quently, it was decided to terminate the tests at that
point.

4.2. Calculation Procedures and Uncertainties

For one-dimensional steady-state heat flow, the
total heat flow, Q, through the specimen is given by

dT
Q=—N—, (1)
dz
where M is the thermal conductivity, 4 is the cross-
sectional area of the specimen, T is the temperature
and z is the longitudinal coordinate. For moderate
temperature ranges, the thermal conductivity of the
specimen can be assumed to vary linearly with
temperature; then (1) becomes
dT

QI*}\OA{I‘F,BO(T—TO)}E» (2)

where Ay is the thermal conductivity of the specimen
at a reference temperature, Ty, and 3, is its correspond-
ing temperature coefficient. The difference between
the heat flows in two tests is given by

0-0=-ro ()~ ()]

—)\014,30[( T— m(i .

dz

7= Tn(v

dz

|

where quantities of one test are distinquished from
those of the other by use of primes. If we define the
reference temperature as

_T(dT/dz) —T'(dT/dz)’
(dT|dz) — (dT|dz)’

T, (4)

the second term on the right-hand side of (3) vanishes,
and the thermal conductivity at the reference tempera-
ture, T, is given by

S —(Q—-0"
" A[(dT)dz) — (dT)dz)'T

()

The purpose of computing the thermal conductivity
from data corresponding to two different powers was
to correct for errors that did not depend on the power
transmitted through the specimen. The most obvious
errors of this type are thermocouple errors. In a
simultaneous solution each thermocouple in effect
measures a temperature difference so that errors in
calibration of the thermocouples cancel out to first
order. Further possible sources of error will become
evident below. Determination of Ay involved measure-
ment of the cross-sectional area of the specimen, the
total heat flow in the specimen and the longitudinal
temperature gradient in the specimen for each of
the two tests. These quantities were evaluated at the
position of the middle thermocouple in the measuring
span.

a. Cross-Sectional Area

The effective cross-sectional area of the specimen,
after correction of the measured diameter for surface
roughness, was determined to be 3.1331 c¢m? at 21 °C.
The uncertainty ? in this area was estimated to be less
than 0.02 percent. The diameter at temperature ¢
(°C) was computed from that at 25 °C using the equation

D= D>25(0.99978+8.876 X 10~ 6¢+ 1.311 X 10-%*).  (6)

This equation was derived from smoothed thermal ex-
pansion data for platinum [19]. The cross-sectional
area was then computed from the diameter.

b. Heat Flow

The total heat flow through the specimen at the
position of the center thermocouple was calculated
using the expression

O=P—qo—qo—an—qi— ge, (7)

where P is the measured electrical power input to the
specimen heater;
g« and ¢, are the heat losses along the two leads
carrying current to the specimen heater;
qn is the heat loss across the necked-down portion
of the specimen;

3 Uncertainties stated in this paper represent either (a) statistical uncertainties based on
results of calibrations or (b) limits to errors conservatively estimated by the authors.
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FIGURE 4. Circuit diagram for the specimen heater.

qi is the heat loss into the insulation surrounding

the specimen; and

q. is the heat loss down the thermocouple wires and

ceramic tubes next to the specimen.
Each of the quantities in (7) is considered separately
below.

Power Input to Specimen Heater (P): The electrical
circuit for the specimen heater is illustrated diagram-
matically in figure 4. The power input to the heater
was computed using

P=nE,1+ Ri/R,)(Es/Rs—nE,/R,), (8)

where E, is the voltage drop across the output of the
volt box as measured with a potentiometer, n is the
resistance ratio of the volt box, E is the voltage drop
across the standard resistor, R, as measured with a
potentiometer, R, is the total resistance of the potential
leads and R, is the total resistance of the volt box.
The potentiometer, voltbox, and shunt box were
each calibrated to 0.01 percent or better. The emf of
the standard cell was known to 0.01 percent or better.
The correction terms in (8) for the voltage drop in
the potential leads and for the current through the
voltbox were small (a few tenths of a percent) and
uncertainties in these corrections could not have
introduced more than 0.01 percent additional error
in P. Thus the percentage uncertainty in the measured
electrical power input was less than 0.05 percent.
Heat Flow in Current Leads (qu, qv): The circuit
diagram in figure 4 shows only one set of potential
leads coming from the heater. In fact there were two
sets as shown in figure 5, but only the inner set, i.e.,
the potential taps closer to the heater, was used in
measuring the power input to the heater. The two sets
of potential leads were required in measuring heat
conduction along the current leads. The current leads
were platinum and the potential leads platinum-10
percent rhodium. Consequently, each current lead
could be used along with its two potential leads as a
differential thermocouple to measure the temperature
drop, AT, between the potential taps. With current
flowing to the heater the voltage drop measured be-
tween 1-2 or 3—4 was the algebraic sum of the IR drop
between adjacent potential taps (where [ is the current

R
HEATER R

AT

AT
| 2t

FIGURE 5. Arrangement of potential leads for the specimen heater.

and R is the resistance of the current lead between
the potential taps) and the Seebeck emf due to the
temperature drop, A7, between the potential taps.
Assuming no heat losses from the current leads,
it can be shown [9, 20-26] that the heat conducted
along the leads is given by

A I*R
qa, I;:Rp‘ AT*‘T, 9)

where p is the electrical resistivity of the current
lead and A its thermal conductivity. By taking measure-
ments with the current flowing forward and reversed,
R and AT were determined for each lead, and con-
sequently g, and g.

The heat conducted along the leads, as determined
using (9), was less than 0.05 percent of the heat flowing
in the specimen. These corrections were sufficiently
accurate that no errors larger than 0.02 percent are
believed to have been introduced into the measured
thermal conductivity values by uncertainties in g,
and ¢,. We will discuss below the possible magnitude
of heat losses from the current leads into the surround-
ing powder insulation.

Heat Flow across Neck (qn): Referring to figure 1,
it is seen that heat could be conducted across the
necked-down region of the specimen by the neck itself
and by the powder insulation surrounding it. The con-
ductance of the powder was km(b?— a?)/2l where k is
the thermal conductivity of the powder, b the radius
of the specimen, a the radius of the neck, and 2/ the
length of the neck. The conductance of the specimen
between thermocouple positions 10 and 11 was AF
where \ is the thermal conductivity of the specimen
and F is a geometric factor which was determined from
the corresponding equation for electrical conductance,
I=0oFV.where I is the current, o the electrical con-
ductivity and V is the voltage drop between the thermo-
couples. These data were available from measurements
by the electrical method. The heat flow across the
necked-down region was given by

(=),

Gn= [)\FJr s = ] AT, (10)

where it is assumed that the temperature differential
across the insulation was the same as that measured
between the thermocouples.

The correction for heat flow across the necked-
down region of the specimen was always less than
0.05 percent of P. Errors in the temperature drop
across the neck due to possible inhomogeneities in
the thermocouple leads or to stray thermal emfs would,
for the most part, cancel since they were common to
gn and g, (i.e., corresponding to Q and Q). At 300
°C a series of tests were run in which the tempera-
ture drop across the neck was held in turn at about
—5, 0, and +5 deg, a range 20 times larger than that
which occurred during normal measurements. The
corresponding values for (¢,—gq,) were about +1
percent, 0 percent, and —1 percent, respectively, of
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P. The three thermal conductivity values obtained,
using (10) to effect the correction for heat flow across
the neck, fell within a range of less than =0.02 per-
cent. For normal tests, in which the temperature across
the necked-down region was maintained quite small,
it is felt that any uncertainty in the measured thermal
conductivity values due to this source was less than
0.02 percent.

Heat Loss into the Insulation (q;): In order to
determine ¢;, the heat exchange between the speci-
men and the surrounding insulation, it was neces-
sary to perform an extensive mathematical analysis.
If the temperature distribution along the guard exactly
matched that along the specimen there would have
been no radial heat exchange between the specimen
and the guard. However, there would still have been
an exchange of heat between the specimen and the
surrounding insulation in order to provide the longi-
tudinal heat flow in the insulation adjacent to the
specimen.

The heat flow from an elemental length of the surface
of the specimen was

0
dqi=2mak (%) dz, (11)

r=a

where « is the radius of the specimen, k the thermal
conductivity of the insulation, 6 the temperature in
the insulation relative to an arbitrary fixed tempera-
ture, r the radial coordinate, and z the longitudinal
coordinate. The net heat flowing across the surface
r=a between z; and z, was

2 /90
qi(z1, 22):27”1] K <:i_r> dz, (12)

where k is, in general, temperature dependent. Let
us define a new potential, £, that satisfies the relation

koN7E=k(6) VO, (13)

where ko = k(0). Integrating (13),

1 [’}
g= j «(6)db, (14)

KoJo

where we have selected the integration constant so
that £=0 when 6=0. Writing (12) in terms of ¢ we
get

(Ii(Zly Zz): K(DD(ZI ) ZZ)» (15)
where
D(z1, z2)=2ma fw (Q§> dz. (16)
2, ar/)r=a

The factor D(z., z2) was determined by analyzing
the heat flow in the hollow cylinder of powder insula-
tion between the specimen and the guard, using the
measured temperature distributions along the speci-

men assembly and along the guard cylinder as bound-
ary conditions. Polynomial expressions relating tem-
perature to longitudinal position were used to describe
these temperature distributions in the regions between
the heaters. In the intervening regions near the heaters,
smoothing cubics [27] were used which provided conti-
nuity of temperature and longitudinal temperature
gradients. The evaluation of D(z, z2) is described more
fully in appendix A.

Since the heat flow in the specimen was to be evalu-
ated at the position of the center thermocouple in
the gradient region, all the heat loss to the insulation
from the location of the heater down to the position of
the center thermocouple had to be considered. In
addition, heat losses in the region between the speci-
men heater and the neck had to be considered since
these had to be provided by the specimen heater.
The neck, in effect, could be considered as the upper
end of the specimen for purposes of this analysis,
since any heat exchanges between the powder and the
specimen above the neck did not affect that part of
the specimen below the neck as long as zero tem-
perature differential was maintained across the neck.
Therefore, in evaluating ¢;, the limits of integration
for D(z,.z) were the position of the center thermo-
couple (z;) and the position of the center of the neck
(22).

The correction (gi— ') for heat exchange with the
powder insulation was potentially a large source of
error and considerable effort was expended to, first,
keep this correction small and, second, evaluate it
accurately. Evaluation of this correction, as seen from
(15), required a knowledge of the integral, D(zi, z),
and of the thermal conductivity, ko, of the insulation.
_ Numerous factors could have adversely affected the
determination of D(z;. z2). The use of logarithmic
functions to define the radial temperature distribu-
tion across the ends of the hollow cylinder of insula-
tion was an approximation. However, it is easily
shown that the potential distribution near the speci-
men was not significantly affected by the boundary
conditions at the remote ends of the extensions.

In the mathematical analysis it was assumed that
the temperatures on the inner surface of the guard
were the same as the temperatures measured on the
outer surface. The molybdenum guard had high
thermal conductivity so that any radial temperature
gradients in the guard would be small and the asso-
ciated errors would tend to cancel on simultaneous
solution of the gradient and isothermal tests. Angular
variations in the temperature distribution on the guard
could have arisen if the specimen and guard were not
concentric or if the insulation between the specimen
and the guard was not packed uniformly. Great care
was taken to avoid both of these conditions. Any
angular variations would have been approximately
the same for two tests at the same mean temperature
and so the associated errors would in large part cancel
under simultaneous solution. Such would not be the
case for errors arising from uncertainties in the longi-
tudinal positions of the thermocouples since the
temperature distribution along the guard cylinder in
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the gradient test differed from that in the isothermal
test. The necessary steps were taken to ensure that
the longitudinal position of the guard was accurately
known relative to that of the specimen, and the loca-
tion of the thermocouple slits both on the guard and on
the specimen assembly were measured accurately
prior to installation of the thermocouples.

The details of the actual temperature distributions
in the heater regions where smoothing cubics [27]
were used could conceivably have influenced D(z;. z).
Except for the regions of Q. and Q;, such effects
should have been dbnut the same in the gradient and
in the isothermal tests, and hence would have canceled
on simultaneous solution of these tests. Since the
guard heaters were on the outside of a considerable
thickness of high-conductivity metal, we feel that the
temperature on the inside surface of the guard cylinder
varied smoothly with position in the regions of the
guard heaters. Thus, no significant errors were
believed to be introduced by the use of a smoothing
function in the region of Qs.

R. W. Powell [28] has pointed out that a possible
additional source of error, not specifically discussed
by O’Hagan [9], is heat loss into the powder insulation
from the external platinum jumpers which connected
the elements of heater . (see sec. 3.3a and fig. 3).
There were five such jumpers, each about 0.3 cm long,
contained in aluminum oxide tubing to electrically
insulate them from the specimen. Although the heat
generated in the jumpers was only a small fraction of
the total heat generation in the heater, these jumpers
were heated, by conduction from the helical heater
coils inside the specimen, to a temperature above that
of the specimen. This would have resulted in a heat
flow into the powder insulation surrounding the jump-
ers. A portion of this heat would have flowed back
into the specimen but, at least in principle, a net por-
tion of the power input to the specimen heater could
have been lost from the heater jumpers with a corre-
sponding error in the measured thermal conductivity
values.

Since the temperature rise of the jumpers was de-
pendent upon the power input to the specimen heater,
the heat loss discussed in the previous paragraph was
not eliminated, or even reduced, by the simultaneous
solution of a matched gradient test and an isothermal
test. The use of an unmatched gradient test also did
not help in evaluating this source of heat loss. The
smoothing functions used were quite adequate for the
isothermal tests but did not truly represent the temper-
ature distributions in the region of Q. for the gradient
tests. In view of the importance of this potential source
of error, heat loss from the jumpers is considered
further in appendix B, where a mathematical analysis
is used to approximately evaluate this source of error.
This analysis indicates that errors in the measured
thermal conductivity values due to heat loss from the
jumpers on heater Q. were less than 0.2 percent at
100 °C and less than 0.5 percent at 900 °C.

A calculation (see appendix I of O’Hagan [9]), based
on the degree of tempering provided by the swaged
elements to which the heater current leads were

attached, indicated that the current leads were only
1 to 2 deg C hotter than the adjacent specimen ma-
terial. By comparison to the discussion of heat loss
from the jumpers (see appendix B), which may have
been over 100 deg C hotter than the specimen, we see
that any errors due to heat loss from the heater leads
into the powder insulation were negligible.

In analyzing the data the “isothermal” test was
combined with the “‘matched gradient” test and with
the “‘unmatched gradient” test to give two equations
of the form (5). Inspection of eqgs (5), (7), and (15)
shows that the value obtained for Ay depends in a
linear manner on the value assumed for ko. The ef-
fective thermal conductivity of the insulation sur-
rounding the specimen depends on the density of the
powder and the pressure and type of gas present, and
is best determined under experimental conditions.
This was done by simultaneous solution of two equa-
tions of the form (5) which yielded values both for the
thermal conductivity of the specimen, Ay, and the
thermal conductivity of the insulation, xy. The thermal
conductivity values obtained for the aluminum oxide
insulation, in argon and in helium, were given by
O’Hagan [9].

If there was a significant heat exchange between the
specimen and the insulation that was not being
adequately corrected for, one would expect a system-
atic difference between the values obtained for the
thermal conductivity of the specimen in helium and
those obtained in argon, due to the large difference
between the thermal conductivity of the powder in
the different atmospheres. In fact, however, the values
measured in helium fell within the scatter band of
those measured in argon indicating that any uncor-
rected heat exchanges were certainly less than 0.2
percent, the width of the scatter band (see sec. 4.3).

For all of the tests taken the correction |g¢i—¢/|
was less than 0.1 percent of P. It is felt that D(z;, z»)
and k¢ were each known to better than 10 percent and
hence the uncertainty in (q,—q, ) less than 0.02 per-
cent of (P—P'). However, in view of all the factors
which conceivably could have influenced this correc-
tion, an uncertainty of 0.1 percent is assigned to the
measured thermal conductivity values due to possible
errors in (gi—q;). To this must be added the un-
certainty due to heat loss from the jumpers on heater

Q.

Heat Loss along Thermocouple Wires and Insulators
(ge): The heat loss, g, along the thermocouples and
ceramic insulators next to the specimen was computed

from the expression
dT
2 £ (dz)

i=1

(17)

where C; is the longitudinal thermal conductance of
the ith wire and its insulator, n is the total number of
wires crossing the plane where the thermal conduc-
tivity was evaluated, and dT/dz is the temperature
gradient at that plane. Each C; was computed from
the thermal conductivities and dimensions of the wire
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and insulator. This correction was rather large, falling
from about 0.8 percent at 100 °C to 0.3 percent at
1100 °C, the falloff being due to the rapidly decreasing
thermal conductivity of the ceramic tubing. Although
the thermal conductivity of the thermocouple wires
was known fairly accurately (5%) the thermal conduc-
tivity of the ceramic tubing was known only approxi-
mately (15%). Furthermore, the cross-sectional areas
of the wires and tubing were not accurately known
(5%). Thus the total conductance of the wires and the
ceramic tubing was only known to about 25 percent.
The corresponding uncertainty in the measured
thermal conductivity values was 0.2 percent at 100 °C
and 0.1 percent at 900 °C.

Departure from Steady-State: The ratio of heat
absorbed (or released) to that conducted in the speci-
men is given approximately by

weAL(dT/dt) L (dT]dt)

L
M (dT/dz) D (dT|dz)’

(18)

where w is density, ¢ is specific heat, 4 is area, L is
total length of specimen below the necked-down
region, dT'/dt is time rate of temperature change, A is
thermal conductivity, dT/dz is temperature gradient,
and D=\ wc is thermal diffusivity. Temperatures in
the system did not drift at a rate greater than 0.03
deg/hr (i.e., 107 deg/sec); the length, L, was about
14 ¢m; the temperature gradient was 5 deg/cm; and
the thermal diffusivity of platinum in the temperature
range 0-1100 °C is always greater than 0.2 cm?/sec
[12]. Hence the ratio of heat absorbed (or released)
to that conducted was less than +0.02 percent. No
correction was made for departure from steady-state
conditions.

Total Uncertainty in Heat Flow: Using standard
propagation of error formulas, the estimated uncer-
tainty in (Q — Q') was 0.4 percent at 100 °C and 0.7
percent at 1100 °C.

c. Temperature Gradient

The temperature gradient in the specimen was
computed from the measured temperatures at the
five thermocouple positions in the gradient region.
The separations between thermocouple grooves at
room temperature were accurately measured before
the thermocouples were installed; the separation at
elevated temperature was computed using (6). Since
temperature gradients in the specimen were rather
small (less than 5 deg/cm) it was essential that the
conversion of thermocouple emfs to temperature not
introduce any additional uncertainties. The equation

t £ \?
N 2 WP
E=15.83952 (1 000) ).18328 (1 ()()0)

¢ 3 il !
L7 20579 (2 VY _ 7 097z (L
+7.30572 (I ()00) 1.92753 ( 1 000)

—2.50480 (1.0 —exp [ —4.18312(¢/1000)]),  (19)

where ¢ is temperature (°C) and E is emf (mV), was
found to fit to within 1 wV the calibration data for
the platinum versus platinum —10 percent rhodium
thermocouple wire from which the specimen thermo-
couples were fabricated. This equation was used for
converting the thermocouple voltages to temperatures.

The temperature gradient was computed by evaluat-
ing the slope, at the center thermocouple location, of
the quadratic equation of least-squares fit to the five
temperatures and thermocouple positions. The uncer-
tainty in the temperature gradient due to uncertainties
in effective thermocouple positions is estimated to have
been less than 0.2 percent. Errors in reading thermo-
couple emfs did not introduce an uncertainty of more
than 0.05 percent for the temperature gradients used.
Errors due to heat conduction along thermocouple
leads should have been negligible and were certainly
less than 0.05 percent (see Appendix G of O’Hagan
[9]). Due to the use of a simultaneous solution of a
gradient and an isothermal test, errors in the measured
temperature gradient due to variations between in-
dividual thermocouples are estimated to have been less
than 0.05 percent. It is estimated that the conversion
of thermocouple emfs to temperatures introduced
errors of less than 0.2 percent in the temperature
gradients.

The estimated overall uncertainty in the temperature
gradient is estimated to have been 0.3 percent.

d. Mean Temperature

In addition to the uncertainties discussed above in
the area, heat flow, and temperature gradient, there
is an uncertainty in the temperatures to which the
thermal conductivity values correspond. For a 0.5 deg
uncertainty in temperature, the associated uncertainty
in thermal conductivity is less than 0.001 percent at
100 °C and less than 0.02 percent at 900 °C.

4.3. Results

The experimental values obtained for the thermal
conductivity of our platinum specimen by the longi-
tudinal heat flow method are given in table 1. The

TABLE 1. Experimental values for the thermal conductivity of
platinum as measured using the longitudinal heat flow method
The values given are corrected for thermal expansion.

Mean Thermal

Test | Run | Atmosphere | temperature |conductivity
°C W/em deg
1 1| Air 99.6 0.715
2 1| Argon 998 715
3 1| Argon 301.0 728
4 1 501.5 753
5 1 701.2 784
6 1 601.3 769
i 1 400.2 740
8 1| Argon 201.7 B2
9 1 | Helium 199.6 SO
10 1 | Helium 400.6 740
11 2| Argon 300.0 729
12 2 | Argon 701.3 .786
13 2| Argon 900.0 .822

14 2| Argon 1100.5 (.866)"

“See text.
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TABLE 2. Typical set of data from measurements of the thermal
conductivity of platinum by the longitudinal heat flow method

The data correspond to Test No. 6 in table 1.

Matched | Unmatched | Isothermal
gradient gradient
Temperature distribution along the
SPECIMEN. ...t ECONRT 580.4 579.0 600.7
5 590.9 588.9 600.6
Ts 601.3 598.8 600.3
T; 611.7 608.9 600.1
Ty 622.1 619.0 600.0
Temperature gradient at the location of dT
thermocouple 7 ......degfem... & 5.18 4.96 —0.09
Power generated in specimen
heaters il o e S W... P 12.818 12.853 .0
Heat flow across the necked-down
region... W... q 0.003 —0.008 — 002
Heat flow along the current leads ..... W... qu 004 017 .002
.003 .006 .002
Heat flow to the insulation............ W... ¢ .006 542 027
Heat flow along the thermocouple
wires and insulators.................. /... qc 051 .049 = LT

thermal conductivity values given there have been
corrected for thermal expansion of the specimen. A
typical set of data, including the various correction
terms, is given in table 2.

A cubic equation of least-squares fit was found to
fit the data (corrected for expansion) from the longi-
tudinal heat flow method with the residuals having a
standard deviation of 0.08 percent. This was signifi-
cantly less than the standard deviation of the residuals
from a parabola. The equation, valid over the range
100 to 900 °C, is

A=0.713+0.683 X 10-5t+ 0.173 X 10~ 6>

= (0LB1le) 2 10 =18, (20)
where t is temperature in °C and A is in W/cm deg.
Departures of the data points from (20) are plotted in
figure 6. With the exception of the point at 1100 °C
all the data points, including the two obtained in
helium, fall within =0.1 percent of the curve. There
were no significant differences between the values
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FIGURE 6.
ductivity
method.

TABLE 3. Summary of individual uncertainties contributing to
the overall uncertainty in the thermal conductivity results obtained
using the longitudinal heat flow method

Uncertainty, %
Source of uncertainty RS SRR
100 °C | 900 °C.
Cross-sectional area 0.02 0.02
Heat flow
Power input to specimen
heater 205 .05
Heat flow in current leads .02 .02
Heat flow across neck .02 .02
Heat loss into the insulation 5 .6
Heat loss along thermocou-
ple wires and insulators 52 ol
Departure from steady-state .02 .02
Temperature gradient 23 3
Mean temperature 001 02
Combined 0.5 0.7
2 Each combined uncertainty was obtained by taking the square root of the sum of the

squares of the individual uncertainties.

obtained on heating and cooling in the first run and
-those from the second run. At 1100 °C the thermo
couples started drifting giving rise to significant
uncertainties in temperature measurement. After
completing the ‘“matched” gradient, “unmatched”
gradient, and ‘“‘isothermal” tests at 1100 °C a second
“matched” gradient test was run. Two values for the
thermal conductivity were obtained by simultaneous
solution of each of the two “matched” gradient tests
with the “isothermal” test. The first value (0.820)
was below the value predicted by (20) and the second
value (0.905) was above it. Assuming that the tempera-
ture drifts were linear with time, interpolation to the
time of the “‘isothermal” test gave a value of 0.866
for the thermal conductivity of the specimen at 1100
°C. This value is 0.6 percent above the value given by
extrapolation of (20) to 1100 °C. The 1100 °C point,
due to the larger uncertainty associated with its value,
was not used in deriving (20).

The thermal conductivity values corresponding to
(20) are believed to be uncertain by not more than 1
percent over the temperature range 100 to 900 °C.
The estimated uncertainties arising from the various
known sources of error are summarized in table 3;
these uncertainies were discussed in section 4.2.

5. Electrical Method

5.1. Experimental Procedure

Measurements of thermal conductivity by the
method in which the sample was heated directly by
passage of an electric current were made following
each measurement by the longitudinal heat flow
method. Thus the preliminary procedures and testing
sequence described in section 4.1 also apply to these
measurements. Power to heaters Q; and Q3 was con-
trolled to maintain 7'y and T, constant with |Ty; — T
less than 0.2 deg. Temperatures along the guard in
the region opposite the neck were maintained at the
same value as T'j,. Data were taken with currents (both
normally and reversed) of approximately 10, 58, 82,
and 100 A dc flowing through the specimen. These
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current levels correspond approximately to even
increments of power generation. Readings were taken
of thermocouples 9, 10, 11, and 12 (see fig. 1) on the
specimen and of the guard thermocouples between
heaters Qs and Qg The voltage drops between the
platinum legs of thermocouples 10 and 11 and also
between 9 and 12 were measured with the current
being measured simultaneously on another poten-
tiometer.

The temperatures never drifted more than a few
hundredths of a degree during a test (approximately
three-quarters of an hour), and although the current
showed drifts of 0.05 percent the measured resistances
remained constant to 0.01 percent with current and
voltage being read simultaneously.

5.2. Calculation Procedures and Uncertainties

Consider a conductor of arbitrary geometry which is
perfectly insulated, both thermally and electrically,
except for the ends where electric current enters and
leaves the conductor. Joule heat will be generated in
the conductor by the electric current. l.et 7, be
the maximum temperature in the conductor. Let V be
the voltage drop between two surfaces, one on either
side of the surface of maximum temperature, which
are both at some lower temperature, 7). It is shown
in appendix C, where earlier work is referenced,
that the following relation holds:

V"" T)N o "NI

== jf A/)(/I"tf Apdo. (21)
8 JTo 0

where 0=T—T,, 0,,=T,,—T,, \ is the thermal con-
ductivity of the conductor, and p is the electrical
resistivity of the conductor.

Equation (21) shows that the maximum temperature
rise, 0, in an electrically heated conductor with
negligible lateral heat losses and with both its < uds
held at the same temperature is a function only of the
voltage drop V' across it, and of the thermal and
electrical conductivities of the material, and is in-
dependent of the geometry of the conductor provided
the geometry is such as to make lateral heat losses
negligible. If the maximum temperature rise can be
measured as a function of the applied potential, \p
is readily determined.

The maximum temperature rise, 6,,, can be meas-
ured indirectly using the specimen as its own resist-
ance thermometer. This method was employed by
Holm and Stormer [13] and Cutler et al. [15], and
requires that the temperature coefficient of resistance
of the material be known over the temperature range
of interest and that it be large enough to yield sufficient
sensitivity. Platinum satisfies both requirements very
well and the resistance method of measuring the
maximum temperature rise was adopted in the present
experiments.

It is shown in appendix C that the following relation
holds for a perfectly insulated conductor:

where

1/2

= <) ’ )\p//()l‘ (23)

and R is the electrical resistance between the two
surfaces, one on either side of the surface of maximum
temperature, which are both at the same temperature.
T. The quantities Ry and p, are the values R and p
would have if the conductor were isothermal at some
reference temperature, 7. The quantity 7y, is the
coefficient of linear thermal expansion at 7.
Assuming that X and p can both be represented by
linear functions of temperature —a valid assumption
over small temperature intervals — we can write:

p=po(1+ af). (24)
A= Ao(1 +B()H). (25)
)\P_ )\«)ﬁn(] ar 'Y]n(')). f?(\)

where « is the temperature coefficient of resistance
evaluated at 6= 0, B3, is the temperature coefficient of
thermal conductivity evaluated at #=0 and my= a
+ Bo. The term in oyBof” in (26) has been neglected.
Substituting the above expression for Ap into (23)
and integrating we get

1/2
IJ(H- Hm) = ’7}\0/)0 {Hu: (' A 1_))“ HIN) ={y) (I Sl %) 9)}] g

(27)

If the integration is evaluated for 7= "T,. or #=0. we
have, from (27) and (21),

1/
F= [ 2NoPobim (l I ?)‘—' eﬂ

9

(28)
and

l"_’ == 8}\(),00(')171 ( ] = ﬂ?‘) HHI)’ (29)

Substituting /' from (27) inte (22) and performing the
indicated integration we have for =0,

Ro_potys o=yl

e . g
R oy 7 G arctan (30)

where
("2 :27)4\”»71 (I + % HIII)- (3])

The coefficients «y and By are the “true” coefficients
in that they correspond to electrical resistivity and
thermal conductivity values which have been corrected
for thermal expansion. If one considers “apparent”

Ro_ 1 [%mhpol+ yo0)df (22) coefficients g and B¢ which correspond to “apparent”™
R FJo F ’ thermal conductivity values which have not been
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corrected for thermal expansion, then it is apparent
that ay=ao+ yo. Bo=Bo— Yo Mo=mn0, and (30) can
be written as

ity B(,+oq, arctan G,
R 7)0 7')0 G

(32)
where, reiterating, «. B¢, and m,=a,+ B are ap-
parent coeflicients corresponding to electrical resis-
tivity and thermal conductivity values which have
not been corrected for thermal expansion. Thus
the maximum temperature rise in the conductor
can be computed without knowing the coeflicient of
expansion.

Equation (30) gives 6,, implicitly in terms of known
measured parameters, and its value can be determined
by iteration. In practice it would generally be neces-
sary to measure R at at least two different levels of
heating current and then extrapolate to zero current
to obtain R,. Once 6,, is obtained using (30), its value
can be used in conjunction with (29) to obtain the
thermal conductivity. In the present investigation,
R and V' were measured at four or five different current
levels. The data obtained were analyzed as described
below.

An adjusted voltage, V*, was defined as:

&
[/ = —77 5 (33)
0
1+ B o
In the limit of small ayf,. (30) reduces to
R—Ry 2
S (')nl
aoR() & (34)

An adjusted resistance, R*, was defined for the case
where a6, is not sufficiently small for (34) to be valid:

R*:Ro <1 +ga00m>. {35)

3
(35) reduces to (34)

In the limiting case of small a0,

and R* to R.
Substituting (33) and (35) into (29), we obtain
RéSwRo
V*2 =12 opo———.
s Ry (30}
Differentiating (36) and rearranging, we obtain
_ C&)R() (IV*2 37
2 12/)(. (]R W (‘ )

The thermal conductivity values in the electrical
method were obtained from the slope of the F*2

versus R* curve, using (37). From (33) and (35) we see
that
s20 ; dr:?
e o L ot

In the analysis given in appendix C and also that
given just above, we explicitly assumed that there
was no loss or gain of either electric current or heat
across the surface of the conductor. In the present
investigation a necked-down sample was employed,
the neck and the specimen as a whole being sur-
rounded by an insulating powder. Since this insulating
powder had an electrical conductivity many orders
of magnitude lower than that of the specimen material,
the assumption of no flow of electric current across
the boundaries was completely valid. The powder
surrounding the neck prevented heat loss by convec-
tion, and radiation through the powder was negligible.
However, the powder conducted heat away from the
neck and it was necessary to analyze this heat loss
and develop an appropriate correction for it. Since
most of the temperature rise between thermocouple
positions 10 and 11 was in the neck itself, only heat
losses {rom the neck were considered and other heat
exchanges were neglected. O’Hagan [9] has shown that
in the presence of small heat losses from the neck,
(37) is replaced by

| (XUR() (l'V
=G 19p dR™ 32)
where
v Ko
C=—0Q
Mo 0)
ko being the thermal conductivity of the powder

insulation at the reference temperature, Ty, and A, the
thermal conductivity of the specimen at T,. The geo-
metrical factor, (1, is given by

64 /2/\3K, 20) p3
( ) (mal2l) p3 1

mia* \mwa) Ko(mal2l) RY
where 2(1 is the diameter of the neck and 2/ is the
length of the neck, and K, and K, are the modified
Bessel functions of second kind and order zero and
one, respectively.

The calculation procedure used was as follows:
At any given nominal temperature, measurements
were made at n current levels. An approximate
value for R, was computed from the resistance
corresponding to the lowest current level, for which
Joule heating was minimal and the neck was nearly
isothermal. For each experimentally determined re-
sistance a corresponding approximate value of 6,
was computed using (34). Values of aj were computed
from the data obtained in the resistivity measure-
ments (see sec. 5.3a). Using this value of 6, as the
first trial value, Newton-Raphson iteration was used
to compute the value of 60, which satisfied (30).*
Values for R* and V*? were then computed from (35)
and (33) respectively. Since it was impractical to
hold 7, (i.e., the average temperature of thermo-

*Values for B computed from the thermal conductivity values obtained by Watson and
Flynn [32] on the same specimen were used.
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couple locations 10 and 11) at exactly the same value
for different current settings, it was necessary to
adjust slightly the V*? and R* values to correspond to

a common reference temperature. A straight line of

least-squares fit through these values of R* and V*2
gave R, as the ordinate intercept and dV*2[dR* as
the slope. This value for R, was a more accurate value
than the initial value used, as it was based on an
extrapolation to /=0. The calculation was then re-
peated using this value of R,. This in turn led to
improved values for Ry and dV*?/dR*. The iteration
converged in a few passes and the final values for R,
and dV**[dR* were used in (37) to compute the ap-
parent thermal conductivity. Using this apparent
value for Ao, and eqs (40) and (41), the correction
factor for heat losses from the neck was computed
and used in (39) to give the final value for the thermal
conductivity.

a. Electrical Resistivity
The

from

electrical resistivity values were computed

f)(':/)i('(\l\)“/(l\)“)i(’(l- (42)
where pi.. is the independently measured ice-point
resistivity, Ry is the resistance of the necked-down
region at zero current, and (Ry)j.. is the value of R,
extrapolated to the ice point. These values were then
corrected for thermal expansion. The uncertainty
in piee was not more than 0.1 percent. The uncer-
tainties in the measured values of R, did not exceed
0.05 percent. However, an additional uncertainty
must be assigned to the values of R, due to the uncer-
tainty in the temperature to which these values cor-
respond. Quite conservatively, temperatures were
known to within 0.5 deg, corresponding to 0.14 percent
of Ry at 100 °C and 0.04 percent at 900 °C. The un-
certainty in (Rg)j.., which was based on an extrapola-
tion, was estimated to be less than 0.25 percent. At
lower temperatures the uncertainties in R, were
correlated with the uncertainty in (Ry)i.. so that the
uncertainties in Ry/(Rg)i.. were lower than the un-
certainties in either Ry or (R at lower tempera-
tures but not necessarily at higher temperatures. The
overall uncertainty in electrical resistivity was esti-
mated to be less than 0.1 percent at 0 °C and less than
0.4 percent at 900 °C.

The thermal conductivity was computed, using (39),
from the ratio Ry/py. Since p, was taken from a
smoothed curve, this quantity was further uncertain
by the scatter in the individual Ry data points around
a smooth curve, or about an additional 0.05 percent
(see sec. 5.3a). The overall uncertainty in Ry/p, was
probably less than 0.4 percent.

b. Temperature Coefficient of Resistance
The uncertainty in the sensitivity, «, of the speci-
men as a resistance thermometer was essentially the
uncertainty in the sensitivity of the thermocouples
used plus a small uncertainty in the resistance meas-
urements and the thermocouple emf measurements.

That this is so is seen by considering that R, was
measured as a function, say Ry=f(E). of the thermo-
couple emf, £. Then

I (IRU
(&) — =

TRy dT f(E)

dE

l_(/_/'(E) dE .
dT

dE ar~_ &E)

(43)

The uncertainty in the sensitivity, dE/dT, of the
thermocouples is estimated to have been less than 0.2
percent while the uncertainty in the resistance and
voltage measurements was less than 0.05 percent.
Thus « is believed to have been known with an un-
certainty of less than 0.25 percent.

c. Slope of /'** Versus R* Curve

The voltage drop across the neck and the resistance
of the neck were each measured with an uncertainty
of about 0.02 percent. The change in the resistance of
the neck for the different current levels was small
compared to the resistance itself, so that any error in
measuring resistance would be greatly magnified in
computing the rate of change of resistance as a func-
tion of the voltage drop. For all of the data taken, the
departures of the R* values from the least-squares
straight line fitted to the R* and V** values were less
than 0.01 percent and for a majority of the tests they
were less than 0.005 percent. However, since (R — R)
<R, the small scatter in R was highly magnified in cal-
culating dV**/dR*. What departures did exist tended
to be systematic rather than random and tended to
indicate that the plot of R™ versus J** was very
slichtly concave downward rather than linear, as
assumed. Such an effect could possibly have been due
to neglecting higher order terms in the temperature
dependence of the thermal conductivity and the elec-
trical resistivity. The uncertainty in dV*/dR* is
estimated to have been less than 1.5 percent.

d. Heat Loss Correction

The uncertainty in the heat loss correction, C, may
have been as large as 50 percent of C. For the tests in
argon this corresponds to an uncertainty in the meas-
ured values for the thermal conductivity of the speci-
men of 0.1 percent at 100 °C and 0.6 percent at 900 °C.
For the tests in helium the corresponding uncertainties
were 0.5 percent at 200 °C and 0.7 percent at 400 °C.

e. Departures From Theory

In the derivation or the mathematical expressions
used to compute thermal - onductivity in the electrical
method, there were a nuiber of explicit or implicit
assumptions made which ¢. "1 lead to erroneous re-
sults if these assumptions were not valid.

It is shown in appendix C that the Thomson effect
cancels out to first order provided the temperatures
at the two potential taps (used to measure V) are
approximately the same. The requirement that the
potential taps be at the same temperature is also
necessary for the Seebeck emf and Fermi energy
terms in (C=50) to drop out. In all of the measure-
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ments, the temperatures at the inner potential taps
(thermocouple positions 10 and 11) agreed within 0.2
deg or better, as compared with values of 6, (for 100
A current) ranging from 35 deg at 100 °C to 100 deg
at the highest temperatures. Neglecting the Seebeck
term in (C—50) for |T> —7,|<0.2 deg corresponds to an
uncertainty in the measured thermal conductivity
values of less than 0.05 percent. Neglecting the
Fermi energy term in (C-50) also involves an uncer-
tainty of less than 0.05 percent (see O’Hagan [9,
p. 127]).

It is explicitly assumed in appendix C that the con-
ductor is homogeneous and isotropic; this should be a
valid assumption for platinum of the purity used in the
present investigation.

As stated in appendix C, the electron current is con-
sidered to be the only mass current. In principle it
would be possible for platinum, or any impurities
which might be present, to migrate under the in-
fluence of the electric potential gradient (electromigra-
tion) or under the influence of the temperature gradient
(Soret effect). If such mass motion existed there would
be an associated entropy flow and equation (C—4) and
all following equations in appendix C would have to be
modified to include a term involving the mass current
density and its associated entropy transport. A
rigorous analysis including mass migration would be
quite complex and was felt to be beyond the scope of
the present investigation. However, a qualitative dis-
cussion of the probable effect of such mass motion if it
were to occur is given below.

In electromigration, the energy flow is proportional
to the electric field. Similarly, the energy flow due to

the Thomson effect is essentially proportional to the

electric field. Thus if one were to introduce an electro-
migration term into (C—4) and rigorously go through
the analysis, the equivalent expression to (C-31)
would include an electromigration term of a form
analogous to (i.e., proportional to the electric field)
the term in (C—-31) involving the Thomson coefficient.
Provided this term were small compared with the first
two terms in (C—35) it would, to first order, cancel in a
similar manner to the way the Thomson term can-
celed, provided the temperature at the two potential
taps were the same and the medium was homogeneous
and isotropic. Physically what happens is that the
energy transport due to electromigration adds to the
energy transport by conduction on one side of the
surface of maximum temperature and subtracts on
the other side, with no net effect on the maximum
temperature rise in the conductor or on the voltage
drop between the potential taps, at least to first order.
To reemphasize, the temperatures at the taps must be
the same for this cancellation to occur and also the
medium must be homogeneous and isotropic.

In the Soret effect, the energy transport is propor-
tional to the temperature gradient. Thus the ratio of
energy transport due to the Soret effect to that due to
heat conduction by other mechanisms is independent
of the temperature gradient. The Soret effect is a dif-
fusion process, similar to heat conduction. For a homo-
geneous medium, therefore, the Soret effect simply

behaves as an additional mechanism for ““heat conduc-
tion” and thus is a legitimate augmentation (or deple-
tion, depending on the sign of the heat of transport)
of the thermal conductivity and should be included in
the total thermal conductivity value.

For the conditions of the present experiments, there
would be no errors involved due to electromigration or
Soret effect provided the medium remained homo-
geneous and isotropic. Both of these effects can change
the distribution of impurities and vacancies in a solid.
During the experiments the current was in one direc-
tion through the specimen about one-half of the time
and in the other direction about one-half of the time.
Thus, it is doubtful if there was significant inhomo-
genity introduced due to electromigration effects,
even if they were occurring. The Soret effect, if large
enough, could cause a redistribution of impurities in
the specimen.

For platinum of the purity used, the thermal con-
ductivity at high temperatures would not be expected
to be significantly affected by changes in the impurity
and vacancy distribution. All of the data at low tem-
peratures, where impurity concentration could affect
the thermal conductivity, were taken before the speci-
men was heated to temperatures where significant
mass migration was likely to occur. In view of the
above discussion it is felt that neither electromigra-
tion nor Soret effect had any adverse effect on the
results.

5.3. Results

a. Electrical Resistivity

The ice-point resistivity was determined on the
platinum bar before the neck was machined in it (see
section 2). The value obtained was

(P0)ice = 9.847+0.010u ) cm, (44)
corrected to 0 °C dimensions.

In conjunction with the electrical method of meas-
uring thermal conductivity, the resistance of the
necked-down region of the specimen at each tem-
perature was determined at a number of current levels.
The resistance, Ry, at temperature Ty, was evaluated
by extrapolation to zero current as described in section
5.2. In the first series of tests, or the first run as it
will be referred to, measurements were made in the
following order: 100, 300, 500, 700, 600, 400, and
200 °C in argon; and 200 and 400 °C in helium. The
apparatus was then opened up for repair of the guard
heater as described in section 4.lc. In the second
series of tests, or the second run as it will be referred
to, measurements were made at 300, 700, 900, and
1100 °C in argon, in that order.

The values for the resistance of the neck obtained
during the second run were about 1.5 percent higher
than the values obtained at corresponding tempera-
tures in the first run. This increase in resistance was
observed both for measurements at the inner potential
taps (10, 11) and for measurements at the outer poten-
tial taps (9, 12), indicating that the increase in values
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were due either to contamination or to a change in the
geometrical factor of the necked-down region rather
than to, for example, a short circuit which changed
the effective position of one of the potential taps.
Since data taken in the first run at lower temperatures
after the sample had been heated to 700 °C agreed
quite closely with results obtained before the sample
was heated to 700 °C, it is felt that there was no
evidence indicating that any chemical contamination
of the necked-down region occurred during the first
run. Furthermore, 700 °C is rather too low a tempera-
ture to expect any significant contamination of plat-
inum in a relatively clean environment. Exactly what
happened is not known but it is believed that the
necked-down region suffered some slight geometrical
change between the first and second runs, perhaps
while the guard heater was being repaired. In deter-
mining the electrical resistivity, data from the first
run had to be treated separately in view of this change
in the geometric factor.

A quadratic equation was fitted, by the method of
least squares, to the measured values of R, from the
tests in air, argon, and helium from the first run.
The equation, extrapolated to 0 °C and normalized
to the ice-point resistivity, (44), gave
p=9.847(1+0.3963 X 10~2¢ — 0.5389 X 10~ 6¢2) (45)
as the electrical resistivity (corrected for thermal
expansion) of the neck from 0 to 700 °C, ¢ being in
°C and p in p) em. The standard deviation of the
residuals from this equation was 0.03 percent. Depar-
tures of the data points from this equation are plotted
in figure 7 where the overall scatter is seen to be
+0.05 percent. All but three of the points fall within
0.025 percent of the curve and there is no significant
difference between the values obtained on heating
and cooling.

A second quadratic equation was fitted to the data
points (corrected for thermal expansion) at 300, 700,
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FIGURE 7. Percentage departures from eq (45) of the electrical

resistivity data points.
The values obtained during the second run have been normalized at 700 °C as discussed
in the text.

and 900 °C obtained in the second run. The equation,
normalized to the value given by (45) at 700 °C, gave
p=9.767(1+0.4033 X 10-2¢ —0.5802 X 10~6¢2), (46)
t being in °C: and p in u{) em. While the geometric
factor of the neck changed between the first and
second runs there is no reason to believe the resistivity
would have changed. Any strains introduced when the
geometric factor changed would have annealed out
at 700 °C. Thus normalizing the data from the second
run to that from the first run at 700 °C is felt to be
justified. The departures of the normalized data points
at 300, 700, 900, and 1100 °C from the values given by
eq (45) are indicated by triangles in figure 7. The 1100
°C data point was not used in deriving (46). The
thermocouples started to drift at 1100 °C due to
contamination so that greater uncertainty had to be
assigned to data obtained at that temperature. The
1100 °C data point agrees with the extrapolated value
given by equation (46) to within 0.02 percent. The
deviations from the quadratic equation (45) at the
higher temperatures as shown in figure 7 are in line
with what one would expect. Recent measurements
at NBS [29] in conjunction with work toward extending
platinum resistance thermometry to the gold point
showed that the measured resistance of a certain high
purity platinum resistance thermometer at the gold
point (1063 °C) was about 0.07 percent below the value
obtained by extrapolating the Callendar equation [5]
for that thermometer from 630.5 °C to the gold point
(1063 °C). Laubitz and van der Meer [30], in measuring
the electrical resistivity of high purity (99.999% pure)
platinum, found that between 800 and 1200 °C their
experimental results fell consistently below the values
extrapolated from an equation similar to (45) by an
average amount of 0.10 percent.

As stated in section 5.2a, the uncertainty in the
electrical resistivity values is estimated to be less
than 0.1 percent at 0 °C and less than 0.4 percent at

900 °C.

b. Thermal Conductivity

The experimental values obtained for the thermal
conductivity of the platinum sample by the electrical
method are given in table 4. The values for py and ay
used in computing these thermal conductivity values
were computed using (45) in the first run and (46) in
the second run. The thermal conductivity values given
in table 4 have been corrected for thermal expansion.
A typical set of data is given in table 5.

The following equation, obtained by the method of
least squares, was found to fit the thermal conductivity
data (corrected for thermal expansion) obtained in air
and in argon, using the electrical method, with a
standard deviation of 0.30 percent:

A=0.716—0.247 X 105+ 0.182 X 10~ 6¢*
= (0L 7R X 0= (47)

where ¢ is temperature in °C and A is in W/cm deg.
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TABLE 4.

Experimental values for the thermal conductivity of This equation is valid from 100 to 900 °C. Deviations
platinum as measured using the electrical method

The values given are corrected for thermal expansion.

Mean Thermal

Test | Run | Atmosphere | temperature | conductivity

48 W/em deg
1 1| Air 99.8 0.719
24 1| Argon 99.7 716
) 1| Argon 299.9 Ve
4 1| Argon 500.0 .749
S5 1| Argon 700.1 79
6 1| Argon 599.6 763
7 1| Argon 100.3 738
8 1| Argon 202.0 720
9 1 | Helium 199.9 22
10 1 | Helium 400.2 745
11 2| Argon 300.1 sl
12 2 | Argon 699.9 774
13 2| Argon 900.0 804

of the data points from eq (47) are plotted in figure 8.
The scatter is random and there are no significant
differences between values obtained on heating and
cooling or between the first run and the second run.
The value obtained in helium at 200 °C agrees within
0.05 percent of the value given by (47) but the measure-
ment in helium at 400 °C shows a deviation of +0.9
percent. The measurements in helium were made
during the first run and there is a possibility that the
powder insulation did not uniformly and completely
fill the necked-down region. If the powder did not
completely fill the space, the boundary conditions
assumed in deriving the heat loss corrections would
not have been met. Any errors in the heat loss correc-
tion would be amplified in helium, particularly at the
higher temperature, due to the high thermal conduc-

TABLE 5. Typical set of data from measurer(ten[ts Of;lt};’e thermal tivity of this gas. In the second run the powder was
”"”d““‘,‘ﬁw’ of ”Z“”’”‘i’” b%V ’h;f el:_“”ﬁ“4'"“ g carefully packed around the neck so that the necked-
1e data correspond to Test No. 6 1n table 4. . . .
i down region was completely and uniformly filled with
insulation. The two data points obtained in helium were
Heating current through necked- o oLt
B T e A.. I 10.0 576 81.7 100.1 not used in deriving (47): K R
Average temperature at thermo . The thermal conductivity values corresponding to
couple locations 10 and 11..... (Biee 599.5 599.6 599.6 599.6 4 b 1 d b g b h
Vel Tt (47) are believed to be uncertain by not more than 2
fope pbthemaouples Tonpd - R (e R et percent over the temperature range 100 to 900 °C.
sistance between plat The estimated uncertainties arising from the various
i lees of ther 0 1) o 5
o R AR T 1.2086 | 12200 1.2500 12732 known sources of error are summarized in table 6;
Calculated temperature rise in OSNG . . o
necked-down region........... deg... On 0.8 2575 52.2 80.2 these uncertainties were dlSCuSSCd In section 52
Square of adjusted voltage . . B TR S i 2
145. 4930. 10090. 115456, TABLE 6. Summary of individual uncertainties contributing to
1.2086 | 1.2292 122l 272 the overall uncertainty in the thermal conductivity results obtained
using the electrical method
599.6
S ) Uncertainty, %
temperature................ #Q em..t py 31.16 Source of uncertainty =
Electrical resistance corresponding o T
to reference temperature...m(2..| Ry 1.2079 100 °C 900 °C
Temp_er_atyre coefficient of
:;Srl;l[lll‘:;y stixetorsice (mﬁ-eg 1 o 0.001032 Geometrical factor (Ro/po) 0.4- 0.4
Temperal\’xvr»e”é.u-é-.fi‘;(-'.i;r.llt‘ ;;t‘"iherma’” ilb'l;:ser’atlu:(: ;é':;f;';}rg (“ufr';eSiS!an('P 1'35 ]és
SRRy ey Slope of V/*2 vers urve 5 :
()Z::Il:l(::v"y shserence tem" Bo 0.000267 Heat loss correction (tests in argon) Al .6
(et o I 1 ws e 0.0077 Seebeck effect 05 05
Correction for thermal expan- Temperature coefficient of Fermi energy .05 05
em;z]erl‘(‘rnl--» ........ L0 Combined? 1.6 35
conductivity of speci-
...................... / g | A ).76:
me W/ cmicee Digs aKach combined uncertainty was obtained by taking the square root of the sum of the
squares of the individual uncertainties.
s T T T T T
° °
03 — . o
3 6. Comparison of Results With Other
02| . . Investigations
o Ol ° = The smoothed experimental results given in sections
Z 4.3 and 5.3 are tabulated in table 7. The electrical
o . .« . » ~
E C resistivity values correspond to equation (45) from
S -—ol 4 0to 700 °C and to (46) at 800 and 900 °C. The thermal
w o . . .
8 ° conductivity values for the longitudinal heat flow
_o2 @ _ .
0.2 ° method and the electrical method correspond to eqs
sl o | (20) and (47), respectively. The values for the Lorenz
' G function, Ap/T, were computed from the smoothed
i | L L | 1 values for the electrical resistivity, p, the two sets of
g £0o s 800 B0 D8 values for thermal conductivity, A, and the absolute
TEMPERATURE, °C temperature, T
ure, 1.
FIGURE 8. Percentage depuartures from eq (47) of the thermal con- In this section the results of other Investigations on

ductivity data points obtained by the electrical method.

platinum are compared with the results of the present
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investigation. Since many investigators do not correct
their thermal conductivity and electrical resistivity
results for thermal expansion, it was necessary to
convert all data to a common basis in order to make
valid comparisons.

TABLE 7. Smoothed experimental values for thermal conductivity,
electrical resistivity, and Lorenz function of platinum

All values are corrected for thermal expansion.

Thermal conductivity Lorenz function
Tem-| Electrical W/em deg V2 deg?
pera- | resistivity
ture | wQ em | Longitu- | Electrical | Longitudinal | Electrical
°C dinal method method method
method
0 9.847 |ooeeinbe b
100 13.70 2.63x10-8
200 17.44 2.66
300 21.08 2.68
400 24.61 2.70
500 28.03 2.72
600 BINSH 2.74
700 34.56 2.76
800 37.65 L T(T
900 10.63 2.78
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Electrical resistivity of platinum: comparison of pre-

vious data with the results of the present investigation.

Powell and Tye [1]. Reported purity was 99.999 percent for both samples tested. The
ratio of the ice point to helium point resistivity of their No. 1 specimen. which was
purer than their No. 2 specimen. was previously reported by Powell, Tye. and Woodman

[11] to be about 760. The uncertainties shown represent possible round-off error due to

rest 0.1 p em.

results only being reported to ne:
he reported purity was 99.999 percent. The ratio of

A Laubitz and van der Meer [30].
ice point to helium point resistivity was about 1890.

Roeser [31]. His sample was probably thermometric grade platinum having a purity
of about 99.999 percent.

Martin, Sidles. and Danielson [37]. The values shown correspond to their sample which
had a reported purity of 99.999 percent and a ratio of ice point to helium point resistiv-
ity of 5000.

6.1. Electrical Resistivity

The electrical resistivity values reported for plat-
inum by Powell and Tye [1], Laubitz and van der Meer
[30], Roeser [31], and Martin, Sidles, and Danielson
[37] are compared with the results of the present in-
vestigation in figure 9. The reported purities and
resistivity ratios for the different samples are given
in the figure caption.

6.2. Thermal Conductivity

The thermal conductivity values reported for plat-
inum by Powell and Tye [1], Laubitz and van der
Meer [30], and Martin, Sidles, and Danielson [37, 60]
are compared with the results of the present investi-
gation in figure 10. The base line in this figure is a
weighted average of the two sets of data obtained
in the present investigation, the data from the lon-
gitudinal heat flow method being given twice the
weight that was given to the data from the electrical
method, which had a larger uncertainty. The derived
curve of Slack [2] is also shown in ficure 10; this
represents essentially all of the thermal conduc-
tivity values reported for platinum prior to 1962 with
the exception of the data of Krishnan and Jain [10].

The previously unreported data of Watson and
Flynn [32] shown in figure 10 were made at NBS on
the bar from which the specimen for the present in-
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FIGURE 10.  Thermal conductivity of platinum: comparison of pre-
vious data with the results of the present investigation.

The curve in the upper drawing and the baseline in the lower drawing correspond to a
weighted average of the two sets of data from the present investigation with the data from
the longitudinal heat flow method being given twice the weight of the data from the elec-
trical method.

Present investigation — longitudinal heat flow method.

Present investigation — electrical method.

Watson and Flynn [32]|—same sample as that used in the present investigation.
The curve of Slack [2].

Powell and Tye [1].

Laubitz and van der Meer [30].

Martin. Sidles. and Danielson [37]. the values shown correspond to their sample D.
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FIGURE 11. Thermal conductwity of platinum: comparison between existing low

temperature data and those of the present investigation.
A. Present investigation: the curve shown is that obtained by the longitudinal heat flow method.
B. Halpern and Flynn [33]: measurements made on a portion of the sample used for the present investigation.
C. Watson and Flynn [32]: measurements made on a portion of the sample used for the present investigation.
D. Powell and Tvye [1].
E. Bode [28].
F. Powell, Tye, and Woodman [39): measurements made on one of the samples of Powell and Tye [1}
(. Moore and McElroy [40]: measurements made on one of the samples of Powell and Tye [1].

vestigation was later machined. Watson and Flynn
made their measurements in air in a longitudinal heat
flow apparatus which has been described by Watson
and Robinson [34] and by Ginnings [35].

Several recent sets of thermal conductivity values
for platinum at lower temperatures are displayed in
figure 11. The data of Powell and Tye [1], curve D,
were also shown in figure 10. The data of Bode [38],
curve E, were obtained using a longitudinal heat flow
method; Bode stated that he considered his values

to be accurate to within 0.5 percent. Since the present
investigation was begun, Powell, Tye, and Woodman
[39], curve F, have used a longitudinal heat low method
to make low temperature thermal conductivity meas-
urements on one of the samples of Powell and Tye.
Also during this time, Moore and McElroy [40], curve
G, have made thermal conductivity measurements
on the same sample which Powell, Tye, and Wood-
man [39] used for their investigation. In the tempera-
ture range shown in figure 11, the thermal conduc-
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Lorenz function for platinum: comparison between existing data and
those of the present investigation.

FIGURE 12.

A Slack [2].

B. Powell and Tye [1].

(. Wheeler |36].

D. Martin. Sidles. and Danielson [37]: the values shown correspond to their sample D.

E. Present investigation: the curve shown was computed from the thermal conductivity values obtained by the
longitudinal heat flow method.

276



tivity of platinum could be affected by small differences
in purity and this may account for some of the dif-
ferences shown. However, the measurements of
Powell, Tye, and Woodman [39] and those of Moore
and McElroy [40] were carried out on the same sam-
ple; hence the differences bhetween the results of

these investigators must be presumed to be due to.

experimental errors.

Additional references to previous measurements
of the thermal conductivity of platinum are given by
Powell, Ho, and Liley [8]. Ciszek [61] has recently
reported some high temperature thermal diffusivity
measurements for platinum.

Values obtained for the Lorenz function of plat-
inum are compared with those of other investigators
in figure 12. The present measurements indicate a
Lorenz function increasing above the theoretical value
as the temperature increases. Laubitz and van der
Meer [30] point out that such behavior of the Lorenz
function can be understood qualitatively if one as-
sumes a low Fermi energy for platinum.

7. Conclusions

The good agreement among the thermal conduc-
tivity values obtained for platinum by two different
methods in the present investigation and by an in-
dependent measurement by Watson and Flynn [32]
lend considerable weight to these results. The values
indicate that the thermal conductivity of platinum
increases with temperature as found by Laubitz and
van der Meer [30] rather than being essentially in-
dependent of temperature as found by Powell and
Tye [1]. However, there remains the possibility that
there is a real difference between the samples of Powell
and Tye [1| and those of other investigators. In order
to explore this possibility, measurements should be
made at high temperatures in another laboratory on
one of the actual samples of Powell and Tye. Steps
are being taken to see if this can be done.

The results of the present investigation indicate
that electrical methods of measuring thermal con-
ductivity can yield equivalent results to those obtained
by the more conventional nonelectrical methods, at
least for the conditions of this investigation. This can
be interpreted as indicating that the thermal conduc-
tivity of platinum does not depend significantly on
electric current densities in the range less than
104A/cm?>.

Before platinum can be established as a thermal
conductivity reference standard, additional measure-
ments by the same method on samples of differing
purity are indicated. It is intended to repeat the
measurements described in this paper on a sample
of platinum of higher purity than that used in the
present investigation.

We appreciate the advice and assistance provided
by Henry G. Albert and A. V. Lincoln, both of Engel-
hard Industries, Inc. We thank Henry E. Robinson,
Chief, Environmental Engineering Section, NBS, and

Adjunct Professor of Engineering, The George Wash-
ington University, for his advice and support. The
intricate and difficult machining required for this
project was done by Raymond Chidester. Much good
advice in matters of fabrication came from John
Hettenhouser.

8. Appendix A. Evaluation of D(z,, z,)

In this appendix, the factor D(z;, z») is evaluated.
This factor was needed to correct for heat exchange
between the specimen and the surrounding insulation
in the longitudinal heat flow method.

In order to evaluate D(z;. z;) one must know the
temperature dependence of the thermal conductivity
of the powder insulation as well as the radial tempera-
ture gradient at the surface of the specimen. The ther-
mal conductivity of the insulation was assumed to be
a linear function of temperature;

K:K()(l+6()0), (/\*l)
where k¢ and &, are evaluated at 6=0, & being the
temperature coefficient of the thermal conductivity
of the insulation. Then. from (14)

0o
&= H+ZH

(A-2)

The radial temperature gradient at the surface of
the specimen was determined by analysis of the
hollow ecylinder of powder insulation between the
specimen and the guard with known temperature
distributions at its boundaries. At the surface of the
specimen, r=a, the potential distribution was rep-
resented by

< nimz
(f)l':u :e'-f'lb_‘” (3’1(.; ) ===F E l“ sin ——
n— (A-=3)

S

and at the inner surface of the guard, r=b, the poten-
tial distribution was represented by

nmz

z
— hy) —+ E B, sin —
W = @ (A—ZL)

(g)r:l) =ho+ (hw

where &(r, z) has the values é(a, 0) = gi. £(a, w)= g,
&(b, 0)=hy. €(b. w)=h,, at the ends of the region,
z=0 and z=w, which correspond to the outermost
thermocouples on the guard. At these ends the radial
temperature distribution in the powder insulation was
assumed to be logarithmic:

l o

(€):=0=g0+ (ho—go) n—l/ﬁ (A-5)
In b/a
In r/a

(f):"m: + (h(u - #w) ‘ {A_())
In b/a

n (A-3) and

The Fourier coefficients 4, and B,
5
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(A—4) were determined from the measured tempera-
ture distributions along the specimen assembly and
the guard cylinder. In the gradient region of the
specimen, and in the upper and lower specimen ex-
tensions, the observed temperatures and thermo-
couple locations (corrected for thermal expansion)
were used to derive quadratic equations giving 6
versus z, where 6 was measured relative to the tem-
perature at the center of the gradient region of thc
specimen. In the neck region, which was nearly iso-
thermal at all times, a linear equation was used. The
three quadratics in 6 transformed to quartics in ¢ and
the linear equation in 6 transformed to a quadratic in
¢ with application of (A-2). In the intervening heater
regions, smoothing cubics [27] were used which pro-
vided continuity of temperature and longitudinal tem-
perature gradients. Thus the &-distribution along the

f: [gn+ (/lo_zi’u)

In rla (1 _5)_'_ [gw+ D In r/a
10

specimen was described by seven smoothly joined
polynomials: quartic (lower extension), smoothing
cubic (lower extension heater), quartic (gradient region
of specimen), smoothing cubic (specimen heater), quad-
ratic (neck region of specimen), smoothing cubic (up-
per extension heater), quadratic (upper extension).
Equating this set of polynomials to the right-hand side
of (A=3) and making use of orthogonality enabled calcu-
lation of the 4,’s. A similar set of polynomials was used
to represent the ¢&-distribution along the guard, from
which the B,’s were calculated. It would serve no
useful purpose to explicitly display the expressions
for A, or B, in this paper; they are quite lengthy and
rather complex.

With the boundary conditions (A3, (A-4), (A-5), and
(A=6) the potential, &, at any point in the powder insu-
lation is given by

s

In b/a In b/a
A Fo(nmrjw; nmblw) —B.Fo(nmrjw; nmalw) nwz =
sin —, A-
+"21 Fo(nmalw; nmb/w) iy (A=7)
where
Fol(x, }') = ]o(x)Ku(}) Ko(x [o( ),
I,,= modified Bessel function of first kind and order m,
K,, = modified Bessel function of second kind and order m.
Substitution of (A=7) into (16) yields D(z, z):
. 25— 2% 1
D(ar, 22) =27 | { (ho— ) (= 20) + (ha—ho— gt 0) TE| L
20 J alnbla
- 4,F (nmalw; nwblo) — (o/nma)B, < - nmz n7721>] (A-8)
E Fo(nmalw; nmb/w) i ® == ) i

n=1

Fi(x.y)=6L(x)Ko(y) + Ki(x)]o(y).

where

9. Appendix B. Evaluation of Heat Loss
from Heater Jumpers

As discussed in section 4.2b, the “jumpers’” shown
in figure 3 were heated by conduction from the helical
heater elements to a temperature somewhat above
that of the adjacent portion of the specimen. Since the
smoothing functions [27] used to represent the tem-
perature distribution along the specimen did not allow
for this local hot region, an uncorrected-for heat loss
from the jumpers into the powder insulation must have
occurred. The purpose of this appendix is to estimate
the possible magnitude of this heat loss.

We will assume that the five hot jumpers can be
represented by equivalent hot regions at the convex

surface, r= a, of the specimen. By integrating over the
angular temperature distribution near the longitudinal
position of the heater, we can obtain an effective aver-
age longitudinal temperature distribution which can
be used to estimate the heat loss from the jumpers.
We assume that, for a gradient test, the effective longi-
tudinal temperature distribution was as shown in the
curve labeled g'(z), in figure 13. In our analysis, it
was assumed that the temperature distribution was
as shown in the curve labeled g(z) in figure 13. The
difference between the effective longitudinal tempera-
ture distribution, g'(z), and the assumed temperature
distribution, g(z), is shown in the curve labeled g"(z)
in figure 13.

If we ¢o through an analysis similar to that in ap-

278



»”

11

>

x
®000co

g (2)

gn(z)

il

il 4
Longitudinal temperature distribution in the vicinity
of the specimen heater.
I'he three different curves are identified in the text.

FIGURE 13.

pendix A, but using g’ (z) rather than g(z) to represent
the longitudinal temperature distribution along the
specimen, we obtain

D' (21, 22) = D (21, 22) + D"(z1, 22), (B-1)
where D'(z1,22) corresponds to g'(z), D(z.z2) is
given by (A-8), and

D"(z1, 2) = — Yma 2 3" I\ (nmalw: nmwblw’)

"Fo(nmalw: nwblw)

nirz,
— COS b
w

niz,
COSs —

n=1 @

13=2)

where the Fourier coefficients 4] are defined by

niz

2 @
,’,’:—J <" (z) sin — dz. (B=3)
w J w )

{f—e<z<{+e€
(B—4)

elsewhere

where ¢ is the location of the center plane of the heater
which has a thickness of 2e. Substitution of (B—4)
into (B=3) yields, after integration,

nwt nie

S —
w

, 4G

=— sin
" nar

(B=5)

Using (B=5) for 4], evaluation of (B=2) for the geom-
etry of our apparatus yields D"(z;, z,) = 1.2G (deg cm).
An upper limit for the temperature of the jumpers
was provided by the average temperature of the heater
winding. which was determined using the heater as

a resistance thermometer. The jumpers shown in
figure 3 occupied less than 25 percent of the perimeter
of the specimen at the midplane of the specimen
heater. Using this information an upper limit for G
was determined for each of the tests in table 1. Using
this in conjunction with the measured values of x and
the value for D"(z;, z:) obtained above, the maximum
error due to the uncorrected-for heat loss from the
jumpers was computed to increase from 0.2 percent
at 100 °C to 0.5 percent at 900 °C.

10. Appendix C. Theory of the Electrical
Method

Although the theory of electrical methods of measur-
ing thermal conductivity had been developed in the
literature, there was no single reference that ade-
quately covered the subject. In the present investiga-
tion, it was found necessary to digest a rather large
number of papers in order to arrive at an understand-
ing of the validity of the expressions used for comput-

ing the thermal conductivity values. It is hoped that
the fairly unified treatment given in this appendix will

be useful to future workers in this area.

In the electrical method the specimen supports
an electrical potential gradient, as well as a tempera-
ture gradient, and the corresponding thermoelectric
effects must be analyzed. This is done most conven-
iently by the methods of irreversible thermodynamics,
applying the Onsager Reciprocal Relations [14-54].
The application of the relations to steady-state proc-
esses involves an approximation; but as Callen [44|
points out, it is an excellent approximation and is
completely justifiable in this case.

We define a set of current densities J;:

.li - E [,,’_,'X_,'. (C-1)
J

where X; are the “conjugate forces.” such that

R(S):EJ,“Xi. (C-2)

where R(S) is the rate of production of entropy in the
system. Then the Onsager Reciprocal Theorem
[53, 54| states that
Il,:,': Iz_ij (C=3)
in the absence of a magnetic field. The rate of entropy
production R(S) is uniquely defined by the system
under consideration. but since R(S) can be split
into a sum of products in many ways, one is left with
a choice of current densities and conjugate forces [45].
We define an electric current density J. an energ
current density W. and an entropy current density S,
so that the divergence of each of these current den-
sities is the rate of change per unit volume of the
corresponding thermodynamic variable. With these
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definitions for the current densities we can write

[44, eq 12|:

s=w-£73. (C-4)
3

where T is the absolute temperature, u is the electro-
chemical potential, e is the electronic charge and
J. the electric current density, is equal to the electron
current density times the electronic charge. We are
considering the electron current to be the only mass
current. Mass transport and the associated entropy
flows due to electromigration (preferential migration
of ions in a solid when a direct current is passed
through the solid) and due to the Soret effect (mass
transport in a solid due to a temperature gradient)
are not considered. The reader is referred to [41-43]
for discussions of these two effects.

We are concerned with steady-state conditions for
which:

V-W=0. (C-5)
vV-J=o0, (C-6)
V- S=R(S). (o=

From (C—4) and (C-7) we can write

o [£9G) b8
(C—8)

Using the identity

I 1
P e T (0
\ <7> L (C-9)

we can write the current densities in terms of the
“conjugate forces”:

[ g L _Lygrl.
J*Ln [(’T‘)V7 TV((?)}_*-L]Z [ T_,VT:|‘
(C-10)

R ety

(C-11)

The electrochemical potential w is given by
p=_{+ed,

where ¢ is the electrostatic potential, and { is the

chemical potential, which in the case of a metal is

simply the Fermi energy [55]. Since the Fermi energy
is a function of temperature only, we can write

(G=12)

V(H’—>=-1' L 914 Vo (C-13)

e e dT

We now proceed to evaluate the coefficients Ly, Ly,
and [,2;3.

The electrical conductivity is defined under iso-
thermal conditions (i.e., VI'= 0) as

o[l

since for VI'=0. V(u/e) =Vo¢. From (C-10) it fol-

lows that

(C—-14)

[411:O'T. ((,’15)

The absolute thermoelectric power is defined (see [56])

s _ [— Vule)
St = [———] ; C-16
VT J=0 ( )
and from (C-10) it follows that
sy =@ [L: + TS“"S] (C=17))

The thermal conductivity is defined as

=52 (C-18)

where Q is the heat current density, since when
J=0,W=0Q.
From (C-10) and (C-11) we get

Lz =AT%+0oT [" = Tsw]'. (C-19)

e
Substituting for L, L2, and Ly in (C—10) and (C-11),

we can write J and W in terms of the defined thermo-
electric parameters:

it {V(%)+S*”’SVT]: (C-20)

W= [{f—+ TS“"S} J—\VT. (C-21)

Taking the divergence of W and using (C-5) and
(C=O)

V - W=1J V(uet+TS)— V- AVT=0.

(@522)
Therefore
J - [V(ule) +TVSs +8525YT] — V- AVT=0.
(@23
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In a homogeneous and isotropic medium, the param-

eter S24" is a function of temperature only, and we can

write

J - [Viple) + w/ =0;
—24)

TSt ol VSt N =
The coefficient T0S5/0T is defined [44] as the Thom-
son coefhicient 7. From (C-20) and (C—24)

¥ [= 3o+ NITT-V -ANT=0.: * (C-25)

At this point, it is convenient to introduce a pseudo-
potential s such that

J=—0aVi. (C—26)
and
Vi =V (ule) + SYT. (C-27)
Writing (C—25) in terms of ¥ we get
VAV +oV¥ - V¥ +orV¥ -VT=0
(C=28)

Equation (C-28) can be considered as the generalized
equation relating the temperature distribution and
the pseudnpol(ntlal distribution in an isotropic ho-
mogeneous medium carrying an electric current. We
now proceed to solve that equation.

The second term in (C-28) can be written as

V: (o) since
V: (boV¥)=vV - (aV¥)+oV¥ - YU
=WV VYV, since V- oVV=—Y-J=0

The third term in (C—28) can also be written in the
form of a divergence, since

VA [a’( fl .T m’f) V'w]=o\7w vV f rT 7dT

+(f:n1T) V(oY)

(529)

=oV¥ -V f’r 7dT=01YV¥ - VT, (C=30)
-

where T* is any arbitrary fixed temperature.
Using these identities (C—28) can be written as

Vv [A‘V'Hadfvlb +o (f,' T(/T) Vt/f]:o. (C-31)
Integrating,
AVT+ o VY + o (fll 7(1’1‘> VV=Vé+e. (C—32)

where ¢ is any potential satisfying the Laplacian
V2¢=0 and ¢ is a vector constant. Since V¥ - (cVy)=0
we can write

Vé= YooV,

where Y is a constant which must satisfy the boundary
conditions. Substituting for ¢ in (C-32), we get

o
ANVT+o(p— o)V + (oY) f/ rdT = c. (C—-34)

(C=29)

If ¢=0, it can be seen from (C-34) that Y7 and V¥
must be parallel at all points. This implies that if there
is no electric current flow across a boundary, there
can be no heat flow across that same boundary. More-
over, equipotential surfaces are also isothermal.
More explicitly, the condition that ¢ =0 requires that
all the heat generated in an electrically insulated con-
ductor must flow out at the ends of the conductor,
there being no heat losses from the sides. This con-
dition can never actually be met in practice since there
is no perfect or even near-perfect thermal insulator.
However, by appropriate choice of geometry, as
employed in the present experiments, heat losses
can be made very small so that we can take ¢=0 as
a valid statement of the boundary condition. Equation
(C=34) then reduces to

-
ANVT+ (U =0V + (V) f 7dT =0,
! (C-35)
where p is the electrical resistivity, p=1/o.
If there is a point in the medium where the tempera-
ture has a maximum value. 7',. the gradient Y 7' is zero
at that point. Further, if we let

I*=Ty (C-36)

the first and third terms in (C-35) are zero at T=T,,.
Since there is a current flowing, o ¥ ¥ # 0 and (C-35) is
satisfied only if ¥ —iy=0 at T'=T,. In other words
lr,l = djﬂ at T'= Tm- (C*37)
so that 5o is the value of ¢ at the point of maximum
temperature.
Integrating (C—35) along a line from one isothermal
surface Si(Ty, ) to another isothermal surface

So(T,, ¥,) and substituting T), for T,
ﬁ AoV - (zr+j (0 — o)V -«
S S
S, 7
+f V- (/rﬁ 7dT'=0, (C-38)

where r is a position vector. Since Y7 - dr=dT and

VU - dr=dy, we have

il U
f ApdT + f
Ty U

Uy T
(= wodw+ [ du [ zar=o.
o iCa0)
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FIGURE 14.
arbitrary geometry.

An arbitrary isotropic and homogeneous conductor
is represented in figure 14.

There is no electric current flow across the bound-
ary C and the geometry is selected to make heat
losses from C negligible so that the condition for ¢ =0
discussed above is satisfied. The isothermal surfaces
Si and S, are taken to be at the same temperature,
To. and the surface of maximum temperature is repre-
sented by S,. In the absence of the Thomson effect,
the surface of maximum temperature would bisect the
reduced resistance between S; and S.. the reduced
resistance—a geometrical quantity—being the re-
sistance of the medium for electrical conductivity of
unity. However, the Thomson effect moves the surface
of maximum temperature away from the symmetrical
location, this effect being referred to as the “Thomson
shift” [57]. It is analyzed in detail by Davidson [57]
and discussed by Holm [58] and Llewellyn Jones [59].
It is convenient to define Yy=0 and consider the inte-
gral (C-39) from S,, where =T, and ¥ =0 to any
other surface S where =1, T=T. Rearranging we

have
lb 1‘”’ w ,IVIH
f dll/l!l:f Ap(['lurf dv f 7dT.
0 i 0 T

(C—40)

It is convenient to write (C—40) in the following form:

U —2e —F2=0 (C—41)
T 1/2
where F(T, Ty,)=+ {2 f ?\,DIZT} (C—-42)
i
and
1 [I] THI
G(T» Tm) = f (["JJ f 7dT. (C*4‘3)
U Jo T

Solving the quadratic equation (C—41), we get
=€+ (e+F?)2=exF(1+ (¢/F)2)'>
(C—-44)

The Thomson effect is relatively small so that the

A thermally and electrically insulated conductor of

second-order term (e/F)? in (C—44) can be neglected.
Then
b=exF, (C-45)
the plus and minus signs referring to the high and low
potential sides of S, respectively.
Referring to (C—43) we see that although 7 is a func-
p;
tion of ¢, the sign of f
-
sign of ¢ since T, is always greater than 7. Conse-
quently € is. to the first order, an even function of .
having the same value at corresponding points on the
high and low potential sides of S,,. At S, we have

m
7dT is independent of the

= e(To, Tw) —F(To, Tn) (C-46)
and at S,
Uo=e(Ty, Tn)+F (T, Ty). (C-47)
Therefore,
Yo =y =2F (To, Th). (C-48)
From (C—27) and (C—13) we have
VU= Vot S YISV (a9

Integrating from S; to S..

Tz
Y — Y = — ¢, +% (L—0) +J;v SESEHE,

(C=50)

In an isotropic and homogeneous medium { and S2"s
are functions of temperature only. When the terminal
temperatures are the same, as in the case we are con-
sidering; i.e., when T,=T,=T,, we can write from

(C—48) and (C—50)

lhz_dfl:d)z_(bl:V:ZF(Tu, T",), (C*Sl)
where V' is the voltage drop between the surfaces
Sy and S,. If the potential probes are not at the same
temperature, a correction must be made as indicated
in (C-50). Writing F explicitly we finally get from
(C=51) and (C—42):

(/7% Tm O
@Z]ﬂ )\p(/T:J Apdo,
0

Ty

(C-52)

where 0=T—T,, 6,,=T,,—T,.

We now proceed to relate the maximum temperature
rise in a conductor to the measured resistance of the
conductor. This problem has been discussed by Meiss-
ner [20] and by Holm [58].

Consider two geometrically identical conductors
differing only in that one (real) conductor has a finite
temperature-dependent thermal conductivity, A= A (6),
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while the other (hypothetical) conductor has an in-
finite thermal conductivity. Both conductors are
assumed to have the same temperature-dependent
electrical resistivity, p=p(6). We assume the lateral
surface of each conductor to be insulated perfectly
against the flow of both heat and electricity. Let each
end of both conductors be in thermal equilibrium
with a heat sink at a temperature 6=0. If an elec-
trical current is passed through the real conductor,
there will be an accompanying temperature rise due
to the heat generated by the passage of the current.
This in turn will cause a change in the electrical
resistance of the conductor. Since the hypothetical
conductor is assumed to have an infinite thermal
conductivity, the temperature throughout this con-
ductor will be =0, even in the presence of heat
generation, and the electrical resistivity will have the
constant value p= p(0) = py at all points in the hypothe-
tical conductor. We wish to consider the difference be-
tween the electrical resistances of these two con-
ductors due to the fact that one of them (real) is heated
to a higher temperature due to having only a finite
thermal conductivity.

Let ¢ and 6 be the potential and the temperature
respectively in the real conductor and let ¥ and 6,
refer to the corresponding variables in the hypotheti-
cal conductor. If the same electrical current is passed
through these two conductors, the temperature and
potential distributions in the two conductors will dif-
fer due to the temperature-dependence of the proper-
ties in the real conductor and also due to the thermal
expansion of this conductor. If iy and diy are the
potential differences between corresponding equipo-
tential surfaces in the two conductors, we can, from
(C—=26), derive the relation

o _py

(llll P (]+'}/1]H).

(C=51))

where 7, is the coeflicient of linear thermal expansion
at #=0. Neglecting terms arising from the Thomson
effect, we have from (C—41),

Y==+F (C—=54)

and from (C-35),
a6 __ -
Ap 4 /3 (C—55)

Combining the last three equations,

dw“:i)\po( ];—y(,())dﬁ )

Integrating,

- f”'i' )\pu(] +')/(]6)d0
i T peT
0

(C—=56)

Since both conductors are assumed to carry the same
current,

Ro_ o "
R0 (C—58)
and we have
Ry . 1 O )\p()( 1+ Yob) ([{)7 (C=59)

R F 0 F

where R is the electrical resistance between two sur-
faces at temperature =0 in the real conductor and
Ry is that between these surfaces in the hypothetical
conductor having an infinite thermal conductivity.
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