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A torsion creep theory for nonc ircula r tubes was developed by applying a multiaxial creep theory 
to a derived generaHzation of Bredt's equations. 

A review of the literature revealed no torsion creep data on noncircular tubes. Hence, to evaluate 
the theory , a tes t program was carried out on twelve specimens of aluminum alloy st ructural tubing, 
of four configurations, at 400 OF. 

Observed discrepancies between the torsion creep theory and experiment are smaller than varia­
tion s in the measured creep properties of the specimen material from one tube configuration to another 
and are not appreciably greater than discre pancies bet ween elastic torsion theory and experiment. 
Most of the observed discrepancies are consistent with measured anisotropy in the tubes, while other 
di sc repancies are ascribed to nonhomogeneity in creep properties and a hyd rostati c stress effect in 
multiaxja l c reep. 

For the calc ulation of torsion stresses in ci rcu lar tubes the thin-wall approximation is adequate 
for thickness- to-radius ratios up to one-tenth. For straight -s ided tubes equ ivalen t accuracy is obtained 
for effective ratios up to only one-twentieth. These crite ria apply to creep conditions as well as to elasti c 
conditions. 
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1. Introduction 

Torsion testing of thin-walled tubes furnishes a 
number of advantages over tensile testing in the de­
termination of creep properties. The most significant 
of these is that the measurement of strain in torsion 
tests is essentially unaffected by the thermal expan­
sions and contractions which accompany minor tem­
perature fluctuations. Also, if the wall thickness is 
small compared to the diameter, the shear stress across 
the section may be regarded as uniform and, for a 
constant torque, this stress remains constant through­
out the duration of the test. A final advantage, for cer­
tain research purposes, is that it is comparatively easy 
to reverse the stress direction. 

In spite of these advantages most laboratory creep 
testing is carried out in tension. On the other hand, 
most structural members are subjected to multiaxial 
stress conditions. It is necessary, therefore, to relate 
creep behavior under multiaxial stress states to the 
uniaxial creep behavior that is usually obtained in the 

*The re sull S rt' porlC'd in thi s pape r were lI sed in part s of a di ss t'rlation submitted 10 the 
Univers ity uf Maryland in partial fU](lllnH'1lI of the ft'quireln c nts fo r a Ph. D. degree . The 
initial phase of the work was s upported by the National Aeronautics and Space Administra­
tion. An invited paper. 

l Present address : Headquarters, Office of Aerospace Researc h (RHOSG), 1400 Wilson 
Blvd. , Arlington, Va. 22209. 

laboratory. The purpose of this paper js to develop a 
means of calculating the torsion creep behavior of 
noncircular tubes from the tensi-le creep properties of 
the tube materials. 

The first recorded torsion creep tests of hollow tubes 
were carried out by Bailey [1, 2)2 in 1929. Other 
pioneers in this area of research include Everett [3, 4] 
and Lea [5]. A. E. Johnson [6-10] has probably done 
more work in this field than anyone else and, indeed, 
with the exception of one related investigation [11], 
Johnson was the only researcher of record engaged in 
torsion creep studies between 1940 and 1960. Recently , 
however, there has developed a mounting internation al 
interest in the subject as evidenced by the appearance 
of six papers [12- 17] in the last three .years. This is 
attributable, in part at least, to anticipated creep 
deformation problems in the wings of supersonic 
aircraft. 

The tubular specimens used in the above investi.­
gations were, in every case, circular. This investi­
gation is believed to be the first study of torsion creep 
in noncircular tubes. 

Most of the torsion creep tests cited in the literature 

2 Figures in brackets indicate the literature refe rences on page 220. 
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were performe d on miniature test specimens having 
diameters of about 1/2 in and gage lengths of about 2 
in. In fact, until recently [17] no torsion creep data 
had been reported on any tubular specimen longer 
than 8 in or larger than 1.6 in in diameter. 

2. Theory 

The theory of elastic torsion in thin-walled tubes, 
as developed by Bredt [18] in 1896 represents an 
approximation to Saint-Venant's general elastic torsion 
theory. Bredt's analysis was based on certain assump­
tions regarding the nature of the stress distribution 
and results in two familiar equations. The first of these, 
which gives the stress distribution, is 

where 

T = shear stress 
T= torque 

T 
T=--

2Ah 
(1) 

A = area enclosed by the midthickness curve C of the 
tube cross section 

h = wall thickness. 

This equation is derived strictly from equilibrium con­
siderations and -is, tnerefore, assumed to he applicable 
to creep conditions as well as to elastic conditions. 

Bredt's second equation, which gives the angle of 
twist of the tube, is applicable only to elastic materials. 
However, a generalized version of Bredt's second 
equation is derived in appendix A and is applicable to 
material obeying any constitutive equation. This gen­
eralized version of Bredt's second equation is 

where 

(J= ymP 
2A 

(J = angle of twist per unit length 
Ym = mean shear strain 
P = perimeter of C. 

(2) 

It is only necessary to insert the proper expression for 
Ym in this equation to make it applicable to the par­
ticular material behavior under consideration. 

For the present case, let it be assumed that the 
tensile creep behavior of the tube material can he 
expressed in the common form 

f = kITIII (" 

where 

f = tensile creep s train 
IT = uniaxial tensile stress 
(= time 

(3) 

and k, m, and n are constants which depend only on 
the material and the temperature. This equation 
applies only to constant stress, constant temperature 
conditions. 

If the octahedral shear stress theory of multiaxial 
creep is invoked, it can he shown that for a material 
obeying eq (3) the shear creep characteristics are 
given by 

(4) 

where 
Y = shear creep strain 
and k, m, and n are the tensile creep constants defined 
by eq (3). Substituting eq (1) into eq (4) gives 

(v3 T)'" y= v3k "2 Ah (". 

For the case of a thin-walled tube in torsion, a mean 
value for the shear creep strain may he obtained by 
performing a contour integration of this expression 
around C. That is, 

= f yds = v3 ~ (V3 ,£)/11 (" -f ds 
Ym P P 2 A hili 

C C 

(5) 

where 

ds = incremental arc length of C. 

Equation (5) can now be inserted into eq (2) to give the 
angle of twist, 

8= v'3 !!. (V3 D'" t" f ds. 
2 A 2 AJ C hili (6) 

This represents the creep counterpart of Bredt's sec­
ond equation. If the tube in question has a uniform 
wall thickness h, eq (6) simplifies to 

(J= V3 !!.. k (V3 :£.)'" (". 
2 A 2 Ah 

(7) 

For a circular tube with mean radius rill this equation 
may be written as 

8=V3- -- (". k (v3 T)III 
r", 2 Ah 

(8) 

Whereas eq (7) is approximate in the sense that it was 
derived with Bredt's assumptions regarding the nature 
of the stress distribution, eq (8) is exact in the sense 
that it coincides with a solution (appendix B) which 
does not require these assumptions. 
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3. Test Program 

A test program was des igned to evaluate the appli­
cability of eq (7) to several shapes of thin-walled tubes_ 
Tension creep tests of the tube materials were carried 
out to determine k, m , and n , and torsion creep tests 
of the tubes were performed to provide experimental 
data for comparison with eq (7) _ 

14 data points from eac h tes t, a leas t squares approach 
was set up to find appropriate values of k, m, and n for 
th e material of each tube shape. The res ulting ten­
sion c ree p equations, in the form of eq (3), are as 
follow s: For the circ ular tube material 

(9a) 

3_ 1_ Specimens For the 0.083-in waJJ sq uare tube material 

Drawn seam less 2024-T3 aluminum alloy tubing 
was acquired for use as test specimens_ This alloy 
was selected because of its reported adherence to 
the octahedral shear s tress theory [19, 20] and because 
of its applicability to airframes_ Four tubes of each of 
four diffe rent sha pes were obtained: circ ular, square 
with round ed corne rs in two thic knesses, a nd rectangu­
lar with rounded corners . The diameter of the circu­
lar tubes , the sides of the square tubes, and the 
longer side of th e rec tan gular tubes were all nomi­
nally 3 in , and th e le ngths of the tubes were eac h 7 ft. 
The nominal dim e ns ions of the four shapes are s hown 
in fi gure 1. For any single tube , variations in the outs id e 
dime ns ion s and in th e thi ckn esses did not exceed 0.01 
in and 0.004 in , respectively. 
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FIGURE 1. Nominal dimensions oj tube specimens , in inches. 

3.2. Tension Creep Tests 

Four te nsion c reep spec ime ns we re cutlongitudi­
nally from one tube of each of the four shapes. Using 
a conventional dead weight , lever arm tes ting ma­
chine, creep tes ts of approximately 50-hr duration 
were carri ed out on these specime ns at 400 of. The 
stress le vels ranged from 9,100 to 22 ,500 lb/in2 • Using 

265- 343 0 - 67-3 
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E = 2 .54a-1.60 t (1.28 X 10- 6. (9b) 

For the 0.109-in wall square tube material 

E = 6.49uI.33tO.36 X 10- 6• (9c) 

For the rectangular tube material 

E = 2.43u 1. 57 to. 30 X 10-6 • (9d) 

In these equations a- is in kips/in2 and t is in hours. 
A comparison between eq (9b) and the experi­

mental tension creep c urv es for the speci mens cut 
from the 0.083-in wall square tube is given in figure 
2. The discrepancies appear to be random and are 
attributed to the us ual scatter in cree p behavior. 
The discre pancies obtained with the specimens cut 
from the other tube shapes are si milar to that shown 
in figure 2. 
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FIGUHE 2. Tension creep behavior oj specimens cut Jrom 0.083-ill 
wall sq nare tube. 

To co mpare the tensile c reep properties of the four 
tube materials , creep curves were calculated from 
eqs (9) for a stress of 15,000 Ib/in2• These are given in 
figure 3. It may be seen that significant differen ces 
exist between the creep c urves for the materials of 
two of the tube shapes as compared to those for the 
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FIGURE 3. Tension creep curves for the tube materials at 15,000 
lblin 2 according to eqs (9). 

materials of the other two tube shapes. These dif­
ferences may be attributable to variations in chemical 
composition or heat treatment, or to differences in 
the degree of .cold work resulting from the respective 
drawing operations. 

3.3. Torsion Creep Tests 

Twelve torsion creep tests were carried out at 
400 of, three on each of the four tube shapes shown 
in figure 1. Each tube specimen was seven feet long 
and was mounted such that it passed symmetrically 
through a six-foot test furnace. Twist measurements 
were made over a three-foot gage length at the center. 
The twist measuring system had errors not exceeding 
one percent and individual measurements were re­
peatable to better than 3 X 10- 6 radians per inch. 
Temperatures were constant within 1 of throughout 
each test and uniform, over the gage length , within 
3 of. The testing equipment, the test procedure, and 
the calibration technique are described in appendix C. 

Table 1 lists the specimen designations, the torques , 
and the stress levels computed from eq (1) for each 
test. The experimental creep data are plot~ed in figures 
4, 5, 6, and 7 in terms of angle of twist against time. 
Also given in the figures are the theoretical torsion 
creep curves calculated with eq (7). For the circular 
tubes, figure 4, and the rectangular tubes, figure 7, 
agreement between theory and experiment is good for 
the lowest stre·ss level. At the higher stress levels the 
theory predicts considerably less creep than was ob­
served in the tests. For the 0.083-in wall square tubes, 
figure 5, the theory predicts less creep at all stress 
levels than was actually obtained, while for the 0.109-
in wall square tubes , figure 6, the theory predicts 
significantly more creep at all stress levels than was 
actually obtained. Although the relationship between 
experiment and theory is reasonably consistent for 

212 

Specimen 
No. 

1 
2 
3 

4 
5 
6 

7 
8 
9 

10 
11 
12 

1.6XIO-3 

1.2 

.8 

TABLE 1. Torsion creep tests 

Torque Shear 
slress 

in-lb lblin2 

Circular lubes 

9,930 8,940 
11 ,800 10,600 
10,900 9,820 

0.083-in wall square lubes 

11,800 8,080 
13,800 9,380 
15,600 10,700 

0.109-in wall square tubes 

16,600 8,920 
18,500 9,940 
14,700 7,900 

Rectangular lubes 

11 ,800 
9,350 

12,800 

o 
o 

o 

11 ,800 
9,350 

12,800 

o o 

o 

TOR OU E TE ST 
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II. SOO 0 
10,900 0 
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TIME,hr 

Slress 
error 

Percent 

+2 
-25 
-23 

- 15 
-18 
-12 

+ 31 
+30 
+ 23 

- 13 
0 

- 23 

--

COMPUTED 

FIGURE 4. Torsion creep behavior of circular tubes. 

each tube shape, no dominant relationship is apparent 
from all of the data taken together. 

The discrepancies between calculated and experi­
mental results were evaluated in terms of stress. That 
is , for each test the stress that would have brought 
the calculated curve into approximate coincidence 
with the experimental data was computed. The dif­
ference between this value and the theoretical stress, 
expressed as a percentage, is given in table 1 as the 
"stress error." 
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FIGURE 5. Torsion creep behavior of 0.083- in wall square tubes. 
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FIGURE 6. Torsion creep behavior of 0.109-in wall square tubes. 
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FI GURE 7. Torsion creep behavior of rectangular tubes. 
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4. Analysis of Results 

The discrepancies between the theoreti cal and 
experimental creep c urves are not significantly 
greater than the discrepancies that are obtained 
when Bredt's equations are applied to elas ti c tubes at 
room temperature [21-24]_ This , however , does not 
explain the reasons for the discrepancies and , there­
fore , gives no indication of the limits of applicabil­
ity of the theory_ 

In order to explain the observed discrepancies be­
tween theory and experime nt , it is desirable to re­
examine the justifi cations for the numerous assump­
tions which were involved in th e theor y_ These assump­
tions may be divided into three categories _ The first 
category includes those common ass umptions regard­
ing the idealization of the specimen materials whi ch 
are necessary to make them amenable to mathe mati cal 
treatment. These assumptions are: 

L The material is continuous.3 

2. The material is homogeneous. (See footnote 3.) 
3. The material is isotropic. 
In the next category are the additional assump­

tions inherent in the Saint-Ve nant torsion theory. 
4. E nds are free to exte nd or contract in the length­

wise direction. 
5. Ends are loaded by a pure torsional couple with 

no res ultant force. 
6. There is no restraint of warping. 
7. There are no reentrant corners or other areas of 

severe s tress co nce ntra tion . 
Finally, there are the assum ptions required by Bredt 's 
approximation to the Saint-V ena nt theor y. 
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8. The s hear stress parallel to the s urface is uniform 
throughout the wall thic kness. 

9. The shear stress norm al to the surface is zero 
throughout the wall thickness. 

4.1. Material Idealization 

o. Continuity 

Although it is known that metallic materials are 
composed of crystals, their dimensions are generally 
very small in comparison with the dimensions of the 
specimens. Hence, the mathematical treatment of the 
material a s though it were continuous is generally 
reasonable . In the present case, however, there was 
some doubt as to whether the crystals were, in fact , 
s mall in comparison with the wall thicknesses of the 
tuhes. To resolve this doubt , s mall s amples were cut 
from one square tube of each of the two wall thick­
nesses . For each sample the number of grains in the 
thickness direction was counted both on a longitudinal 
surface and on a transverse surface. In all cases the 
count ranged betwee n 33 and 48 grains. On this basis, 
it is felt that the ass umption of continuity is justified. 

J For these two charac te ris ti cs , continui lY and homogeneity, some authors prefer the 
terms homogeneity and uniformity, respec ti ve ly. In the present context continuit y indio 
cat es the natu re of a stru ctureless mass and homogeneity is the quality of having the 
same mechanical properties throughout the material, i.e. , independent of location. 



b. Homogeneity 

It is conceivable that the tubes from which the ten­
sile creep specimens were cut may not have been 
representative of the tubes which were tested in tor­
sion creep. Therefore, the homogeneity of the specimen 
materials was checked, as follows, with a hardness 
survey. 

A rectangular plate , approx imate ly 1 in by 2 in , 
was cut from each torsion creep specime n, from the 
region whic h had been between the grips and the 
tes t furn ace. The material in this region is consid­
ered to h ave suffered th e least c hange in proper­
ties due to s tressing or heating. In addition, a similar 
plate was cut from each of th e four tubes from which 
the tension creep specimens had previously been 
c ut. 

Table 2 lists the average Vickers hardness numbers 

T ABLE 2. Hardness test results 

Spec im en 
No. 

1 
2 
3 
C 

Average ...... .. . 

4 
5 
6 

SN 
Average .................. 

7 
8 
9 

SK 
Average ......... 

10 
II 
12 
R 

Average ... ............... 

Hardness 

VHN 

146 
14S 
141 
143 
144 

147 
14S 
145 
147 
147 

145 
14S 
142 
J46 
145 

145 
140 
141 
140 
142 

for each of the tes t plates. The plate numbers in the 
first column refer to th e tube specimen numbers 
(table 1) from which the respective plates were cut. 
The plates designated by letter symbols refer to 
those tubes from which the tensile creep specimens 
had been c ut. It can be seen that th e variation in 
hardness within each batch is s maU , as expec ted. 
Unfortunately, the data also indicate that the dif­
ference in hardness from batch to batch is also small. 
Yet, it has been de termined (fig. 3) that a s ignifi­
can t difference in creep properties exists betw een 
different batc hes. Hence, it must be concl uded that 
the uniformity in hardness within each batch does 
not necessaril y indicate a uniformity in creep prop­
erties. Th e possibility thus remains that th ~ dis­
crepancies between the calculated and experi mental 
torsion cree p behaviors may be due to nonh omoge­
neity_ 

c. tsotropy 

As a result of the cold-working process, drawn tubes 
are typically orthotropic with the maximum strength 
properties coinciding with the longitudinal direction. 
In the present investigation the tension creep prop­
erties of the tube materials were determined from 
specimens c ut longitudinally from the tubes_ In the 
torsion tests, however, the principal directions are at 
45 deg to the longitudinal axis of the tubes. It is nat­
ural, therefore, to question whether the creep prop­
erties of the material in the diagonal (45-deg) direction 
and in the longitudinal direc tion are equivalent. Un­
fortunately, the tensile creep properties in the diagonal 
direction could not be evaluated in the present investi­
gation because the specimen lengths which could be 
cut diagonally are too short to be satisfactorily ac­
commodated by the available creep testing equipment. 

As a compromise, it was decided to secure a general 
picture of the anisotropy in the tubes by conducting 
room-temperature tensile tests on miniature speci­
mens which had been cut from a tube in the longi­
tudinal, diagonal and transverse directions. The first 
set of miniature specimens was taken from the 0.083-
in wall square tube from which the tension creep 
specimens had been cut. In figure 8 the longitudinal , 
diagonal and transverse stress-strain characteristics 
are compared. It may be seen that anisotropy does , 
indeed , exist with the material being stronger in the 
longitudinal direction than in the transverse direction. 

Tensile and yield strengths from these tests are 
given in table 3, each tabulated value being the aver­
age from a pair of tests_ The ratio of yield strengths 
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FIGURE 8. Comparison of tensile stress-strain characteristics of 
0.083-in. wall square tube material in three directions. 

214 



TABLE 3. Tensile properties of 0.083-ill wall square tube material 

Direction Yie ld Tensile 
strength a strength 

lblin2 lblin2 

Longitudinal.. ... .. ... ...... .. . 52,000 72,800 
Diagonal.. .... ................. . 45,200 69,200 
Transverse .... ... ....... .. .... . 43,500 67,800 

a 0.2 percent offset. 

in the longitudinal and diagonal directions is 1.15. 
If this ratio may be taken as a meas ure of the plastic 
anisotropy, then an esti mate can be made of the effect 
of anisotropy on the torsion cree p behavior of the· 
0.083-in wall square tubes. On the basis of this ratio 
it is pos tulated , for purposes of this estimate, that 
plastic flow in the diagonal direction may be d~duced 
from the plastic flow properties in the longitudinal 
direction by considerin g th e stress in the diagonal 
direction to be 15 percent greater than the true value. 
Thus, the creep strain in the diagonal direc tion 4 is 
taken as [cf eq (3)] 

E= kO·lSO')lIIt". 

With this modifi cation the torsion creep equation , 
eq (7), becomes 

(10) 

An independent justification for this form of aniso­
tropy correction is given in appendix D. Torsion creep 
curves were calculated for the 0.083-in wall square 
tubes using this equation. These calculated curves 
are compared with the experimental results in fi gure 9. 
It is seen that , on the whole, the agreement between 
calculated and experimental results is now quite 
acceptable. The remaining discrepancies appear to 
be random, rather than systematic, and are apparently 
within the experimental variability of the creep prop­
erties of the material as exhibited by figure 2. 

On similar bases it is reasonable to presume that the 
discrepancies obtained with the circular and rectangu­
lar tubes (figs. 4 and 7) can likewise be explained, for 
the most part, in terms of anisotropy. Unfortunately, 
however, this type of correction would increase the 
discrepancies obtained with the 0 .109-in wall square 
tubes (fig. 6) s ince, in thi s case, the isotropi c theory 
predicts considerably more creep than was observed 
in the tes ts. This situation naturally creates a sus­
picion that the 0.109-in wall square tubes possess a 
reverse type of anistropy: that is, one where the mate­
rial is stronger in the diagonal (a nd transverse) direc­
tion than in the lon gitudin al direction . 

4 The degree of anisotropy is so s ma ll thai the a ngle between the directions of principal 
stress and principal strain ma y be ignored. 
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FICURE 9. Torsion creep behavior of 0.083-in wall square tubes. 
Comparison of experimental data with theory corrected for anisotropy. 

To check this , a set of miniature specimens was cut 
from the O.109-in wall square tube from which the 
te nsion creep specimens had earlier been taken. The 
stress-s train characteri s tics de termined from these 
specimens indicate that the anisotropy in this case is 
qualitatively similar to that obtained with the thinner 
tube material (fig. 8). It must be concluded therefore, 
that anisotropy cannot , by itself, explain all of the 
discrepancies between experime ntal and calc ulated 
torsion cree p be havior, and that so me other factor or 
factors, as yet unknown, are operative here_ 

The te nsile and yield strengths for the O.109-in wall 
square tube material are given in table 4. 

TABLE 4. Tensile properties of 0.l09-in wall square tube material 

Direction Yield Tens ile 
stre ngth a strength 

Iblin2 lblin2 

Longitudinal. ......... ........ . 55,700 70,900 
Diagonal. .............. . ...... . . 47,200 69,600 
Transverse ....... .. ..... . ..... . 43,300 67,500 

a 0.2 percent offset. 

d. Compressive Creep Properties 

Another assumption of concern here, which is 
related to the matter of isotropy, is the equivalence of 
the creep properties in tension and in compression_ 
This was not .listed as a separate assumption but it 
is inherent in the octahedral shear stress theory of 
multiaxial creep, which was used in the development 
of the torsion creep equations. Vawter et al. [25], 
and Heimerl and Farquhar [26] measured and com­
pared the te nsile and co mpressive creep properties of 
2024- T3 aluminum alloy at several temperatures_ 
Although no data were obtained at 400 0 F their re­
sults suggest that at this temperature the creep prop­
erties in tension and compression are probably close 
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to one another. Similar results have been reported 
[27] for 2024-T4 aluminum alloy. 

4.2. End Effects 

Assumptions 4, 5, and 6 may be considered collec­
tively under the heading of end effects. Conformance 
with these three assumptions is required in order to 
achieve, in the specimen, the state of pure torsional 
loading which is considered in the theory. 

a. Longitudinal Restraint 

If a tubular specimen were to manifest a tendency 
to lengthen or shorten under torsion, and if this tend­
ency were resisted, axial stresses would be induced 
in the tube. Accordingly, the design of the torsion 
creep testing equipment incorporated provision for 
the torquing shaft to slide axially in its bearings. 
Thus, with exception of some friction, the torqued end 
of the specimen was free to extend or contract-

b. Applied Stress Distribution 

The Saint-Venant solution to the torsion problem 
concludes that the stress distribution is the same at 
every cross section. This indicates that, for cor~form­
ance with the theory, the torque must be appbed to 
the end surface of the cylinder as a system of trac­
tions identical with the shear stress distribution which 
is thence obtained at every cross section_ The restric­
tive nature of this requirement is eased by the appli­
cation of Saint-Venant's principle, which is usually 
satisfactory_ In the case of thin-walled members, 
however it has been known for some time that Saint­
Venant'; principle is not universally valid. 

With a thin-waned tube in torsion, if the applied 
system of shear forces is not identical with the derived 
shear stress distribution, then longitudinal normal 
stresses are created in order to maintain compatability 
of the deformation at the ends. (This is illustrated 
later for the case of a square tube_) These normal 
stresses differ fr()m those induced by the restraint 
of elongation or contraction in that they are self­
equilibrating at any cross section. Nevertheless, these 
stresses may make themselves felt at longitudinal 
distances which are many times the depth or diameter 
of the tube. 

Thus, assumption No.5, which is adequate for solid 
cylinders is inadequate for thin-wa~led tubes. Inste~d, 
strict conformance with the Samt-Venant torSIOn 
theory requires that the torque be applied in suc.h 
a way that the applied distribution of shear forces IS 

identical with the derived distribution of shear stresses. 
In a practical sense, deviations can be tolerated only 
if the induced longitudinal stresses are comparatively 
small. 

The dissipation of the longitudinal normal stresses 
with distance from the ends was calculated by Vlasov's 
method [28J for the square and rectangular tubes of 
the present investigation. The results of the ca~c~la­
tions are given in figure 10, which shows the vanatIOn 
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FIGURE 10. Dissipation of longitudinal normaL stresses. 

of the longitudinal normal stresses (J as a fraction of 
the indeterminate value (Jo at the ends. It may be seen 
that, owing to the fact that 21-in lengths of tube were 
provided between the grips and the gage length, t?e 
longitudinal stresses within the gage length have dIs­
sipated to less than five percent of the values at the 
ends of the tubes. This indicates that the conversion 
of the applied shear stress distribution into the Saint­
Venant shear stress distribution is essentially ac­
complished. Only in an infinitely long tube would this 
conversion be complete_ 

The absence of significant longitudinal normal 
stresses within the gage length was checked experi­
mentally with strain gages, as described in appendix C. 

c. Warping 

In the case of rectangular tubes, longitudinal nor­
mal stresses are also introduced by the restraint of 
warping_ The effects of these stresses on torsional 
stiffness were calculated by von Karman and Chien 
[29]. From their results it was determined that, for 
the rectangular tubes tested in the present investi­
gation, the restrained warping causes a noticeable 
effect on the angle of twist for distances of only 
an inch or two from the grips_ Thus, within the gage 
length, the warping may be considered to be unre­
strained, as required by assumption No_ 6. 

4.3. Stress Concentration 

The square and rectangular tubes used in the pres­
ent investigation were selected with rounded corners 
in order to minimize the stress concentrations. These 
stress concentrations were evaluated from Ruth's 
charts [30] as follows: 
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For the 0.083-in wall square tubes, Icc = 1.02; 
for the 0_109-in wall square tubes, kc = 1.15; 
for the rectangular tubes, kc = 1.00. 



It may be seen that the stress concentrations are, 
indeed, small. The largest value, for the 0.109·in 
wall square tubes , cannot reasonably explain the dis· 
crepancies observed between the theoretical and ex· 
perimental torsion creep results. If anything, the stress 
concentration would tend to cause greater experi­
mental deformations than the theory predicts whereas , 
in fact, the opposite was observed with the 0.109-in 
wall square tubes. 

4 .4. Thickness Effects 

Assumptions 8 and 9, which are r equired by Bredt's 
analysis , may be discussed under the subject of 
thickness effects since, to a large extent, these 
assumptions are jus tified if the wall thickness is small 
enough. 

a. Stress Gradient 

Curiously, there is no well-known criterion or rule­
of-thumb whic h defines the maximum thickness or 
other limiting condition for application of thin·wall 
torsion theory. On the other hand, for pressure ves­
sels there is a widely quoted criterion that de fin es 
a thin cylinder as one in which the wall thickness is 
less than one-tenth of the radiu s. It is interes ting to 
examine thi s criterion with a view toward establi shing 
a similar one for torsion. 

(1) CircuLar Tubes . In an internally pressurized cir­
c ular tube the tangential stresses vary through the 
wall thickness, reaching a maximum at the inside 
surface. Under elas ti c conditions the maximum stress, 
as given by La me's equation, may be written as 

where p is the pressure and a is the ratio of the wall 
thickness h to the mean radius rm. For thin -walled 
tubes the tangential stress is considered to be uniform 
through the thickness with a value of 

where ri is the inside radius. The ratio 

1 ex 
-+-

(Jrnax ex 4 
--

O"ihin 1 1 
(11) 

---
ex 2 

is an index of the error of the thin-wall approximation 
for an y specific value of ex. 

For elastic torsion of a circ ular tube the shear 
stresses vary through the thickness, reaching a max-

imum at the outside s urface. The maximum stress , 
as give n by Saint-Vena nt's theory, may be written as 

T 
ex 

1 + -
2 

T max = 4-----;] - - -3 
7Trlll ex ex 

-+-2 8 

where T is the torque . For thin tubes the shear stress 
is conside red to be uniform through the thickness 
with a value 

The ratio of the maximum shear stress to the shear 
stress given by the thin-wall theory is 

ex 
1 + -

Tm ax= _ _ 2_ . 
Tthin 

2 

l + ~ 
4 

(12) 

Equa tions (11) a nd (12) are plotted in fi gure 11. It is 
seen that the error involved in the thin-wall approxi­
mation s is greater for the press ure case than for the 
torsion case. Hence, a criterion applicable to the 
pressure case is reasonable for the tors ion case as 
well. Whe n ex = 0.1 the error is slightly more than five 
percen t for the pressure case and slightly less than 
five pe rcent for the torsion case. For the circular tubes 
tested· in the present inves tigation, a = 0.057 , which 
corres ponds to an error of less than three percent. 

PRESSURE 

1.2 
OR 

WALL THICKNESS/ MEAN RADIUS 

FIGU RE 11 . Effect of waLL thickness 0 11. th.e th.in-wet! I a.pprox ima.tion 
of the stress. 

(2) S traight-Sided Tubes . For elasti c torsion of 
square or recta ngular tubes the situation is not as 
favorable. If a mean radius for straight-sided tubes is 
defined by 

2A 
rm = p (13) 

and if the stress concentrations at the corners are 
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neglected, then the maximum shear stress at the 
outer surface is [24,31] 

Therefore, 

T 
Tmax=2Ah (l+a). 

T max = I + a. 
Tthin 

U sing the criterion of five percent error that was 
used above it appears that, for straight·sided tubes 
in torsion, thin·wall theory is applicable only if a is 
less than 0.05, rather than 0.1, which is the case for 
circular tubes. The following values of a apply to 
the square and rectangular tubes tested in the present 
investigation: 

For the 0.083·in wall square tubes, a=0.OS7; 
for the 0.109·in wall square tubes, a= 0.074; 
for the rectangular tubes, a = 0.066. 

Clearly, the wall thicknesses for these tubes exceed 
the limit within which thin·wall torsion theory is ac· 
curate. However, this limit applies only to the stresses. 
It has been shown [32, 33] that the thin-wall require­
ment is far less restrictive for the calculation of 
angle of twist than it is for the calculation of stresses. 
Hence, the use of the thin-wall approach is acceptable 
for present purposes. 

(3) Effect of Creep. For the case of circular tubes 
the exact creep stress distribution is given by eq (B.3) 
in appendix B. As an illustration of this stress dis­
tribution , this equation, with rm = I and h = 0.1, 
is plotted in figure 12 for creep exponents of m = I , 
m= 2, and m= 00. The curve for m= 1 represents 
the elastic stress distribution. The curve for m = 2 
represents a creep stress distribution where elastic 
strains are negligible in comparison with the creep 
strains. For a real case where a combination of elas­
tic and creep strains exist the distribution would lie 
somewhere between the curves for m = I and m = 2. 
The curve for m = 00 represents the uniform stress 

m=1 

m=2 

-t 1.6 m=CD 
~ r-------~~~------~ 

DISTANCE THROUGH 0 .10 -IN. WALL, in . 

FIGURE 12. Variation of shear stress through the wall of a circular 
tube in torsion. 

distribution assumed by Bredt's thin-wall theory. 
Thus , it is seen that in creep the stress distribution is 
actually closer to the thin-wall approximation than it 
is under elastic conditions. It may be concluded, 
therefore, that any criterion which defines a limiting 
wall thickness for elastic torsion is acceptable for 
creep conditions, too. 

b. Stress Direction 

Assumption No.9 requires that all shear stresses be 
parallel to the surface of the tube. Thinking in terms 
of the hydrodynamic analogy, this appears to be a 
reasonable assumption for tubes of smooth contour, 
such as circles, but it can be demonstrated that it 
is somewhat erroneous for tubes with corners. 

Consider, for example, torsion of a thin -walled tube 
of length L having a cross section in the form of a 
square with sides of length u and thickness h. This 
is shown diagramatically in two views in figure 13(a). 
According to the assumption, the shear stresses T in 
each side of the square are parallel to the surface. If 
these are considered to be the only stresses acting, 
the only deformation which could take place is pure 
shear with displacements fj as shown in figure 13(b). 
(Only one face is shown in the left view, for sim­
plicity. The broken lines indicate the original, unde­
formed shape.) The angle y is simply the shear strain 
TIG', where G is the modulus of rigidity and the prime 
is added for generality; G' and y may be considered 
time·dependent to allow for creep. Displacement 0 
is equal to yL. 

~}--------{I 
f-I - -- L -------11 
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FIGURE 13. Deformation of a square tube in torsion. 
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This deformation pattern is clearly unacceptable 
by itself. What is required to res tore compatability to 
the tube shape is a torsion of each face about its own 
longitudinal axis, as indi cated by the torques TI in 
figure 13(c). The final co nfigura tion is shown in figure 
13(d), where the required angle of twist is 

28 2yL 2TL 
-fJ=-= -=-' 

u u C'u 

The torques TI are comprised of shear stresses near 
the corners which act normal to the surface although 
they are necessarily zero at the surface. The magni­
tude of TI is simply the torque required to twist a fiat 
strip through angle -fJ. That is , 

T = (~) JC' =~ uh3 C' =~ Th3 
I L C'u 3 3 

where J is the torsional cons tant. 
The condition of moment equilibrium can now be 

imposed. The four torques TI plus the mom e nt of the 
shear stresses T [fig. 13(a)] mu st equal the applied 
torque T. That is, 

from whi ch 

T 

According to Bredt's equation, however, the shear 
stress is 

T T 
T=2Ah =2hu2' 

The difference, expressed as a fraction of the Bredt 
stress is 

This quantity is negligible for the square tubes tested 
in the present investigation and , in fact , amounts to 
less than one percent for h/u ratios up to one-tenth. 

The presence of shear stresses normal to the sur­
face of the tube introduces another source of error, 
namely, distortion of the cross·sectional shape in its 
own plane. This distortion chan ges the enclosed 
area and, therefore, the stresses as well. Thi s prob­
lem was studied in detail by Ikeda [34] for square, 
thin-walled tubes. Using the results of hi s analysis 
it was determined that the effect on the stresses is 
less than one percent for the square tubes tes ted in 
the present inves tigation. 

5. Discussion 

The foregoin g analyses have de mon strated that 
the assumptions introdu ced by Bredt's approxima­
tion to the Saint-Venant tors ion th eory are appli­
cable to the torsion cree p proble m studied in this 
investigation. In the area of mate rial idealization, 
however, some aspects of questionable applicability 
were revealed. Specifically , it was found that the 
materials of the tubes tested were not isotropic. 
However, with an approximate co rrection for anisot­
ropy , satisfactory coincidence betwee n th eory a nd 
experiment was shown to be attainable. Unfortu­
nately, this was not the case for the O.109-in wall 
square tubes. 

The studies carried out were inadequate to demon ­
strate that the specimen materials are homogeneous 
insofar as creep properties are concerned. There­
fore, the discre pancies between theory and ex­
periment could logically-although tentatively-be 
ascribed to nonhomoge neity; little can be done with 
such a problem unless the actual distribution of 
cree p properti es in the s peci me n is known. Intuitively, 
however , thi s is an unsati sfactory conclusion. The 
discrepancies (fi g. 6) appear too large and too con­
sis te nt to be attributed to a negative characte ri s tic 
suc h as an absence of homoge neity. The fact that the 
discre pancies are not appreciably greater than those 
obtained under elas ti c co nditions does not mitigate 
the need for a more sati sfactory explanation , and at 
leas t one other possible explanation does exist. 

In the preceding sections mos t of the assumptions 
involved in the develo pme nt of the th eory were justi­
fi ed or evaluated by meas ure ments or calculations 
applicable to th e problem at hand. The jus tifi cations 
for two of th e assumptions, however , were based on 
references to data in the lite rature. These two as­
s umptions, which are related , are the octahedral 
shear stress theory of multiaxial c reep, and the 
equivale nce of tensile and compressive c reep. Th e 
failure of the torsion creep theory to describe the be­
havior of the O.109-i n wall square tubes is reason 
enough to reexamine the adequacy of these justi­
fications. Although the octahedral shear stress theory 
is reported to be the one most commonly used at the 
present time [35] and also most favored by the weight 
of evidence in the literature [36] , careful experimental 
measurements have been presented, in recent years , 
which are inconsistent with it .[12 , 37]. 

Some investigators are inclined to the belief that 
inconsisten cies with the octahedral s hear s tress theory 
are somehow attributable to an effec t of hydrostatic 
stress. The theory neglec ts such a n e ffect but a dif­
ference between tensile and compressive creep prop­
erti es would indicate that the effect is not negligible . 
Finnie [12] a tte mpted to e valuate this effect experi­
me ntally and found th at it could not be characterized 
by any simple modification of the octahedral shear 
s tress theory. By means of a literature search, he also 
concluded that the hydrostatic stress effect becomes 
significant only when the absolute test temperature 
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exceeds half the absolute melting temperature of the 
test material, and proposes this as an explanation for 
the belief (which was widespread until recently) that 
the hydrostatic stress effect is negligible. In this con­
text it is significant that the tests in the present in­
vestigation were conducted at a temperature which 
does, in fact, exceed half the absolute melting tempera­
ture of the specimen material. 

The current state of knowledge regarding creep 
under multiaxial stresses was adequately summed 
up by Manson [35] in his discussion of the octahedral 
shear stress formulation: 

Whether the quantitative discrepancies that 
occur . . . are due to the inadequacy of the 
formulation still remains to be established. If 
modifications are to be made, the question must 
still be resolved as to whether they should be 
in the form proposed by Wahl [38], or by a suit­
able correction which includes hydrostatic stress, 
or whether still another interpretation is best. 

It appears that an improved torsion creep theory for 
noncircular tubes must await the development of an 
improved multiaxial creep theory. 

6. Conclusions 

A theory for the torsion creep behavior of thin-walled 
tubes was developed by applying the octahedral shear 
stress theory of multi axial creep to a generalized ver­
sion of Bredt's equations. The theory was compared 
with experimental results obtained by tests on 12 
large circular and noncircular aluminum alloy tubes 
at 400 OF. The following principal conclusions, appli­
cable to the material and tube configurations tested 
herein, were obtained: 

1. In most cases the theory can provide usable 
results when suitable allowances or corrections are 
made for anisotropy. 

2. Aside from the effects of anisotropy, differences 
between theory and experiment have been tentativfly 
ascribed to (a) a shortcoming in existing theory of 
multiaxial creep behavior which is related to the 
inequality of tensile and compressive creep properties, 
or (b) nonhomogeneity in creep properties. 

3. The largest differences between theory and ex­
periment were obtained with the 0.109-in wall square 
tubes. These differences were conservative and are 
smaller than the differences in the measured creep 
properties of the material from batch to batch. Also, 
the differences between theory and experiment are 
not appreciably larger than the discrepancies obtained 
when Bredt's equations are used to predict the tor­
sion behavior of elastic tllhes at room temperature. 

Other conclusions of interest which were obtained in 
the course of the investigation are: 

1. The existence of nonhomogeneity in creep prop· 
erties at elevated temperatures is not, necessarily, 
revealed by measurements of other mechanical prop· 
erties at room temperature. 

2. For the calculation of stresses in circular tubes 
the thin-wall approximation may be considered ade-

quate for thickness-to-radius ratios up to one-tenth. 
For straight-sided tubes equivalent accuracy is ob­
tained for ratios up to only one-twentieth, where the 
effective radius is defined as in 'eq (13). These cri­
teria are applicable under creep conditions as well as 
under elastic conditions. For the calculation of twist 
angles the thin-wall approximation presumably is 
less restrictive than it is for the calculation of stresses. 

3. A simple and unique analysis is presented for 
evaluating the shear stresses which act normal to 
the surface of square tubes under torsion. It is shown 
that the effect of these stresses, on the overall stress 
distribution, is negligible for thin-walled tubes. 
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Appendix A. Generalized Version of Bredt's 
Second Equation 

Consider a cylindri cal shell of closed section havin g 
a le ngth L and faces normal to the cylinder axis. See 
figure 14. Unde r an applied torque T an originally 
longitudinal ele ment AB of the mids urface rotates to 
an orientation AB'. Angle BAB' is the shear s train y. 

Displace ment BB' is equal to Ly and it is assumed that 
the strains are suffi ciently small that thi s di splacement 
is perpendicular to the radius r from the axis of 
torsion. 

The angle of twist, viewed from this axis, is 

(A.l) 

and the angle of twist per unit length is 

1fJ Y 8=-=- · 
L r 

(A.2) 

It is clear that this quantity does not re main constant 
as midthickness curve C is traversed. Yet it is co m­
mon a nd desirable to assign a single value to the 
quantity known as angle of twi st per unit length. Gen­
erally , thi s ques tion is ignored a nd 8 is co mputed ei ther 
by the membrane analogy or by a s train e nergy ap­
proach, both of which yield an effective mean value 8. 
A mean value is also so ught he re, but the me mbrane 
analogy and the s train energy method will not be used 
since these approaches apply prin cipally to elas ti c 
materials. 

A mean radius can be deduced from the relation 

2A rm=p (A.3) 

where P IS the perimeter of C and A I S its enclosed 
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F' IGU BE 14. Derivation oj generalized version oj Bredt 's second 

equation. 
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area. Then, designating the mean shear strain as 'Ym 
leads to the following expression for angle of twist. 

()= 'Ym = 'YmP. 
rill 2A 

(A.4) 

This equation may be regarded as a generalized ver· 

Using a similar approach, the angle of twist, eq (B.2), 
may be rewritten as 

V3k(V3T )'11 (} =-- --- t" 
1'11/ 2rrr~,h 

sion of Bredt's second equation. or (B.5) 

Appendix B. Torsion Creep of Circular Tube 

Consider a hollow circular rod in torsion with inside 
radius a and outside radius b. The shear creep prop· 
erties of the material are given by eq (4). Then, ne· 
glecting elastic strains for the moment,5 the shear 
stress at any radius r is shown [39, 40] to be 

(3+ l ) T 
T= m (!.)I/II! 

[ (a):l 1 J b . 
2rrb3 1- b + m 

(B.l) 

The shear strain distribution is obtained by substi· 
tuting eq (B.l) into eq (4), giving 

r[ v'3 (3+~) T j II! 
= v'3 k - . til 

'Y b [(a) :l+ I / IIJ . 2rrb3 1- -
b 

Then the angle of twist is 

v'3kl v'3(3+~)T jill 
(}=~=-b- [ (a) 3+ 1/1IIJ t". (B.2) 

2rrb3 1- -
b 

For a thin-walled circular tube let the mean radius 
be rill and the wall thickness be h so 

h h 
b = 1'11/ + 2" and a = 1'11/ - 2"' 

Then the stress distribution , eq (B.l), becomes 

(3+ l ) T 
m (1')1 /"', 

T= [( h ) 3+1 /1Il ( h )3+ I/IIIJ r;;, 
2mrll 1 +- - 1--

2rm 2rm 
(B.3) 

Since f- «:' 1, the quantity in brackets in the denomi· 

rm ( 1) h 
nator r educes to approximately 2 3 + ~ 2r

m
' Thus, 

the stress distribution may be written as 

T (r )1/111. 
T = 2rr/1llh -;::. (B.4) 

:; The e ffect of the elasti c component is di scussed in sec tion 4.4a(3). 

This is identical with eq (8) which was derived with the 
generalized Bredt equation. Note also that the shear 
stress at the mean radius, from eq (B.4), is 

T T 
Til! = 2rr/1nh = 2Ah 

which is the value of the uniform shear stress accord­
ing to Bredt's first equation. 

Appendix C. Details of Torsion Creep Tests 

C.l. Equipment 

An overall view of the torsion creep testing equip­
ment is shown in figure 15. Close-up views of the left 
and right ends of the se tup are given in figures 16 and 
17, respectively. 

The ends of the specimen (A, figs. 15 and 16) are 
reinforced with close-fi tting plugs to a depth of three 
inches. The specimen is mounted such that it passes 
through the test furnace (B, figs. 15, 16 and 17). The 
plugged left end of the specimen is rigidly bolted to 
a welded lug on a building column. The right end of the 
specimen is fastened , by means of a keyed shaft 
passing through the end plug, to a large sprocket 
wheel (C, figs. 15, 16 and 17). The shaft is supported 
by three journal bearings used at only a small fraction 
of their load capacity. The horizontal positions of the 
bearings are adjustable, both longitudinally and lat­
erally, to permit proper alinement of the shaft with 
the fixed end mounting. The sprocket wheel, which 
has a pitch diameter of 38.2 in, applies torque to the 

FIGURE 15. Overall view of torsion creep testing setl1p. 
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FIGURE 16. Torsion creep testing setup. 
Vi t' w from len ~ide. 

les t specime n by means of a weight pan (D, fig. 17) 
suspe nded from the sprocket chain. 

The test furnace is fabri cated of transite , with 
steel reinforcement at the edges. The side of the 
furnace which faces the wall in figure 15 is hinged. 
Figure 18 is a view of the furnace, in a different 
location , with the hinged side opened to reveal the 
interior. Heat is suppli ed by 32 tubular infrared 
lamps rated at 120 V and 500 W. The lamps are wired 
in parallel pairs, the voltage to each pair being ad­
justable by one of a bank of variable autotransformers 
(E, fig. 15). Power is regulated by three time-propor­
tioning, potentiometer-type temperature controllers 
(F, fig. 15), each controlling the temperature over 
approximately one-third of the furnace. Nine chromel­
alumel thermocouples were spot welded to the oute r 
surface of each torsion specimen, at various locations 
within the three-foot gage length. Three of these 
thermocouples served as the sensors for the tempera­
ture controllers and their outputs were continuously 
recorded. Outputs of the other six thermocouples 
were monitored with a calibrated millivolt potentiom­
eter (G, fig. 15), which was also used to periodically 
check the calibration of the temperature recorders. 

Thermocouples cannot normally be spot welded 
to the structural aluminum alloys with portable, 
laboratory-type spot welding apparatus. However, 
the usual alternative mounting technique, clamping, 
was co ns idered to be particularly undesirable for 
this type of specime n since the clamps would have to 
be large as well as numerous and, therefore, dele­
terious to the attainment of a uniform tern perature 
di stribution. He nce, a new technique was devised 
for spot welding thermocouple beads to 2024-T3 

FIGURE 17. Torsion creep testing setup. 
View from right s ide. 

aluminum alloy, which turned out to be completely 
s uccessful. The technique , in brief, consists of spo t 
welding a small piece of 0.004-in gold foil, about 1 
mm square, to the aluminum and then spot welding 
the thermocouple bead to the foil. 

Twist was measured with a troptometer 6 developed 
specifically for this investigation. Steel sprockets 
(H, fig. 18) having a pitch diameter of 5_73 in were 
concentri call y attached to the specim en at each end 
of the three-foot gage le ngth. Sproc ket chains (I, 
figs. 16 and 18) passed over these sprockets and out 
of the furnace through small holes and thence over a 
pair of small sprockets (1, figs. 16 and 17) having a 
pitch diameter of 0.81 in. Each small sprocket is 
mounted on the shaft of a precision , one-turn, resist­
ance potentiometer rated at 10,000 n ± 1 percent 
with a linearity tolerance of ± 0.50 percent. The ends 
of the chains are weighted (K, figs. 16 and 17) to keep 
them taut. 

Torsion of the specimen causes rotation of the 
5.73-in sprockets mounted on it. This rotation is 
transferred, by means of the sprocket c hains, to the 
resistance potentiometers, and magnified by the 
sprocket ratio. The diffe re nce in rotation of the two 
5.73-in sprockets, measured as the difference in resist­
ance between the two potentiometers, is the angle 
of rotation of the specimen over the three-foot gage 
6 tr()p.tom'1!,ler, n . An in s trument for measu ring the angular distortion of a bar o r piece 
undergoing a torsion les t (Webster). From the Greek lropos, turn and metTon, measure . 
This word is clearly preferable 10 any of the existi ng words used for this purpose in the 
current literature. 
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FIGURE 18. 

E 

Torsion creep testing setup in a different location with 
furnace door open. 

FIGURE 19. Troptometer bridge circuit. 
E. Dry cell , Ph V. 
M. Null indicator, Honeywell 104 WIG. 

Ro_ Decade res istance box, 0 to 11 ,110 fl . 
Rr_ Precision fixed resis tor, 5.000 n. 
RL• Left potentiometer, 0 to 10,000 0.. 
RR_ Right potentiomete r, 0 to 10,000 n. 

length. A bridge circuit, figure 19, is used to measure 
the difference in resistance between the left and right 
potentiometers. The decade resistance box (L, fig. 
16 and Ro, fig. 19) is periodically adjusted to give a 
null indication on the meter (M, figs. 16 and 19) and 
the box setting is then equal to the desired resistance 
difference. The sensitivity of the null indicator is 
equivalent to a fraction of an ohm and resistance 
measurements were made to the nearest ohm. With 
the sprocket ratios and potentiometers used, one ohm 

corresponds to an angle of twist of 2.42 X 10- 6 radians 
per inch. 

Since an exact solution is available for elastic torsion 
of circular tubes, a torsion test of a circular tube 
specimen was carried out at room temperature , within 
the elastic range, to verify the loading and twist 
measuring systems. The shear modulus derived from 
this test was 3.98 X 106 lb/in 2 which agrees with the 
nominal value of 4.0 X 106 lb/in 2 for 2024·T3 aluminum 
alloy. 

C.2. Procedure 

Twelve torsion creep tests were carried out at 400 
of, three on each of the four tube shapes shown in 
figure 1. 

Alinement of each specimen was visually achieved 
by adjusting the positions of the bearings which support 
the torque shaft. (This procedure was verified with 
one 0.083·in wall square tube specimen using resist· 
ance strain gages. Thirteen gages were cemented 
onto the outer surface of the specimen, at various 
locations, in the longitudinal direction. Torques were 
applied, within the elastic range, at room temperature. 
The strain measurements did not reveal the presence 
of any significant bending or axial force in the speci· 
men;) The weight pan was supported on a platform 
such that the sprocket chain was unloaded , and 
weights of the desired amount were stacked upon it. 
Specimens were heated to the test temperature, 400 
of, in approximately 1 hr, and were kept at this tern· 
perature for another hour to permit temperatures to 
equalize prior to the start of the creep test. The test 
was started by smoothly raising the weight pan from 
its platform with a turnbuckle (N, fig. 17) and then 
removing the platform. 

Twist and temperature measurements were made 
at closely spaced intervals following the start of a 
test and less frequently thereafter. Twist readings 
were found to be repeatable within 1 fl on the decade 
box (which is equivalent to an angle of twist of less 
than 3 X 10- 6 radians per inch) and te mperatures were 
constant within 1 of throughout the tests and uniform 
within 3 of. 

'Tests were terminated after approximately SO hr. 

Appendix D. Anisotropic Torsion Creep Theory 
for Noncircular Tubes 

Effects of anisotropy in plastic deformation are 
commonly included by using a modified express ion for 
the octahedral shear stress , such as 

T=~ [~l(aX - CTy)2 + ~2(CTy - CTz )2 + ~3(aZ - a x )2 + 6~4T~y 

where x,'y, and z are Cartesian coordinates which 
denote the principal axes of orthotropy and ~i are con· 
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stants. Coordinate x is parallel to the longitudinal axis 
of the tube. In this form T does not have physical sig· 
nificance as the shear stress on the octahedral plane 
unless all the ~i are unity; it is simply a measure of the 
propensity for plastic flow (in this case creep). The 
octahedral shear creep strain is , as usual, 

(D.2) 

Using eqs (D.l) and (D.2) it may be seen that in uniaxial 
tension with IIx = II and Ex = E, and assuming Poisson's 
ratio is one· half, 

r= ~ II and y= Y2E. (D.3) 
3 

Similarly, for pure shear with T xy = T and Yxy = Y 

T = ~2i4 T and y= ~~ I' (D.4) 

Solving eqs (D.3) and (D.4) simultaneously and substi­
tuting eqs (1) and (3) therein gives 

where 

y = V3k (Y3ZT) 11/( " 

2 Ah 

Z ~. h . 
= \j~ IS t e anIsotropy parameter. 

Performing a contour integration to evaluate I'm and 
substituting into eq (2) gives, for a tube of uniform wall 
thickness 

()= V3 ~ k (V3 ZT)m(". 
2 A 2 Ah 

When Z = 1, this agrees with the isotropic twist equa­
tion, eq (7), and when Z = 1.15 it agrees with the 
anisotropic version , eq (10). 

(paper 71 C3-256) 
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