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This paper presents a method of solving for Fourier coefficients where the dependent variable
can be expressed as a piecewise continuous function, when various conditions of continuity and
smoothing are assumed. An example is included to show the effect of smoothing in the region of a
discontinuity for a system composed of two materials that exhibit a discontinuity at their interface
and surrounded by a third material which does not have a discontinuity. An advantage to be gained
from smoothing is an increase in the convergence of a finite Fourier series representation of a piece-
wise continuous function in the region of the discontinuities.
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1. Introduction

Many time-independent problems of a practical nature involve the solution to the partial
differential equation
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in rectangular coordinates, or
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in cylindrical coordinates. From the general solution, one particular solution is in the form
. nmz
v=B+Cz+EA,, sin ——, (2)
n @

where the Fourier coefficients, A, =A,(x, y) for rectangular coordinates, or 4,,=A,(r, ¢) for cylin-
drical coordinates, are determined from boundary conditions in the region 0 <z < w, and fixed
coordinate positions for x and y, or r and ¢, with the condition that other necessary solutions of
(1) disappear on this boundary. Also, B+ Cz must satisfy v at the end points, z=0 and z= w.

From an experimental point of view, the dependent variable, v, can be approximated from
measured values at several z positions on the boundary by a relationship, v=g(z). The Fourier
coefficients are usually simply determined if the function g(z) and its derivatives are continuous
over the region 0 <z < w. For various applications, the variable v must be expressed as piecewise
continuous functions in this region, with apparent discontinuities at discrete points. If it is known
that the discontinuities do not exist, then an appropriate smoothing function can be employed.

The purpose of this paper is to solve for Fourier coefficients, when it is assumed that the
dependent variable v can be expressed by polynomials representing discrete portions of the region
0 <z< w, and that conditions of continuity and smoothing exist. An application of functions
developed to a hypothetical problem is also presented.
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2. Analysis

On a fixed surface lying in the region 0 <z < w, the dependent variable v is defined

v=gi(z); zi-1<z<z,
where i=1, 2, 3, . . . m, z0=0, and zmn=w. The functions g;(z) and their derivatives may
have dlscontmumes at the points z;, i=1,2, . . . m—1. Substituting in (2), multiplying through

by sin kmz/w, and integrating between the spec1ﬁed limits gives the following equations

fi [gi(z) —B—Cz] sin@dz:EAnfi sinﬂsmk—mdz
?j w ® w

i—1 n ®i-1
Adding the above equations

kmz
EA,,f sstm—‘—dz— f (B4 Cz) sin —dz-i—E gi(z) sdez,
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from which

=——{Cw( 1)"—B[1— (—1)"]} += 2 e sin =2 dz.
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Repeated integration by parts yields
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where superscripts ’, '', '"’, represent the first, second, third, etc., derivative with respect to z.
Letting
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then

Ay =2 {g(0)— B+(— 1[Cer+ B — gm(w)| — H+(— 1K} + 2 '"2'1 G
= i - - —8&mlw)|— - - ie
n T g:() - ® 8 w

i=1

For the condition that B=g,(0) and Cw + B = gu(w), the Fourier coefhicients are

A== {(—K-H}+2 'S 6. 3)

i=1

Assume for the region, 0 <z < w, that v as a function of z behaves as shown in figure 1, where
&1, &, &3, and g4 are known functions of v, (perhaps as determined from experiment) and f1, /2, and
f3 encompass regions of uncertainty or regions which cannot be defined by experiment. If it is
known that there are no discontinuities within the regions of the uncertainties, it is possible to
smooth or bridge between the known functions with a cubic polynomial which gives continuity to
two adjacent g functions and their first derivatives. Examining the first region that includes an
uncertainty, the cubic polynomial, fl (z2) =M+ Mz+ Msz*>+ M3z° is solved for the coefficients, M,
such that gi(z))=fi(z1), gi(z1)=/f1(21), ga(z2) =fi(z2) and gi(z2) =[] (z2), from which the necessary co-
efficients are

M, — 3[g2(z2) — g1(z1)]z — €[(3Z + €)gi(z1) + (37— €)g(22)]
i 4e3

B €[gi(z1) + &2(22)) +g1(21) — galz2)
= M= 43 2

where z=2z, + €=2z,— € is the midpoint between z; and z,. Assuming bridging between g; and g»,
then

G]=F|+F2 (4)

v ‘ o
F1=—1 )4 Hgé”(zz) —g—:l(zg) + .. } sin n::zz—{g{”(zl) _&i&) + .. } sin _nﬂ'z,]
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w w w
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FIGURE 1. Variation of v with respect to z showing the ¢
defined functions gi. g2, g3, and g, connected by functions v 3() 9a2)
f1. fo. and f5 through regions of uncertainty. f(2) 9x(2)
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Making the substitutions zi=z—¢€, z2=z+t¢€, f|'(z) =2M>+ 6M;z, and f|''(z) =6M; in F,, yields
U (n—m-> sin L
® )

()

F,= [gifm) “gé(lz)]

n7T€ nmwz
co S—

—[gl(zl)—gz(22)+€{g§(zl)+gé(22)}] (4b)

niw
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where

v =BL_1-L 5

3 TR
3
T(B) =% (sin B=B cos B)
_ 1 B Bt _ )
_3<3-1z 5.3 751 )

Plots of U(B) and T'(B) are given in figure 2.

For the interval z; <z < z,, (4b) is the bridging or smoothing function that gives continuity
to gi(z) and gs(z) and their first derivatives at z; and z», respectively. This function also eliminates
computation of the cubic polynomial f1(z), where the values of M, and M3 sometimes give inordi-
nately large values with subsequent loss of significance. The same analysis can be applied to the
regions encompassed by f2(z) and f3(z) so that G, and G3 can be found.

3. Specific Cases
Where successive differentiation terminates, the functions gi(z) may be represented by poly-
nomials. There are many variations of gi(z) possible, but probably the best example is to examine
a set of straight lines as given in the following specific cases.

3.1. Functions as Straight Lines

The functions gi(z) are represented by a set of straight lines. Here gi'(z)=H =K=0, so that
(3) becomes

3¢
4=23 6. (5)

96



T T 1 T 1 1 [
% \ ]
\\\
| R
8} N\ —
61 RN 7
\ \\
T(8) | \ \ T(8)
uB) 4l A\ _
FIGURE 2. Variation of U(B) and T(B) with 3. \ U(M\ \\
2k D 2
‘ \
\ -
\ N
\ S
OT» B 7 |
e |
\ 4 |
..2!7 o
L1 L | | 1 | |
0 I 3 4 5 6 7 8 9 10

FIGURE 2. Variation of U(B) and T(B) with B.
If a set of straight lines which do not intersect at critical positions z;, as shown in figure 3 are

assumed, then

o\, , , . nmz oo nwz;
Gi= (') [gi(zi) — gi+1(zi)] sin — = [gilz) — g (z)]cos Tt (6)
ni w nir w

where the functions and derivatives are evaluated at z;. For the cases where the lines do intersect
at zj, i.e., gi=gis1, the second term on the right side of (6) is zero.

3.2. Straight Line Functions Smoothed Near Intersections

The convergence of (6) when substituted in (5) and (2) is not very satisfactory, and it is possible
to increase the convergence by joining the straight lines with smoothing curves that give continuity
to the lines and their first derivatives at points z;—7y; and z;+€;, as shown in figure 4.

Proceeding as in the derivation of (4), where F; =0, yields

T(n\;) cos a;

e

Gi=[(ei —vi) (i +1(zi) — &i(2i) + 2(gi+1(zi) — 8i(zi))]

U(n\;) sin «;

()

—{&l1(z) — gilz:)} (0

where

nar
=g (2zit+€i—yi)

T
NS %% (€i+yi).

As €,=7y;—>0, (7) becomes (6). There are many possible specific cases for (7), i.e., € =0,
vi=0, €, =7y, etc. Essentially, smoothing increases convergence by introducing the factors T(8)
and U(B), B=n\;, to the terms on the right side of (6). The plots T'(8) and U(p) (fig. 2) indicate that

the advantage of the increase in convergence is not realized until 8> 0.
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FIGURE 3. V{lr?(ltior'l of v as a set of straight lines with FIGURE 4. Variation of v as a set of straight lines with
Sfunction discontinuities at z, and z». smoothing in the regions of 7, and z».

3.3. Example of Smoothing

Figure 5 is used as an example of the variation of the dependent variable v with the dimension
z in order to show the need for smoothing in the region of a discontinuity. For a hypothetical
process, consider the potential on the surface of a system of two materials which is surrounded
by a third material (not a perfect insulator), and where, on the surface of the system, the region
0 <z = 0.5 represents the potential in a perfect conductor, the region 0.5 < z < 1.0 represents that
in a material of finite conductivity, and the discontinuity represents the contact resistance between
the two materials. Usually, experimental processes allow measurement of potential in the two
regions, but measurements at or near the discontinuity are not always possible or desirable. As-
suming homogeneous isotropic materials, measurements taken in the two separate regions give
linear relations which, when extrapolated to the point of contact (z=0.5), do not meet in a common
point and give an apparent discontinuity. When it is known that the process must be continuous,
i.e., the surrounding material is continuous at z= 0.5, then a smoothing function may be applied.

Numerical values for substitution in (7) are z;=0.5, g1=1.0, g;=0, g2=0.95, g,=1.9, and
€=vy, where a=nm/2, A=me. Substitution in (7), (5) and (2) gives

o v JT@2nA\) sin 27nz | 3.8U[(2n— DA] sin (2n— 1)772.’}.
T=i=z 2 (=1 { 20nm M (2n — 1)%72

n

8)

Figure 6 is a plot of v in the region of the discontinuity shown in figure 5 for the summation of 200
terms of the above series and values of €e=0.0, 0.002, 0.003, and 0.004, and their respective smooth-
ing curves. Figure 6 shows the influence of the increased convergence of the series toward its

1.0
.95
FIGURE 5. Variation of v with z for the problem of
section 3.3.
v
0
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98



/I/ €=0
1.00 C  £-0002 2
__£20003
| £-0004

£E)

98

FIGURE 6. Numerical values of v from (8) in the region
of the discontinuity of figure 5 for a summation of 200
terms and values of € =0, 0.002, 0.003 and 0.004.
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intended values with increase in the value of €. For this case, fairly good convergence of the series
is attained for n > 1/2e. For the summation of 300 terms, the fluctuations shown on figure 6 are
virtually eliminated, except for e=0.

4. Discussion

The exagple of section 3.3 as shown in figure 5 was chosen because it illustrates an extreme
condition that a physical process may undergo: that is, the dependent variable has a zero slope
up to the discontinuity at the point z=0.5. It is then to be expected that actual physical processes
where apparent discontinuities occur would give better convergence when smoothing conditions
are employed.

Generally, the Fourier sine series (2) can be used to represent a piecewise continuous function
over an interval, 0 <z < w, by the use of (3). Numerical evaluation will, of course, present prob-
lems of convergence in the regions where discontinuities occur (as shown in fig. 6, e=0). The
lack of sufficient convergence in (2) can cause serious problems when (2) is used in the solution
of (1). It is therefore expedient to employ the bridging or smoothing relationship (4) (or (7) for
the special case of a set of straight lines) for which adequate convergence can be assured for a
reasonable number of terms in the series of (2).

A fairly simple heat transfer system that may be analyzed employing the method presented
in this paper is shown in figure 7a by a cross section through a composite cylinder. The inner
cylinder (regions 1 and 2) 0 < r =< a is composed of two materials of different thermal conductivities,
usually with values greater than that for the material of the outer cylinder (region 3). For the
determination of thermal conductivity, region 1 may comprise a material of known thermal con-
ductivity and region 2 a material of thermal conductivity to be determined. It is necessary to
determine the heat transfer characteristics in the material of region 3 in order to evaluate the radial
heat loss or gain of the inner cylinder, 0 <r <a.

The temperature distribution at r=a will vary according to the thermal conductivities of the
materials of regions 1 and 2, and the distribution may have an infinite number of variations. One
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FIGURE 7. Heat transfer system.
(a) Cross-section through composite cylinder.
(h) A possible variation in temperature potential. v at r=a and r=b.

such distribution for r=a with a thermal contact resistance at z= 0.5 is shown in figure 7b, where
the intended heat flow is in the positive z-direction with a unit temperature potential at z=0 and a
zero value at z=1. On r=>5 the temperature is assumed to decrease linearly in the above limits.
considering region 3 only, a solution of (1)(assuming no ¢ dependence) is

AwFo(nmrr, nmwb) sin nmz

1}:1—Z+2 (())

Fo(nma, nwb)

where Fo(x, y)=Iyx)Koy) — Ii(y)Ko(x) and I, and K, are modified Bessel functions of zero order and
first and second kind, respectively. The substitution of r=a in (9) gives a form similar to (2), for
which a solution for 4, can be found from (7), the temperature distribution shown in figure 7b and
a reasonable value of € that insures convergence of the resulting series.

Two of the objectives of the NBS Heat Transfer Laboratory are to develop and analyze methods
for the determination of thermal conductivity of materials which vary widely in thermal properties
and to make measurements of thermal conductivity for government agencies. For both analysis
and experiment, the smoothing or bridging relationships described are applicable.

(Paper 71C2-248)
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