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The correlation radiometer is analyzed to determine the sensitivity that can be obtained under
various operating conditions.

The radiometer using a sine wave comparison signal is analyzed and compared with the usual
radiometer that employs a random noise for the comparison signal. It is found that the radiometer
employing the sine wave comparison signal is the more sensitive of the two circuits, particularly in
the case that the effective temperature of the input noise signal is greater than the effective input
temperature of the amplifiers.

It is shown that if nonidentical amplifiers are used in the correlation circuit, the properties of the
radiometer are determined by the portion of the amplifier response functions in the frequency interval
that the two response functions overlap. The effect of amplifier gain fluctuations are considered, and
although the correlation scheme reduces the effect of gain fluctuations, it is shown that they still do
contribute to the output fluctuations of the radiometer.

Calculations are included showing that the effect of a differential phase shift between the two chan-
nels is a reduction in radiometer sensitivity. The same conclusion is reached concerning the effect of a
differential time delay.

Finally. it is shown that if the comparison signal and the input signal have the same statistical
properties, the requirements on the multiplier are less stringent than if the two signals have different
statistical properties.

Key Words: Correlation radiometer, differential time delay, gain fluctuations, imperfect multi-
plier, noise comparison, nonidentical amplifiers, sine-wave comparison signal.

1. Introduction

The use of correlation techniques in radiometry has been suggested recently by several workers
[Strum, 1958; Blum, 1959; Colvin, 1961; Allred, 1962]. One of the major reasons for this interest
is that by using correlation techniques, it is possible to build a radiometer in which amplifier gain
fluctuations contribute less to the fluctuations present in the output of the instrument than they do
in the conventional radiometer; thus, the correlation radiometer might be expected to be superior
to the conventional radiometer under conditions in which gain fluctuations are important. Strum
[1958] has pointed out that as the noise level in a conventional radiometer system is reduced, the
fluctuations due to changes in amplifier gain become more serious; therefore, at cryogenic tempera-
tures it is very important to reduce this contribution to the total radiometer fluctuation. Thus,
it was felt to be desirable to calculate the sensitivity obtainable from instruments of this type.

The analysis was carried out on the correlation receiver shown in figure 1. Although several
different types of correlation receivers have been suggested in the literature, the operation of all
of them is quite similar to the one chosen here. Therefore, the results obtained here should be
applicable with appropriate modifications to many of the correlation radiometer circuits in the
literature.

The first problem to be considered (see sec. 2) is the calculation of the sensitivity of a radiom-
eter with amplifiers whose gain and passband are identical but with different effective tempera-
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tures at the input circuit. These calculations are carried out for two types of input signals:
(1) both input signals consist of white noise and, (2) one input signal is white noise and the other
is sinusoidal. The first case was selected because it corresponds to the problem considered by
Colvin [1961], and the second was chosen because it was the problem considered by Allred [1962].
Throughout this calculation, all filters are assumed to have a square passband. This assumption
is made because it allows the results of the calculation to be written rather explicitly and thus it
is easy to see the physical significance of the results. When it is desired to apply these results
to a real radiometer with filters that are not square, it is only necessary to use the formalism of
Colvin [1959] that expresses the effective bandwidth of a filter in terms of a convolution integral.
Thus, this generalization can be carried out rather simply.

Section 3 is an analysis of the correlation radiometer in which it is assumed that the two ampli-
fiers have different gains and different response curves.

Section 4 deals with the same circuit, but here the effect of variation in phase and in time delay
of the signals in the two amplifiers is considered.

Finally, section 5 deals with some effects produced by an imperfect multiplier.

2. Sensitivity of an Ideal Correlation Radiometer

The circuit to be analyzed is shown in figure 1. Two noise sources, designated X and Y, are
connected to opposite arms of a matched hybrid junction. The signals from the other pair of arms
are applied to amplifiers whose transfer functions are Ri(w) and Rxw) respectively. The outputs
of the amplifiers are multiplied together and the product is filtered with a smoothing filter (low
pass filter). The output of the smoothing filter is displayed on a d-c instrument.

As the following analysis will show, the average value of the deflection of the output instru-
ment is proportional to the difference in noise temperature of the two sources, X and Y. Thus,
when the two noise sources have the same effective temperature, the average value of the output
deflection is zero and the radiometer is said to be balanced. The instantaneous deflection is a
stochastic function of the time; thus the random fluctuations of the output deflection produce an
uncertainty in the experimental conditions that correspond to a balance.

The sensitivity of a radiometer is usually defined as the change in temperature of one of the
noise sources that will produce a deflection whose magnitude is equal to the root mean square of
the output fluctuation. Therefore, in order to calculate the sensitivity of a radiometer it is neces-
sary to obtain expressions for both the rms value of the output fluctuation and the change in aver-
age deflection per degree change in effective temperature of one of the noise sources.

In this section the assumption will be made that the two amplifiers have the same power trans-
fer function, and for simplicity, a “‘square passband” will be assumed.

If x(¢) is the signal voltage due to source X that leaves each amplifier, and y(¢) is the signal
voltage due to source Y that leaves amplifier 1, the signal voltage — y(¢) due to source Y must leave
amplifier 2. It will be further assumed that the amplifiers introduce noise voltages z; and z»
respectively.

Since the random functions x(t), ¥(t), z1(¢), and z»(t) represent noise from physically separate
noise generators, it will be assumed that they are mutually independent. It is also assumed that
each is a second order, stationary Gaussian process possessing a continuous spectral density
function. These assumptions imply that the processes are ergodic so that:time averages and
ensemble averages coincide. It is also assumed that each of these functions has zero mean.
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If the output of amplifier 1 is designated by v, and the output of amplifier 2 by v, then
n=x+y+z (1)
and
ve=x— Yyt 2. (la)
The multiplier will be assumed to have a response law such that
U= avivs (2)
where u is the voltage output and a is a constant of proportionality.
For any random quantity ¢, let ¢ be the expectation or ensemble average of £&. (This is the
equivalent of the notation E(§) used in the literature of mathematical statistics.) Using the inde-

pendence and normality of the random processes and the fact that each process has zero mean,
the autocorrelation function of u is

Y1) = u(t)u(t + 7)=a® vi(t)va(t )it + T)ve(t + 7)

=a? [x*(t) — yA(t) + z:(¢) (x(t) — y(£)) +22(t) (2(t) + A 2)) + z1(t)zo(t) ][22t +7) — V2t +7)+. . . .].

Pul) = a@*[ Yol 7) + Pyl 7) — 2000, 0) + 4z (7) (Pl 7) + i 7))+ Yo (T) Wl 7) £ P 7)) + Yz (D)2 (7)]. (3)

If &.i=1, 2, 3, 4 are Gaussian variables, each with zero mean and

&&i=oy

then

1628381 = 012034+ 013024 1 T 140723. (4)

Setting & =& =x(t) and & = &= x(t + 7), there results

Yool 1) = 222t + 1) =24%(7) + $3(0). (5)

When (4) is applied to (3), the result is
a P 7) = 2[Y3(1) + (D ] + [Yud0) — W (0) > + e, (7) [l 7) + (7) ]
F o7 [l 7) + Wiy (1) ]+ Pz (TPr(7). (6)
The Fourier transform of the autocorrelation function of a process is the spectral density
of the process. Further, the Fourier transform of a product of functions is the convolution of the
Fourier transforms. Thus, designating the spectral density by Q, and the convolution operation
by *,

a”*Qu( )= [Y2(0) = Yy (0) ]*8(/) + 2[Q* Q)+ Qy * Qu( )]

+[Qz, + Q2] * [Qz+ Qy](N) + Q2 * Q). (7)
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Case I. Consider both X and Y to be white noise generators at temperature T’y and T, respec-
tively. When the spectral densities are evaluated, it is necessary to consider the power division
that takes place at the hybrid junction. These spectral densities are (see appendix)

1

Q0% Qp= 3 (kT2)B, (8)
Q. * Q- z}i KT, T. B, (8a)
0u % Qs ~ % kT, T..B. (8b)

Thus, using Q' to designate the portion of the spectral density that contributes to fluctuations,
this portion of (7) becomes

. a*k*B . 5 N
Qi=— T3+ T3+ TolTo+ To) + TyTe, + Ty + 2T, T, ). 9)

With the assumption that the two amplifiers have the same effective noise temperature, this
becomes

272
0.=2 iB (T2+ T2+ 2T, T,+ 2T, T. + 2T3). 10)

If the smoothing filter has a power response G(f), the output power spectrum from the smoothing
filter is

W(f)=GHQu .. (11

It is well known that integrating a power spectrum over all frequencies results in the mean square
of the output voltage or current; so if the output voltage from the smoothing filter is w(t), and
G(f) represents a square pass filter of width b, then

w(t )P = f ) W(f)df:% ak2GbB[T2+ T2+ 2T2 + AT T, + T,T)] (12)

where G, is the power response of the filter at zero frequency. The fluctuations at balance are

required, so the balance condition is substituted into w?. The balance occurs when T, =T, so
for balance

w? = a2k*GobB(T + T:)2. (13)
Therefore, in terms of an rms voltage
Wrms = (WHY2 = ak(GobB)/XTo+ T>). (14)
Next, we calculate the deflection arising from a certain imbalance of the input signals. From (2)
u=aviv:=alx +y+z) (x —y+z),
= a[x? —y* + z1z2 + z1(x — y) + z2(x + y)]. (15)
Since x(t), y(t), z:(t) and z(t) are all uncorrelated, when (15) is averaged over time, the result is

u=alx®—»?). (16)
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Again applying the theorem that the integral of the power spectrum over all frequencies is the
average square of a function, (16) becomes

w=a| [ @t o,ar].

1
:2%12 [T:—T,]. o
In order to examine the effect of a small imbalance, set
T,=T,+AT. (18)
Then
u-f—Au:# [T —(T.+ ATD)].
Since u=0 when 7, =T,
|Aul :%—’i AT. (19)
The resulting signal at the output of the smoothing filter is
Aw|=GY?|Au|=" GikBAT. (20)

2
As is usual in radiometer calculations, the assumption is made that the minimum detectable signal

occurs when the deflection is equal to w,,,. Thus, equating the right-hand sides of (14) and (20),
the condition corresponding to minimum detectable signal results; i.e.,

aK(GobB AT+ T:) =3 G2kBAT. @1)

Thus, the minimum detectable temperature difference is
AT =2(b/B)Y¥ T+ T). (22)

Case II. Let Y produce a sinusoidal signal, so that
2
QuN =7 1B~ fo) +8(/+ o). (23)

The expression for Yiz2—y2 is needed, so it will be calculated first. From the previous calcu-
lation, it is known that

l’l,rz—-yz = lll,n + l!lyz = 2W

Thus, it is necessary to compute Ys,.:

Yy = y2(t)y3(t + 1),

4

:% cos? wot cos? we(t+7), (24)
e
lllyzz% [g cos? wo7'+% sin? wor]- (25)
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Making use of the above and (5), the result is

—b] 4 AP
Yraye =22 + 2(z) +% (g cos? woT +% sin? wor) = A Z— (26)

From this, the power spectral density is

Q.z-z—yzzf ¢Iz—yz€AiMTdT,

= (# =2 5) 801+ 2000 00+ |3 800+ U~ 2+ 15 3+ 200 | @
Therefore

Qu=a*Qv,p,= ‘lz[orzazﬂ +Qzya-y Tt 022(1'+y) + 02122] (28)

Sy {(x_—”—) B+ L (8~ 2o+ B+ 2] + 205 * Q)
+02x*<QI+0y>+022*(ox+Qy>+Qzl*032}- 29)

Since the present calculation is to compute the fluctuations occurring in this radiometer, only
the terms that contribute to the fluctuation need be considered; therefore they will be expressed as

Q.= a*{2(Q+*Q) + (Qz,+ Q2)x(Qz+ Q) + 021*022} B (30)

where Qy(f) denotes the fluctuating portion of Q.

All of the evaluations of the convolutions that occur in (30) can be taken from (8), except
Qy*Q:,; which is,

0s#0-=0:20s= [ QPO
where Q, is given in (23). Thus,

0uQe= [ Qulr) & =1 +1o)+ 80— = foldf

(1)
= [0+ )+ 0~ foll.

Since (., is assumed to be constant through the passband, when f; is in the passband and f'is
small, this convolution becomes

Qy*ozl R (32)
Therefore
1 1l
On=2a? {1 (<Rl 1 (BT AR T ) Ar 1 vk(T,,+T,,)+5 k‘Tlez2B} (33)

158



By analogy with the previous calculation, the spectral density of the output of the filter can be
written as

W) =GN/,

and
T f " W(df= a*Gy(2b) {i (KT2'B+3 RBToATe, + T +1 h(To+ To) + 3 BT T, } (34)

The d-c term of (29) indicates that the system is balanced when k7, B=1%/2. Also, to simplify
the expression, it will be assumed that 7,, = T,. Then, at balance

w? = a*Gobk*B (% erEe T‘::) - )

By analogy with the previous calculation, a root mean square fluctuation amplitude may be de-

fined by

1/2
Wems = ak(GobB)12 <21 T2+ 9T, T.+ T) " (36)

As mentioned previously, in order to arrive at the radiometer sensitivity, two parameters
must be computed. The first is wy e, which is given in (36). The second is the change in deflec-
tion due to a small change in temperature of the thermal source. The deflection sensitivity will
be the same as it was in the previous calculation, so it is

LoakB o,
|Aw|=G}2 —— AT-
2
Again, the minimum change in temperature that is observable will be taken to be a change
that produces a deflection equal to the w,,,.. Therefore

2 1/2
G2 % AT = ak{(GoB)'"? G T2 2T, Tot 7) :

and the final result is

b\Y2 (1 .., D\
AT=2 (E) (5 T24 9T, T, + T;) : (37)

When this result is compared with (22), the sensitivity of a radiometer with both signals as-
sumed to be white noise, it is evident that this instrument has a somewhat higher sensitivity.
This is particularly true in the case that the input signal is the dominant noise in the system and

thus sets the fluctuation level. In this case the improvement in sensitivity approaches V2.

3. Radiometer With Dissimilar Amplifiers

In section 2 the assumption was made that the two amplifiers were identical, except that they
were allowed to have different effective temperatures. Here the more general problem, in which
the two amplifiers may differ with respect to other parameters, will be considered.
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The considerations are limited at first to a case in which the two amplifiers have the same shape
of gain function but with differing gain amplitudes. If H(w) is the complex voltage gain of the
first amplifier, then the complex voltage gain of the second will be taken to have the form

Hyw, t)=[1+ oft) | Hi(w). (38)

where a(t) is a stochastic function.

If x(¢) is the signal resulting from amplifying the signal from the source X (this signal is /(t))
with the first amplifier and x.(¢) is the result of amplifying /(¢) with the second amplifier, then a
straightforward Fourier analysis shows that

x2(t)=[1+ adlt) Jxs(2), (39)
and a similar relationship occurs for the signals y;(t) and y:(¢) that arise from the signal m(t) from

the source Y. This notation is summarized in figure 2.
The most general form of the autocorrelation function of the sum of two random functions is

Yaen=[alt) £ b(t)] [a(t +7) = bt + 7)),

= Yo + Y = a()b(t + 1)+ bt)alt + 7). (40)

From this it follows that

s +y0) (wa-yo) = Yryr, T Wy + Yy, T Uyy, 2212023172

— x1()y1(t + 7)ya(t)xot + 7) + y1(2) x4 (¢ + 7)ot )yt + 7). (41)

From (39) it follows that

Wy, = 21(8)22(8) 24(t + 7)ot + 7).,

=x3t)xAt+7)[1+at)][1 + ot +17)],

=2 (14 o + 2. (42)

By means of a similar line of reasoning, every term in (41) can be put into a form similar to

that in (42). Thus,

(b(-1‘1+yl)(-l'2_y2)zll‘('l'l+y1)(-l'l_yl)(l +llla+2;)9 (43)

[+m+n,
K[R\foﬁyi*ll Smoothing
v

Filter

u FIGURE 2. Radiometer circuit with terminology for sec-
X wvav——m Y D tion 3.

R

g

2 -
( Vo=X27YatZp
[-m+n,

160



again

Wtz = (Wery + Wz, (1 + o+ 200, (44)
and in the same way
Wews—yn = Wiz, + Pzyy )1+ P + 25)- (45)
and
lp2122 = lllz‘z}(l + ‘ba + 257)» (46)

where z! is the signal that would result if the noise signal ns(t) (the equivalent noise generated in
the input of the second amplifier) were amplified by the first amplifier.
When these terms are all collected together, the result is

Yooy = (1 4+ Y+ 200{(xF— )2+ Y3, + 42 + ez, + 2y, + Yere, T Uzyy, + ‘!/z,lz,} : 47)

Notice that in this case the second and third terms of (41) are cancelled by the sixth term.

In order to simplify the analysis, we will consider two cases: (1) @ a constant, independent of
time, and (2) «(t) a random variable with a=0.

Case I. When «is a constant independent of time, it is elementary to show that

lba:a*}. 48)
a=a«
Thus
ey = (1 @02 {(E = D24 208, U3 b, e H iy, Fl, T L @9)

Therefore, both the d-c and the fluctuation terms are multiplied by (1 +«)2. Since this affects
both the fluctuations and the deflection by the same amount, the sensitivity is not changed.

_ Casell. Assume that a(t) is a random function of time, such that «=0. At balance the term
(x2—y2)=0, so using a prime to denote quantities evaluated at the balance point, the result is

Wty = (U ) {2003, 5 ) e 0y, F 0, 0, U, (50)

1 1
zlyl 2121

From this the spectral density is

Ql,‘,vz =1+ Qq)* {2(Qr,*01, + Oyl*Qy,) +Ozl*(0ar, + Qy,)‘*‘Q:ll *(Of, +Qy,)+02\‘ *Qzl}~ (51)

Notice that (51) is similar to the result that is obtained in the case of identical amplifiers; the only
difference is that the present result is the convolution of the original result with (1+ Q,).
The spectral density of the multiplier output is

Q.= aZerz‘y
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where Q, ., is given by (51). The spectral density at the output of the low pass filter is
W(f)=GNHAus,
=a*G(f)(1+ Q) *{2(Qx, *Qy, + Qy,*Qy)+Q:, *(Qx,+ Qy)+ 04 *(Qz,+0y)+0,, *Qz b

(52)

Following the same line of reasoning that was used from (11) to (14), the root mean square fluctua-
tion on the output can be seen to be

ew [ i

= [f a2G()(1+ Q) {2(Q2,*Qx,+ Qy, *Qy,) + Qz, *(Qz, + Qy,)

oc

1/2
F0L#Qn, 400,20 )| 63

To see the effect of the gain fluctuations, consider that the amplifiers have a square bandpass
of bandwidth B. Then,

Qx,*Qx, =2Q}R1B,
where Ri(w)=H(w) H} (),

is the power gain of the amplifier, and

Qux Qa5 Qu, = f " 20RBO— 1S’ =20:R:Bar. 54)

Thus the term (1+ Qo)*(Qx,*Qx,) can be written as 2Q7R3B(1+ o2). Each term in (53) will produce
the same effect, so the result is

Wems = (1 + a?) 1210,,,(0), (55)

where w;0) is the fluctuation level that occurs when there are no gain fluctuations, i.e., when
a=0.

Since gain fluctuations increase the fluctuation level of the output but have no effect on the
average deflection, it is evident that this effect results in a reduction in radiometer sensitivity by
the factor (1 + o)

While the above expression for the reduction in radiometer sensitivity has been derived only
in the case of white noise and amplifiers with square bandpass, examination of the integral that
leads to (54) shows that the result will be qualitatively similar even in a less idealized case.

The next consideration will be to calculate the sensitivity of a radiometer with differing ampli-
fier gain functions-(transfer functions). In general these amplifiers could have differing center
frequencies, and also the shape of the gain-frequency functions could differ.

The average square output can be expressed as

(D)= f " GN0udS (56)
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where G(f) is the power transfer function of the low pass filter. The input to the filter is given by
u=avive = a(x: +y1+2z1) (X2 — y2 + 22). 2)

By means of the theorem expressed in (4), the autocorrelation function of u can be put into the form

2l!lu xlx’—MV’) + (P +d1yl+dfz)(wr +djy2+‘»l‘2)

+ 21 (8)x2(t +7) 22(8)2x1(t +7) + y1()y2 (¢ +7) yo(t)y1(t+ 1)

— x2(O)x1(t +7) y1(8)y2(t +7) — x1(t)x2(t + 7) ya(t)y1(t + 7). (57)
Recalling that

Q:, =RiQi=HHTQ,,
and similar relationships exist for the other variables, the spectral density of u becomes
2Qu= (1 x2 — ¥1y2)*0(f) H(R1 Qi+ RiQm+ Ry Qn )J¥(R2Q1+ R2Qum + R0y
+Re{[(H HYQ)*(HH¥ Q)|+ [(H HE Qu)*x(H H¥ Q)]
—((HHEQ)*(H HsQu)| —[(H HEQ)*(H L HE Q) ]} (58)

The form of the last term arises from the theory of cross-spectra [Goodman, 1957; Korn and Korn,
1961].

The complete expression for the spectral density of the multiplier output is obtained by
evaluating (58). From the resulting expression the fluctuation amplitude of the radiometer can
be obtained by following the same procedure used previously.

Next it is necessary to calculate the average deflection resulting from a particular combination
of input signals. This can be obtained by evaluating (2) of the simple theory in this more general
case.

First, consider

u=avivz=a(x;+y1+z1)(x2 — y2 + z2). (2)

Of the six random variables that appear in the right-hand term of (2), the only correlations
that are not zero are the partial correlations of x; with x» and of y; with y». Therefore this expres-
sion reduces to

u=a(x:x2 = y1y). (59)

Equation (59) must be evaluated in terms of the transfer functions of the two amplifiers,
Hi(f)+ Hs(f), and the spectral densities of the noise outputs of the two noise sources. The Fourier
transform of the random function [ is

S,U‘):f L(¢)e —2¥ftdg. (60)

In the theory of cross-correlations, it is shown that [Korn and Korn, 1961] the time average of
the cross correlation of x; and x» can be expressed as

rasy= [ Re| im s, sg)|ar= Lim L (8,88, +588-dr=1 [t + HetQuf. @)
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where the symbol ( ) is used to indicate a time average. The final form of (61) results from the
fact that S, = H.Si, etc. Also, due to the fact that the random processes are ergodic, the time
average in (61) may be replaced by an ensemble average.

In the same way

1
y1}’2:§f(H1H;<+H2HT)Or)1df © (62)

Therefore,

= ol — il = § [ (OHE + HH?Q— 0. 63)

The above expression leads to the following conclusions: (1) In case the two sources have the
same form of spectral density over the amplifier bandwidth, balance occurs independent of the
amplifier response curves. Thus, for white noise, balance occurs when 7)=T,. (2) In case Q,
and Q) have different forms, balance occurs where

[ s+ Bttt Qur= [ b+ Hot Qi (64)

An expression for Au, the change in u due to a deviation from balance, is required. In the
case where both signals consist of white noise,

1
01 - Qm = Z k( h= Tm) (65)
Next, the assumption is made that
Tw= TI i AT'!
1 1
then, Ql"’Qm:ZA[TI_(TI_AT')J:Z EAT. (66)
In this case
Aﬁzé—lkATf(HlHj+H2HT)df (67)

If the smoothing filter has a response function at zero frequency given by G,, then
Aw= G"’/ZAE=(§ C“,/zkATj (HH ¥+ H.H §)df. (68)

Again the assumption is made that the minimum detectable change in deflection is a change
equal to the rms value of the fluctuations. The minimum detectable value of AT is evaluated by
equating the right-hand side of (68) and the square root of w?. Using the fact that

—1/2 * 1/2
wm = =| [* W],
the result is

a

x 1/¢
[ f ) G(f)o;(f)df] 2:5(;3,/2/{” J (H\H + H.H¥)df. 69)
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When this solved for AT, the result is

2

[[* cneuna]

AT= :
‘é G2k f (HH + HH¥)df

(70)

Equation (70) is the general expression for the sensitivity of a correlation radiometer with
amplifiers with differing complex gain functions. In order to interpret this result and obtain a
feeling for the importance of the various parameters, it is convenient to look at two examples.
First the case of two amplifiers with square gain functions centered on the same frequency fo; the
first amplifier with bandwidth B; and gain RY{ and the second with bandwidth B, and gain R{ will be
considered. To be specific, it will be assumed that B; > B,. It will be assumed that no phase
shifts occur in these amplifiers.

In order to evaluate (70) it is necessary to evaluate the various terms of (58), recalling that the
numerator of (70) contains only fluctuation terms; i.e., any d-c¢ contributions must be ignored. It
is reasonable to evaluate the convolution integrals that occur with the restriction that fis small
enough that Bs is enclosed within B;.  When these evaluations are carried out with the assumptions
that the radiometer is balanced and also that the low pass filter has a square passband of width b,
the result is

[numerator of (70)|= aG!*b"*(BoRORN k(T + T)).
0 172

When this is compared to the similar result from the simple theory, for example (14), it is evident
that the bandwidth that sets the fluctuation level is B, the narrower of the two amplifier bandwidths.
Also, the amplifier gains appear as the product RURY.

The denominator of (70) must also be evaluated under the same conditions. This involves
evaluating the integral

f(H,H;<+//2H;k)(1_/; (1)

where H, and H. are the discontinuous real functions as defined above. When this is carried
out, the result is

[denominator of (70)] =§ GY2 k(ARYRYB,).
These results lead to

1/2
AT=2 (ﬁ) (T,+ T (72)
2

Thus, in this case the same sort of expression is obtained as in the case of the simple theory
except that the bandwidth of the narrowest amplifier sets the sensitivity.

Finally the case of two amplifiers with square bandpass with identical bandwidth but tuned to
slightly different center frequencies will be considered. Again phase shifts will be neglected, the
complex gains will be treated as real positive functions, and the radiometer will be assumed to be
balanced. The resulting sensitivity is

1/2
AT:2<[%> (Ti+Ty) (73)
0,

where B, is the “overlap bandwidth” or the frequency interval common to both amplifiers.
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4. Effect of Variation in Time Delay and Phase in the
Amplifiers of a Correlation Type Radiometer

Here it will be assumed that a differential variation in time delay can occur to the signals in
the two amplifiers. Thus, at any instant the multiplier is comparing voltages corresponding to
two different instants of time. Therefore, the multiplier output can be expressed as

u(t) =v(t)valt +7), (74)

where 7 is the time delay difference in the two signal channels. In order to simplify this analysis,
the assumption will be made that the two radiometer channels are identical except for the dif-
ference in time delay. Thus the voltages that are multiplied together are

vi(t) =x(t) + (1) + z:(2),
v(tt+7)=x(t+7)—y(t+71)+ 20t +7). (75)

Equation (7) shows that the fluctuation level of the radiometer depends only on convolutions
of power spectra. Since these are not a function of 7, the fluctuation level does not vary as a result
of a differential time delay. Therefore, the change in sensitivity will be related to the change in
average deflection caused by the time delay.

The change in average deflection can be obtained from

u(t, 1) =[xt) + ) +z2:()] [xt+7)—y(t+7)+ 220t +7)]

=x(t)x(t +7) — NNt + 7) = Y(T) — P (7). (76)

The Wiener-Khintchine theorem allows this to be put into the form

ult, ) :f(QJ‘_Qy)(’inU.,/{ (77)

In order to be able to evaluate the above integral, it is convenient to consider that both sources
generate white noise and the amplifiers have square bandpass of width B centered on fi. Thus,
in this case,

—f,+Bl2 f+B2
u7r)=(Qr— Q) [f e"‘”df+f e“‘”d_d R
~fo—B/2 fo—B[2
—2B(Q.— Q) cos 2m7/, sin w78 o
e y) COS 2TT]qy 777_73
This can be put in more convenient form by noting that
u(0)=2B(Q,— Q).
Thus
= = . . sin 7B
w(7) = u(0) cos 277/ T (79)
For the usual case in which B < f, and 7 is on the order of 1/f,. this can be approximated by
w(t) = u0) cos 277fo. (80)
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Thus, in the case of white noise sources and square bandpass amplifiers, time delay variations
will not influence the balance point. They will affect sensitivity, however. For maximum sen-
sitivity, it is important to keep the difference in time delay in the two amplifiers small enough
that cos 277/, is approximately unity.

A somewhat related question is the effect of a differential phase change in the two amplifiers.
Again assuming white noise sources and amplifiers that are identical except for the phase shift,
the average deflection can be computed by means of (63). With the assumption that

RZZRlei(by (8])

this equation becomes

E((i)) :g (Ql - Qm)Rl(z CcOSs (1))
This can again be expressed in the form

u(p) = u(0) cos . (82)

5. Some Effects of Using an Imperfect Multiplier

The simplest form of multiplier to multiply two microwave signals together is probably that
shown in figure 3. The input signals (v, and vs) are applied to two opposite arms of a hybrid junc-
tion. The other pair of opposite arms are terminated by square law detectors. The outputs from
these detectors are applied to a difference amplifier. In case the hybrid T'is matched, the detectors
have the same sensitivity and their reflection coefhicient is zero; and, if they are assumed to have
a perfect square law envelope response, the output voltage z will be

o (it w2 v — )2
Z—[1_tz—a< \/§> _a< \/E) 5 (83)

where «a is the coefficient of proportionality in the multiplier law. Thus,

z2=2a0vs. (84)

In an actual multiplier constructed on this principle, the ideal conditions suggested above will
be only approximated. Thus, the output will not be an accurate multiplication of the input signals.
A scattering matrix analysis of the multiplier junction indicates that if the junction is matched and
perfect, the wave arriving at the detectors is equal to that assumed in the ideal case as long as
either pair of leads are terminated in matched loads. Since the detectors (if bolometers) can be
quite accurately matched, this will probably not be the phenomenon that sets the multiplier
accuracy. This accuracy can depend on the accuracy of the “square law” of the detectors,
however.

Vit Vo

V2 FIGURE 3. Microwave multiplier.
Vy -V

1 2 \

NG Differential

Amplifier
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In order to investigate the effect of the detector law on the multiplier accuracy, assume that
both detectors follow the same law. If one detector is more sensitive than the other, the incoming
signal can be attenuated, so that, referred to the input of the attenuator, the two detectors are
assumed to have the same law with the same numerical coefficients. Thus, the voltages from the
detectors can be expressed as power series

L= n
= (v (B22)

=3 ay (”‘\;;2)"- (85b)

Then the multiplier output is

g (22 -(22)]

These terms may be expanded with the binomial theorem; the result is

a.
z=2 [% 1,’2+2sz (2v1v2) +

as
93/2

(3vvs +18) + % (4Bvs + dvyad) + . . ] : 87)

The smoothing filter provides an estimate of the average of the multiplier output; thus it is neces-
sary to compute z. This is,

z = 2axvws) + as(vive +owd) +. . L],

=adx+y+z)x—y+ztaf{x+y+z)x—y+zn)+x+y+tz)x—y+z)3+. . ],
:Z[ag(x—z—ﬁ-k2(1406_4—)/—4)+3a4(?—-y7)(z_f+z§+. . (88)

The result is that if x*—3*=0 at the same conditions that x>—y2=0, the balance condition
is not affected by any term up to the fourth in the crystal law expansion. This would be the case
if both x and y are signals with the same statistical properties; for example, if both are thermal
noise sources, they both possess Gaussian statistics.

However, in the case that the two signals have different statistical properties, (x*— % would
not necessarily equal zero when (x2— % does. Thus, in this case, it is important to select de-
tectors that are accurately square law.

6. Conclusions

The sensitivity of a correlation radiometer has been computed under a variety of conditions.
In section 2 a very simplified calculation is used to derive the usual expression for the sensitivity
of the radiometer. This is followed by a calculation of the sensitivity of a radiometer of the type
suggested by Allred (1962) in which the unknown noise signal is balanced against a sinusoidal
reference signal. By performing these two calculations in an analogous manner, it is particularly
easy to compare the sensitivities that result. In the case that the output fluctuations are pre-
dominately due to the input noise signals, Allred’s radiometer is more sensitive than the conven-
tional circuit that compares two noise signals.
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The first part of section 3 demonstrates that it is not necessary for the two amplifiers to have
the same gain. The calculation shows that the product of the gains is the parameter that deter-
mines the output amplitude, instead of the individual amplifier gains. Next, it is shown that gain
fluctuations produce a decrease in sensitivity. The last part of this section is concerned with the
effect of using two dissimilar amplifiers. A general expression is obtained for the sensitivity of a
radiometer with amplifiers with arbitrary gain functions. This expression is evaluated for the case
of amplifiers with square bandpass and no phase shifts. It is shown that under these conditions,
whether the two amplifiers have the same bandpass and different center frequencies or whether
they have the same center frequency and different bandwidths, the sensitivity is determined by
the “overlap” bandwidth.

Section 4 deals with the effect of a differential time delay or differential phase shift in the two
radiometer channels. It is shown that both of these effects result in a decrease of sensitivity.

Finally in section 5 it is shown that, if the multiplier carries out the multiplication operation
by forming the difference of the squares of the sum and difference of the two input signals, errors
can result if the “square law” elements do not have a perfect square law response and if the two
input voltages have differing statistical distributions. Thus, the radiometer proposed by Allred,
in which the comparison signal is sinusoidal, places a more stringent requirement on the multi-
plier than does the more usual correlation radiometer, in which both input signals are Gaussian
noise.

The author gratefully acknowledges many helpful discussions with D. F. Wait and G. F. Engen.
M. M. Siddiqui’s comments on the manuscript proved to be very helpful.
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8. Appendix — Evaluation of Convolution Integrals

Assume a random signal with white spectral density amplified by an amplifier with square
passband as shown in figure A—1.

If the spectral density of the input signal is Qy as measured, the amplitude of Q. is RQo/2,
where R is the power gain of the amplifier. The division by 2 occurs because the spectral density
is assumed to be split equally between the positive and negative frequency regions. Then,

0:%Qa= f 0ull— Qs )df.

Qy Q
X | _f!
: <ox(f) @ =t
T T - | T ‘1/
Q | ! I ~ | |
e B~ R | ' I I
2 | I
; | L1
L | | L !
f f f!
FIGURE A—1. Square spectral density. FIGURE A-2. Functions (l,ppe"aring in integrand of con-

volution integral

169



The value of this integral for small values of the parameter fis required. The term Q.(f—f') has
the same shape as Q.(f') except that it is displaced an amount f and inverted on the frequency
axis, as shown in figure A—2. Since the integrand is the product of these two functions, the value
of the integral is the product of the amplitudes of these functions times the frequency interval
over which the product is nonzero. Thus,

02+0.=(RE) 28— (A-)

for f < B.
In this paper, the value of this integral is required under the condition that f<B. To this

approximation, the result is

2

Q:%Q,=2B (R %) (A-2)

In general, the convolutions of the other spectral densities appearing in this paper are evalu-
ated in the same way. The reason that the various convolutions of power spectra that are used
have differing numerical coefficients is that the hybrid junction at the input of the radiometer
divides the input powers; however, the noise powers appearing due to the effective input tempera-
tures of the amplifiers do not undergo this power division.

(Paper 71C1-253)
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