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A general method is developed for de termining the inductance and characteristic impedance of 
uniform transmi ss ion lines. A non·uniform current distribution is allowed in the transverse plane. 
The system is represented by a matrix equation which can be programmed for computer solution. The 
correct inductance and impedance are obtained as the res ult of a simple limiting process. The method 
is applied to one parti cular geometry, a four-tape s tripline system . Results are given for the induc
tance, resistance, and c urrent di stribution as functions of frequency and resistivity for a particular 
geometry_ A method for ex te nding the res ults to st rip lines with proportional dimensions is developed. 
An accuracy of one part in 105 was found to be feasib le for th e determ ination of the inductance per 
unit le ngth. 
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1. Introduction 

The determination of the inductance, capacitance, 
or characteristic impedance of coax ial sys tems has 
bee n the subject of nu mero us reports. The syste m 
considered here is the s pecial case of a strip· 
transmission line consisting of four vanishingly thin 
parallel tapes. 

in the transve rse plane . The e ffect of finit e conductor 
losses and freque ncy depende nce can also be included. 
It is not necessary to assume any di s tribution or magni· 
tude for the i nterdependen t variables as this approach 
determin es all necessary information simultaneously. 

The approach used in thi s paper is to determine the 
current distribution in a transverse plan e and therefore 
the transverse magnetic fi eld configuration. Knowing 
the current distribution , the effective inductance per 
unit le ngth is found directly. The characteristic 
impedance of a lossless line can then be determined 
from the inductance. 

Almost all previous authors have used the approach 
of calculating the capacitance per unit length, C, after 
determining the configuration of the transverse electric 
field . The result is then used to calculate the charac· 
teri stic impedance of the lossless line, using the 
relationshi p 

Zo = I /vC (1) 

wh e re v is the velocity of propagalion in the tin e. 
Several appli cations of thi s approach are li sted in the 
references [1 - 4).1 Th e results of Cohn [2] and Bates 
[3] give analytic result s whi c h are useful des ign tools. 

Th e approach used in thi s pape r, while non analytic, 
is quite general and without any geo metri c limitation 

* Microwave C ircuit s Standard s. Radio Sta ndard s En~i n ee ri ng. NBS Laburatories. 
Buulder. Culo. 80302. 

I Figures in brac ket s indica te the literature re ferences 1.11 th e end of thi s IJaI)Cr. 
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2. Consideration of Finite Losses 

If the line has finite losses, the charac teristic im· 
pedance and propagation con s tant, y , can be calculated 
from 

Z = /R+jwL (2a) 
o -V G+ jwC 

y == a +jf3 = Y(R + iwL )(C + jwC) (2b) 

where Rand C are th e se ri es resistance and shunt 
condu ctance per unit length of th e line and a and f3 are 
the attenuation and phase co nstant of the line. For a 
low·loss line, (2a) and (2b) can be closely approximated 
by 

(3a) 

_~+CvL 
a- 2vL 2 (3b) 

(3c) 



where 01. == wL/R and Oe == we/G. Terms involving 
0 2 have been neglected. It is also assumed that 

(Te d R. 
--~ 1 an -~ 1 
WEe ' Y) 

which mus t be satisfied for transmission line theory 
to be valid [5] where (Te and Ee are the conductivity and 
dielectric const ant of the conductor, R. is the skin 
effec t surface res istivity of the conductor, and Y) is the 
intrinsic impedance of the dielectric. 

Both Rand L are functions of frequency and resis
tivity as we ll as geometry for lines with finite loss . 
The inductance is therefore a function of resistance 
so that R must also be calculated to obtain accurate 
values of L. A co mputer method for calculating R 
and L as a function of frequency , resistivity , and 
geo metry is developed in thi s paper. Values of v and 
G are readily ob tained from properties of the dielectri c 
material in the line. These values together with Rand 
L can be used to obtain the attenuation constant from 
(3b). If the contribution of OL and Oe in (3a) can be 
ignored, the characteristic impedance can be obtained 
from the simple relationship 

Zo =vL. 

which is analogous to (1). 

3. D-C Inductance 

Figure 1 shows the cross section of a four-tape strip
line. The conductors marked 1 and 2 are to act as a 
single outer conductor while conductors 3 and 4 act as 
a single inner conductor in a go-and-return circuit. 
For conductors with finite resistance the current will 
be uniformly distributed throughout the outer and 
inner conductors at zero frequency. The total induc
tance of the system, 2, can be calculated from 

report by Hoer and Love [6] gives exac t equations for 
the inductances of rectangular conductors carrying a 
uniform c urre nt. Using these equations to calculate 
the Mij, the exact d-c inductance of any rectangular 
coaxial system can be obtained. 

4. A-C Resistance and Inductance 

When an alternati ng voltage is applied to the sys
tem , the curren t is no longer uniformly distributed 
throughout the cross section of the conductors. The 
inductance as well as resistance then differs from 
the d-c values. 

Consider a short length of a long uniform line, s uch 
as shown in figure 2. Writing V2 in terms of VI gi ves 

Choose Al such that I'YAII ~ I. Then (5) can be 
approximated by 

or 

V-l - V~ 

Al IZoY· 

Substituting (1) and (2) into (5) gives 

(6) 

(7) 

Our object now will be to calculate the total current, 
I , for some arbitrary value of I1V/111 and from this 
result obtain Rand L from (7). With Rand L known, 
the transmission line constants may be obtained 

(4) from (3). 

where Mij is the mutual inductance between tape i and 
j, and Mii is the self inductance of tape i. A recent 

1---,..£----- Wo -------1·1 

FIGURE 1. Cross section of a four-tape stripline. 
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To determine the total current in the stripline, each 
tape is mathematically divided into a number of 
smaller, parallel sections as shown in figure 3. An 
equivalent circuit of the transmission line then looks 

I ---
VI~ V2 

- 1 

FIGURE 2. Short length of a long uniform transmission line. 
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Equivalent circuit for the stripline with the tapes 
divided into small parallel sections. 

c 

like that in figure 4. The width of each section is 
chosen small enough so that the current density may 
be considered uniform throughout that section. The 
appendix contains dc inductance equations which 
can be used to calculate the self, and the mutual 
inductance per unit length of these sections. The 
resistance per unit length of each section will be the 
dc resistance. 

Although the method of subdivision is almost com· 
pletely arbitrary, one system will be explained, which, 
although strange in appearance, will simplify later 
expressions considerably. Each tape is divided into 
2n sections labeled in such a way that the index 
increases as the y axis is approached from any edge 
as shown in figure 3. The widths of the sections need 
not be equal and indeed will not be in later calculations. 
Since the geometry has symmetry about the origin and 
both axes, this symmetry is retained in subdividing the 
tapes. Symmetry produces the following relations 
between the currents in the different sections. For 
the outer tapes, 
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For the inner tapes, 

The total voltage drqp per unit length along the length 
of anyone section may be written, 

8n 

Vk=r"h+jw L Mklh (8) 
1= 1 

For the purposes of this report the d·c resistance per 
unit length, rk, of each section will be used in the form 
of resistivity/area. There are 8n equations which may 
be written in matrix form as 

MI'8)' I (II ) 
. . 
. . (9) 

M~n,81/ 1~11 

As a result of the current symmetry conditions, only 
2n of the equations are independent. The four groups 
k= 1 to 2n, 2n+ 1 to 4n, 4n+ 1 to 6n, and 6n + 1 to 8n 
are all equivalent. 

Choosing the first group, with k = 1 to 2n as the 2n 
independent equations to be solved, rewrite (9) as 

~I)=[ '~) 
V,,, ~'" 

where 

( \ I ( viti, I •.. vlt l ,211 II 
. . 

+jw' . 

.I{;", , .I{,;",,) I" 

3 

vltij= L Mi ,2PI1 +h 
p=o 

i,j=1,2, .. . 2n. 

Equation (10) can now be written in the form 

V= [R + jwvlt]I. 

Since Vk and h from (8) are complex, let 

(10) 

(ll) 

(12) 



In terms of column matrices, 

V=E+jF, I=A-jB. (13) 

Substituting (13) into (11) produces two real matrix 
equations: 

1 + jO. This condition applied to the above results 
produces 

[. + /11 + I =0. 

E=RA +wAtB, 

F=-RB+wAtA. 

(14) The column matrices E and F can now be written in 
terms of known matrices and one scalar unknown each: 

(15) 

Solving for A and B produces 

A = R - 1[(1) + (wAtR - 1)2] - I[E +(w"tt R- I)F] (16) 

B = R - 1[(1) + (w"ttR - 1)2] - I[(wAtR - I)E - F]. (17) 

In these equations for A and B, E and F have not yet 
been determine d. To simplify their determination 
the following matrix definitions are used: 

t/J= R - 1[(1) + (wAtR - 1)2] - 1 

cp=wAtR - I 

, 0",1" +1,. 

. ,-hll) 

(18) 

Since the total current in the outer conductor must 
equal the total current in the inner conductor, we have 

n 2n 

L ak - L ak "" 0 
k=1 k=n +1 

or in matrix notation, using (16) and the definitions 
in (18) 

TA = Tt/J[E + cpF] "" 0 

TB = Tt/J[cpE - F] == O. 

(19) 

(20) 

The scalar voltage drops in the inner sections and outer 
sections obey the following conditions: 

fn + l=fl }l = n+ l,n+2,. 2n 
en + I = el 

Since the value of liv/lil is arbitrary, it is set equal to 
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(21) 

where the superscript T indicates the transposed 
matrix. Substituting (21) into (19) and (20) and solving 
for el and It produces 

and 

/1 = (Tt/Jcp(JT)(Tt/JTT) - (Tl/J(JT)(Tt/JcpTT) 
(Tt/JTT)2 + (Tt/JcpTT)2 

(22) 

(23) 

Every term in parenthesis on the right sides of these 
equations is a calculable scalar. The result obtained 
can be substituted into (16) and (17) and the current 
in each section can be determined. With the currents 
known, the approximate inductance and resistance per 
unit length can be calculated from (7), which in terms 
of the components of the current in each section 
becomes 

(24) 

and 

(25) 

5. Limiting Value of Ln and Rn 

The correct value of inductance and resistance per 
unit length is obtained in the limit as n becomes 
infinite. A good estimate of the correct Land R can 
be obtained from several approximations calculated 
for different values of n. The approximate values of 
Land R are plotted against n as shown in figure 5 and 6. 
The asymptotes to these curves are the values as n 
becomes ihfinite. 
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FIGURE 5. Approximate inductance versus number of subdivisions, 
showing limiting value of inductance for infinite n. 

The curve of L ver s us n can be approximated by an 
equation of the form 

Ln= L 00+ an -.'/' (26) 

where LlI is the approximate inductance obtained from 
(24) for a given n , Loo is the inductance as n becomes 
infinite, and a and .'/' are constants. Equation (26) can 
be solved for Loo if L II is calculated for four diffe re nt 
n' s chosen s uch that 

(27) 

Then from (26) 

(L" - L" )(L" - L" ) 
Loo= L" - " 4 2 .4 (28) 

4 (L" - Ln ) - (Ln - LII ) 
I 2 :\ 4 

A plot of (Ln - Loo) versus n for these 4 values of L" will 
be a straight lin e on log- log paper only if (26) is a 
valid represe ntation of the curve Ln versus n. Thus, 
four points can be used to verify (26) as well as to calcu
late Loo. Once it has been shown that (26) is a valid 
re presentation of the curve, 1...00 can be calculated from 
three values of n chosen such that 

(29) 

The n (26) gives 

(LII - L,,)2 
Loo= LII _ 2 " 

:l (L" - L i ) - (L" - L" ) 
I 2 2 :J 

(30) 

The value of Loo for the curve shown in fi gure 5 was 
calculated from three sets of values of 11. For values of 

237- 6790- 67- 5 
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FIGURE 6. Approximate resistance versus number of subdivision, 
showing limiting value of resistance for infinite n. 

11 equal to 4, 6, and 9, (30) gave a value of Loo=0_201352 
JLH/m. For values of 11 equal to 9 , 12 , and 16, (30) 
gave a value of Loo= 0.201344_ For values of 11 equal 
12, 15, 16, and 20, (28) gave a value of Loo= 0.201343. 
The maximum differe nce is 5 parts in 105_ Th e latter 
value of Loo was used to obtain the curve of (L" - Loo) 
versus 11 s hown in fi gure 7. The time to run th ese 
se ts of n on a large hi gh s peed compute r was 10, 35, 
and 75 seco nds res pectively. 

0 

10. 4 

E 
~ 

o~o ::l 

8 
---' , 

c: 

"" 
---' 

0 

10.5 ~ 
0 

o 

2 n 

FI GU RE 7. Difference between approximate and Limiting value of 
inductance versus number of subdivisions. 



No simple approximation was found for the curve 
of R versus n. 

6 . Subdividing the Tapes 

The exponent, Y, in (26) is an indication of the rate 
of convergence of LII to its limiting value, Loo. Sub
dividing the tapes into segments of equal width gave a 
Y of approximately L The variation of the current 
density across the width of the inner and outer tapes 
is shown in figure 8. This curve suggests that the 
width of the segments of the inner tapes be made 
smaller near the edges where the curve is steepest. 
One such method of subdivision is to let the width, 
Wkn+j of the kn+ j segment be given by, 

Wkll + j 
C 1.'=1,3,5,7. 

(n+2-j)7)' j=l, 2,. . n 
(31) 

where C is determined by setti ng the sum of the widths 
equal to W12 . Thus 

or 

n C W 
j~1 (n+2-j)TI 2 

W C=-----
n 1 

2j~' (n+2-j)TI 

(32) 

The constant, YJ, was chosen such that the rate of 
convergence was near maximum_ With the outer tape 
divided into segments of equal width and the inner 
tape divided into segments having widths calculated 
from (31), an YJ of 3 was sufficient to yield a Y of 
approximately 3. 

7. Typical Results 

If the line has losses, the Rand L will be a function 
of the actual dimensions instead of just the ratios 
l i b, Wlb and Wo/b_ The Rand L of a stripline having 
dimensions b = W = 0.5 cm and l = 0.025 cm, was cal
culated as a function of frequency I, resistivity p, and 
width of outer conductor Woo The thickness, T, of all 
tapes was assumed to be equal and small enough to 
permit calculation of the Mij in (10) using inductance 
equations for zero thickness tapes. 2 Machine storage 
limitations prevented including the variation of current 
density with thickness. This limits the strict applica
tion of these res ults to tapes whose thickness is of the 
order of a skin depth. For the geometry considered 
here the errors introduced e ven at high frequencies 
should be negligible. 

2 See appendix. 
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The variation of inductance per unit length with 
frequency and resistivity is shown in figure 9. The 
reason for using the variable q = ITkl p is that one curve 
of L versus q is sufficient for alII, T , 1.' , and p , provided 
that T meets the require me nts just discussed. The 
scale factor k is a dime nsionless proportionality con
stant for striplines having proportionate dimensions 
and shape_ If all dimensions , except the thickness , 



are multiplied by a scale factor, k, the matrix M in 
(16) and (17) remains unchan ged. The matrix R - I in 
(16) and (17) is a function of k and may be written 

(33) 

where 

Equations (16) a nd (17) can now be written, 

(34) 

(35) 

Since the matrices.;l( and 'Jf/' are independent of j, T, 
k, and p, one curve of L versus the variable q= jTk/p 
will be sufficient for allj, T, k, and p. The same result 
is true for R/Rdc versus q. For the strip line under 
consideration, with T=1O - 4 em, p=2xI0- 6 0 em, 
and k= 1, a q of 5 X 104 hertz/O corresponds to a 
frequency of 103 hertz. 

A curve of R/Rdc for the stripline versus q is shown 
in figure 10. An explanation of the shape of the curve 
can be had from an examination of the current density 
curves such 80S shown in figures 8 and 11. The current 
density in the outer tapes remains uniform up to about 
q = 5. From q = 5 to about q = 5000 the current dis· 
tribution is changing. Above a q of about 5000 the 
current distribution in the outer tapes no longer 
changes. The resistance of the outer tape would 
therefore remain constant up to a q of 5, increase until 
a q of 5000 is reached and then remain constant again. 
The current density in the inner tapes remains uniform 
up to a q of 50. The current then begins to crowd to 
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FIGURE 13. Variation of inductance per unit length with 
width of outer tapes. 

the edges of the inner tapes. The current continues 
to move to the edges as long as the value of q increases, 
never reaching a constant distribution as the current 
in the outer tape does. The curves of the change in 
resistance of the outer and the inner tapes with q would 
look like those shown in figure 12. The sum of these 
two curves gives a curve like that shown in figure 10. 

The variation of inductance per unit length with the 
width of the outer tapes is shown in figure 13 for 
different values of q, for the dimensions given above. 

8. Summary 

The inductance and resistance per unit length of 
strip transmission line are functions of the current 
distribution in the conductors. At frequencies where 
the current distribution throughout the conductors is 
uniform, the inductance and resistance can be calcu
lated exactly. For frequencies where the current 
distribution is not uniform, the conductors are divided 
into sections. From these sections the approximate 
current distribution of the conductors is calculated. 
Approximate values of the inductance and resistance 
per unit length are the n calculated from the approxi
mate c urre nt distrioution. Using high speed com
puters, it is not difficult to divide the conductors into 
sufficiently small sections to calculate the inductance 
t9 an accuracy of one part in 105 or better. The 
accuracy on resistance is considerably less, depending 
on frequency. Other methods of subdividing the 
tapes are be ing considered to improve the convergence 
of R" to its limiting value, Roo. 

The variation of the inductance per unit length with 
frequency, resistivity, and width of the outer conduc
tors is given for a particular geometry. Tables and 
graphs of the inductance and resistance per unit length 
for other geometries are being prepared for future 
publication. 

The technique of calculating Rand L as given in thi s 
paper for a stripline can be applied to other lines having 
more compli cated cross sections provided that the 
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conductors can be divided into sec tions whose d-c 
self and mutual inductances can be calculated. This 
technique is used in a forthcoming paper by Brooke 
and Cruz [7] to calculate the L and hence Zo of a loss
less, rectangular line with a rotating center conductor. 

The authors gratefully acknowledge the assistance 
and helpful criticism of C. M. Allred, and W. E. Little. 

9. Appendix 

The mutual inductance per unit length between two 
long, thin , parallel tapes such as shown in figure 14 
can be obtained from equation 8 of reference [6] and is 

+ O.2[ln 21 + ~], /LH/m (AI) 

where the limits, which have been retained for com
pactness , are substituted as follows: 

4 

ff(x)] (x) == L (-I)i + If(5;). 
52S4 ; = 1 

The ongm coincides with the left edge of one tape . 
If the left edge of the second tape is in any quadrant 
other than the first as shown, one or both of the values 
of E and P will be negative. The self-inductance per 
unit length of a long thin tape is 

In both of these expressions It IS assumed that the 
current density is uniform throughout the conductors. 

r-- d ---1 
--E 

t 
p 

FIGURE 14. Cross sectional view of two long parallel thin tapes. 



ote that the term 

(A3) 

appears in both Mt and L, as the only term involving 
le ngth. Howe ver, if M t a nd L, are substituted into (8), 
,the terms involvin g length will exactly cancel. Substi
tuting (AI) and (A2) into (8) gives 

VI, = 'rdk + jw ~ M /. /1 + jw [0.2(ln 2l + ~) ] ~ II (A4) 
1= 1 2 1= 1 

where the M ("1 are the expressions in (AI) and (A2) 
with th e (A3) te rm e xcluded. But the last term is zero 
because 

8n 

L T1 = 0. 
1=1 

That is, the total c urre nt in the outer conductors is 
equal and opposite to th e total c urren t in the inner 
conduc tors. Th erefore the M" in (8) may be calculaterl 
from (AI ) and (A2) with the (A3) term excluded. 
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