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A general method is developed for determining the inductance and characteristic impedance of

uniform transmission lines.

The system is represented by a matrix equation which can be programmed for computer solution.
correct inductance and impedance are obtained as the result of a simple limiting process.
is applied to one particular geometry, a four-tape stripline system.

A non-uniform current distribution is allowed in the transverse plane.

The
The method

Results are given for the induc-

tance, resistance, and current distribution as functions of frequency and resistivity for a particular

geometry.

A method for extending the results to strip lines with proportional dimensions is developed.

An accuracy of one part in 10° was found to be feasible for the determination of the inductance per

unit length.
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1. Introduction

The determination of the inductance, capacitance,
or characteristic impedance of coaxial systems has
been the subject of numerous reports. The system
considered here is the special case of a strip-
transmission line consisting of four vanishingly thin
parallel tapes.

The approach used in this paper is to determine the
current distribution in a transverse plane and therefore
the transverse magnetic field configuration. Knowing
the current distribution, the effective inductance per
unit length is found directly. The characteristic
impedance of a lossless line can then be determined
from the inductance.

Almost all previous authors have used the approach
of calculating the capacitance per unit length, C, after
determining the configuration of the transverse electric
field. The result is then used to calculate the charac-
teristic impedance of the lossless line, using the
relationship

Zo=1/vC (1)

where v is the velocity of propagation in the line.
Several applications of this approach are listed in the
references [1-4].1 The results of Cohn [2] and Bates
[3] give analytic results which are useful design tools.

The approach used in this paper, while nonanalytic,
is quite general and without any geometric limitation
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in the transverse plane. The effect of finite conductor
losses and frequency dependence can also be included.
It is not necessary to assume any distribution or magni-
tude for the interdependent variables as this approach
determines all necessary information simultaneously.

2. Consideration of Finite Losses

If the line has finite losses, the characteristic im-
pedance and propagation constant, y, can be calculated
from

_ |R+joL "
20= N CF il (2a)
y=a+jB8= V(R +jwL)G+ juC) (2b)

where R and G are the series resistance and shunt
conductance per unit length of the line and « and g are
the attenuation and phase constant of the line. For a
low-loss line, (2a) and (2b) can be closely approximated
by
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R G ‘
XL 2 (3b)
B=wVLC=2 (3¢)
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where Q) =wlL/R and Q.= wC/G. Terms involving
(02 have been neglected. It is also assumed that

Oc
WEc

>l,and&<l
n

which must be satisfied for transmission line theory
to be valid [5] where o, and €. are the conductivity and
dielectric constant of the conductor, R, is the skin-
effect surface resistivity of the conductor, and 7 is the
intrinsic impedance of the dielectric.

Both R and L are functions of frequency and resis-
tivity as well as geometry for lines with finite loss.
The inductance is therefore a function of resistance
so that R must also be calculated to obtain accurate
values of L. A computer method for calculating R
and L as a function of frequency, resistivity, and
geometry is developed in this paper. Values of v and
G are readily obtained from properties of the dielectric
material in the line. These values together with R and
L can be used to obtain the attenuation constant from
(3b). If the contribution of Q. and Q. in (3a) can be
ignored, the characteristic impedance can be obtained
from the simple relationship

Z():UL.

which is analogous to (1).

3. D-C Inductance

Figure 1 shows the cross section of a four-tape strip-
line. The conductors marked 1 and 2 are to act as a
single outer conductor while conductors 3 and 4 act as
a single inner conductor in a go-and-return circuit.
For conductors with finite resistance the current will
be uniformly distributed throughout the outer and
inner conductors at zero frequency. The total induc-
tance of the system, .¥, can be calculated from

4 4
L= Zl }Zl M (4)
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where Mj; is the mutual inductance between tape i and
J» and M;; is the self inductance of tape i. A recent

FIGURE 1. Cross section of a four-tape stripline.

report by Hoer and Love [6] gives exact equations for
the inductances of rectangular conductors carrying a
uniform current. Using these equations to calculate
the M;;, the exact d-c inductance of any rectangular
coaxial system can be obtained.

4. A-C Resistance and Inductance

When an alternating voltage is applied to the sys-
tem, the current is no longer uniformly distributed
throughout the cross section of the conductors. The
inductance as well as resistance then differs from
the d-c values.

Consider a short length of a long uniform line, such
as shown in figure 2. Writing V> in terms of V; gives

Vo=V: cosh yAl—I1,Z, sinh yAl. (5)

Choose Al such that |yAl|] <.
approximated by

Then (5) can be

V_g — Vl - I]Z()’}/A[

or
Va—V,
’—A]—:Izoy. (6)
Substituting (1) and (2) into (5) gives
AV _Vi=V, .
Al Al =I(R+jwlL). (7)

Our object now will be to calculate the total current,
I, for some arbitrary value of AV/Al and from this
result obtain R and L from (7). With R and L known,
the transmission line constants may be obtained
from (3).

To determine the total current in the stripline, each
tape is mathematically divided into a number of
smaller, parallel sections as shown in figure 3. An
equivalent circuit of the transmission line then looks

Va

o]

FIGURE 2. Short length of a long uniform transmission line.
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FIGURE 4. Equivalent circuit for the stripline with the tapes
divided into small parallel sections.

like that in figure 4. The width of each section is
chosen small enough so that the current density may
be considered uniform throughout that section. The
appendix contains dc¢ inductance equations which
can be used to calculate the self, and the mutual
inductance per unit length of these sections. The
resistance per unit length of each section will be the
dc resistance.

Although the method of subdivision is almost com-
pletely arbitrary, one system will be explained, which,
although strange in appearance, will simplify later
expressions considerably. Each tape is divided into
2n sections labeled in such a way that the index
increases as the y axis is approached from any edge
as shown in figure 3. The widths of the sections need
not be equal and indeed will not be in later calculations.
Since the geometry has symmetry about the origin and
both axes, this symmetry is retained in subdividing the
tapes. Symmetry produces the following relations
between the currents in the different sections. For
the outer tapes,

1,2,. . .,n.

Ij:]2u+j:I4n+j‘:I6n+j,j:

For the inner tapes,

[n+j:[3n+j=[5n+j:l7n+j.j:1, 2,. . .,n.
The total voltage drop per unit length along the length
of any one section may be written,

8n
Vi=ndi+jw Y, M. 8)
=

For the purposes of this report the d-c resistance per
unit length, ri, of each section will be used in the form
of resistivity/area. There are 8n equations which may
be written in matrix form as

V1 I O
Vxn 0 T'sn
M; 1 M, sn 1,
+ jw g : . )
Mﬂn,l ... Mxn,sn 13”

As a result of the current symmetry conditions, only
2n of the equations are independent. The four groups
k=1to2n,2n+1todn,4n+1to 6n, and 6n-+1 to 8n
are all equivalent.

Choosing the first group, with £A=1 to 2n as the 2n
independent equations to be solved, rewrite (9) as

Vi
VZ".
I
(10)
]2n
where
3
Mij= 2 M, apn +j, i,j=1,2, . .. 2n.
p=0
Equation (10) can now be written in the form
V=IR+ jo#]I. (11)
Since V. and I, from (8) are complex, let
sze[{_‘_‘]ﬁ', I;.-=ak —ij (12)



In terms of column matrices,

V=E+|F, I=A—B. (13)
Substituting (13) into (11) produces two real matrix

equations:

E=RA+ wMB, (14)
F=—RB+wMA. (15)

Solving for A and B produces
A=R-Q)+ (wMR-][E+HwARHF] (16)

B=R-1[(1)+ (MR- [(MR-DE—F]. (17)
In these equations for 4 and B, E and F have not yet
been determined. To simplify their determination

the following matrix definitions are used:

$=R-1[(1)+ (MR 1]

$=wMR"!
T7=(1,, 5 o dpo =i o o c 7_1211)
02(017 . e e 0117 1n+1y . e e lzn) (18)

Since the total current in the outer conductor must
equal the total current in the inner conductor, we have

n 2n
2 ay — ar = 0
k=1 k=n+1

n 2n
E by — b;; =0

k=1 k=n+1

or in matrix notation, using (16) and the definitions

in (18)
TA=1Y[E + ¢F ]

0 (19)
B =1y[pE — F]

i

0. (20)

The scalar voltage drops in the inner sections and outer
sections obey the following cenditions:

S= fi

C1=1€k

}A~=1,2,. -

ﬁ'*‘:f’}/:n+1,n+2, ... 2n

en+1= €]

€1+€"+1+j(f] +f"+|):A'U/Al

Since the value of Av/Al is arbitrary, it is set equal to

1+,0. This condition applied to the above results
produces

eiteps1=1

fit fasr1=0.

The column matrices £ and F can now be written in
terms of known matrices and one scalar unknown each:

E=0T+erT
(21)
F=frT

where the superscript T indicates the transposed
matrix. Substituting (21) into (19) and (20) and solving
for e; and fi produces

__ (alr " O") + (" ")
“ () + (e >

and

£, (TUGOTYUTT) — (U
! @+ ()

Every term in parenthesis on the right sides of these
equations is a calculable scalar. The result obtained
can be substituted into (16) and (17) and the current
in each section can be determined. With the currents
known, the approximate inductance and resistance per
unit length can be calculated from (7), which in terms
of the components of the current in each section
becomes

(23)

1 =&
T 2"
Leff = n 2 n 2 (24)
Ee) (30
KI=1 k=1
and
1 n
12
Regr= . (25)

5. Limiting Value of L, and R,

The correct value of inductance and resistance per
unit length is obtained in the limit as n becomes
infinite. A good estimate of the correct L and R can
be obtained from several approximations calculated
for different values of n. The approximate values of
L and R are plotted against n as shown in figure 5 and 6.
The asymptotes to these curves are the values as n
becomes infinite.
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FIGURE 5. Approximate inductance versus number of subdivisions,
showing limiting value of inductance for infinite n.

The curve of L versus n can be approximated by an
equation of the form

Lon=Lowo+a,—% (26)

where L, is the approximate inductance obtained from
(24) for a given n, Lo is the inductance as n becomes
infinite, and @ and .¥ are constants. Equation (26) can
be solved for Lo if L, is calculated for four different
n’s chosen such that

e (27)

Then from (26)

(ltn:‘ -
(Lnl - an) -

an)(14n2 - [4114)
(Ln:‘ - Ln)

Loo= L,l4 — (28)

A plot of (L, — L) versus n for these 4 values of L, will
be a straight line on log—log paper only if (26) is a
valid representation of the curve L, versus n. Thus,
four points can be used to verify (26) as well as to calcu-
late Lo. Once it has been shown that (26) is a valid
representation of the curve, L. can be calculated from
three values of n chosen such that

N1, (29)
ng ng
Then (26) gives
(Ln - Ln. )2
Leo=L, — = Y (30)

(Lnl - an) - (L1)2 e

The value of Lo for the curve shown in figure 5 was
calculated from three sets of values of n. For values o
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FIGURE 6. Approximate resistance versus number of subdivision,
showing limiting value of resistance for infinite n.

n equal to 4, 6, and 9, (30) gave a value of Loo=0.201352
puH/m. For values of n equal to 9, 12, and 16, (30)
gave a value of Leo=0.201344. For values of n equal
12, 15, 16, and 20, (28) gave a value of Loo=0.201343.
The maximum difference is 5 parts in 105. The latter
value of Lo was used to obtain the curve of (L, — L)
versus n shown in figure 7. The time to run these
sets of n on a large high speed computer was 10, 35,
and 75 seconds respectively.

Ln-Lg. pH/m

10-5

10°6 | |

FIGURE 7.
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Difference between approximate and limiting value of
inductance versus number of subdivisions.



No simple approximation was found for the curve
of R versus n.

6. Subdividing the Tapes

The exponent, &, in (26) is an indication of the rate
of convergence of L, to its limiting value, Le. Sub-
dividing the tapes into segments of equal width gave a
% of approximately 1. The variation of the current
density across the width of the inner and outer tapes
is shown in figure 8. This curve suggests that the
width of the segments of the inner tapes be made
smaller near the edges where the curve is steepest.
One such method of subdivision is to let the width,
Win+; of the kn+j segment be given by,

@ k=1, 3,5, 7.

2= j=1,2, o

Wkn+j—

where C is determined by setting the sum of the widths
equal to W/2. Thus

/4
E(n+2 =/t ?

ji=1
or

C=——IW—- (32)

E (S22

The constant, m, was chosen such that the rate of
convergence was near maximum. With the outer tape
divided into segments of equal width and the inner
tape divided into segments having widths calculated
from (31), an m of 3 was sufficient to yield a ¥ of
approximately 3

7. Typical Results

If the line has losses, the R and L will be a function
of the actual dimensions instead of just the ratios
t/b, W/b and Wy/b. The R and L of a stripline having
dimensions b=W =0.5 cm and t=0.025 c¢m, was cal-
culated as a function of frequency f, resistivity p, and
width of outer conductor Wy. The thickness, T, of all
tapes was assumed to be equal and small enough to
permit calculation of the M;; in (10) using inductance
equations for zero thickness tapes.? Machine storage
limitations prevented including the variation of current
density with thickness. This limits the strict applica-
tion of these results to tapes whose thickness is of the
order of a skin depth. For the geometry considered
here the errors introduced even at high frequencies
should be negligible.

2See appendix.
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FIGURE 8. Variation of current density in the inner and outer tapes.
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FIGURE 9. Variation of inductance per unit length with q.

The variation of inductance per unit length with
frequency and resistivity is shown in figure 9. The
reason for using the variable ¢g=fTk /p is that one curve
of L versus q is sufficient for all f, 7, k, and p, provided
that T meets the requirements just discussed. The
scale factor k is a dimensionless proportionality con-
stant for striplines having proportionate dimensions
and shape. If all dimensions, except the thickness,



are multiplied by a scale factor, £, the matrix M in
(16) and (17) remains unchanged. The matrix R~ in
(16) and (17) is a function of £ and may be written

L /8 (33)
p

where

W2n

Equations (16) and (17) can now be written,

. . 27 -1
- %"[(1)+ (—w“ /WV) ]
p p

[E (=]

Ik
p

Tk

p=Thky, [(1)+<—p~//{7/>2]_1

[(%%W)E—F] (35)

Since the matrices .4/ and % are independent of £, T,
k, and p, one curve of L versus the variable ¢g=fTk/p
will be sufficient for all £, T, k, and p. The same result
is true for R/R4. versus q. For the strip line under
consideration, with 7=10-% ¢cm, p=2X10-% Q cm,
and k=1, a g of 5X10* hertz/{) corresponds to a
frequency of 102 hertz.

A curve of R/Rg. for the stripline versus ¢ is shown
in figure 10. An explanation of the shape of the curve
can be had from an examination of the current density
curves such as shown in figures 8 and 11. The current
density in the outer tapes remains uniform up to about
qg=5. From ¢g=5 to about ¢=5000 the current dis-
tribution is changing. Above a ¢ of about 5000 the
current distribution in the outer tapes no longer
changes. The resistance of the outer tape would
therefore remain constant up to a g of 5, increase until
a q of 5000 is reached and then remain constant again.
The current density in the inner tapes remains uniform
up to a g of 50. The current then begins to crowd to
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FIGURE 10. Variation of resistance with q.
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FIGURE 13. Variation of inductance per unit length with

width of outer tapes.

the edges of the inner tapes. The current continues
to move to the edges as long as the value of g increases,
never reaching a constant distribution as the current
in the outer tape does. The curves of the change in
resistance of the outer and the inner tapes with ¢ would
look like those shown in figure 12. The sum of these
two curves gives a curve like that shown in figure 10.

The variation of inductance per unit length with the
width of the outer tapes is shown in figure 13 for
different values of g, for the dimensions given above.

8. Summary

The inductance and resistance per unit length of
strip transmission line are functions of the current
distribution in the conductors. At frequencies where
the current distribution throughout the conductors is
uniform, the inductance and resistance can be calcu-
lated exactly. For frequencies where the current
distribution is not uniform, the conductors are divided
into sections. From these sections the approximate
current distribution of the conductors is calculated.
Approximate values of the inductance and resistance
per unit length are then calculated from the approxi-
mate current distribution. Using high speed com-
puters, it is not difficult to divide the conductors into
sufficiently small sections to calculate the inductance
to an accuracy of one part in 10° or better. The
accuracy on resistance is considerably less, depending
on frequency. Other methods of subdividing the
tapes are being considered to improve the convergence
of R, to its limiting value, R .

The variation of the inductance per unit length with
frequency, resistivity, and width of the outer conduc-
tors is given for a particular geometry. Tables and
graphs of the inductance and resistance per unit length
for other geometries are being prepared for future
publication.

The technique of calculating R and L as given in this
paper for a stripline can be applied to other lines having
more complicated cross sections provided that the
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conductors can be divided into sections whose d-c
self and mutual inductances can be calculated. This
technique is used in a forthcoming paper by Brooke
and Cruz [7] to calculate the L and hence Z, of a loss-
less, rectangular line with a rotating center conductor.

The authors gratefully acknowledge the assistance
and helpful criticism of C. M. Allred, and W. E. Little.

9. Appendix

The mutual inductance per unit length between two
long, thin, parallel tapes such as shown in figure 14
can be obtained from equation 8 of reference [6] and is

E—a, E+d
PA ) o)
//l,zo—'dg [%i In (P?2+x%)—xP Tan—! %] (x)
“ E+d—a, E

+0.2[ln 2l+%j|, uwH/m (A1)

where the limits, which have been retained for com-
pactness, are substituted as follows:

S183

[f()] (x)

S284

4
=3 1 +¥f(s).

i=1

The origin coincides with the left edge of one tape.
If the left edge of the second tape is in any quadrant
other than the first as shown, one or both of the values
of £ and P will be negative. The self-inductance per
unit length of a long thin tape is

L:=0.2 In l+ O.Z[In 2[—&-%], wH/m.

(A2)
a

In both of these expressions it is assumed that the
current density is uniform throughout the conductors.

FIGURE 14. Cross sectional view of two long parallel thin tapes.



Note that the term

o.z[m 2/%] (A3)

appears in both M, and L, as the only term involving
length. However, if M, and L, are substituted into (8),
‘the terms involving length will exactly cancel. Substi-
tuting (A1) and (A2) into (8) gives

8n 8n
V= ridi +jo S M,f.,l,+jw[().2<ln 21+1)] S I (A%)
2

=1 =1

where the M/, are the expressions in (Al) and (A2)
with the (A3) term excluded. But the last term is zero
because

8n

=1

That is, the total current in the outer conductors is
equal and opposite to the total current in the inner
conductors. Therefore the M in (8) may be calculated
from (Al) and (A2) with the (A3) term excluded.
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