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For the accurate determination of internal pressures in solid-filled .piston and cylinder devices

the effective area and its change with pressure are very significant factors.

The computation of the

change of area with pressure from elastic theory leads however to considerable uncertainties.
The present paper describes how ultrasonic measurements made in solid-filled piston and cylinder
devices to 45 kilobars are combined with measurements of ‘the lengths of the samples as function of

pressure and with ultrasonic measurements under
expansion.

hydrostatic pressure to yield values for cylinder

The results are compared with values obtained from modified elastic theory.

Ke.y Words: Compressibility, cylinder distortion, high pressure, nickel, tellurium, ultrasonics.

1. Introduction

Several solid filled piston and cylinder devices with
rotatable pistons have been used in this laboratory
to determine transition pressures at pressures up to
45 kbar. The internal pressure was computed as
the ratio of ram force on the piston to effective area
of the cylinder. Appropriate corrections were made
for friction between moving and stationary parts and
for distortion of the cylinder. An estimate of the
change of the effective area of the cylinder with inter-
nal pressure was calculated using equations devel-
oped from elastic theory for long thick-walled cylinders
subjected to internal pressure. These relations were
modified using the solution to the tangential strain
problem for an infinite cylinder with a semi-infinite
zone of internal pressure [1].!

The estimated uncertainty in this calculation of the
area is two parts per thousand at 25 kbar and four
parts per thousand at 40 kbar provided that the elas-
tic theory on which the calculation is based accurately
describes the problem. This uncertainty is sufficiently
large to warrant some effort in a direct determination
of the change of area of the cylinder with internal
pressure. This paper describes such a direct deter-
mination by means of ultrasonic measurements on a
sample contained in the cylinder.

The ultrasonic measurements are used to deter-
mine the compressibility of the sample as a function
of pressure. From this the length, which the sample
would have in a rigid cylinder at any given pressure,
is computed. This hypothetical length will be com-
pared with a sample length obtained from a direct

! Figures in brackets indicate the literature references at the end of this paper.

measurement at the same pressure. The ratio of
these two lengths is a measure of the expansion of the
cylinder.

2. Definition of Expansion Factor

We assume a mean value for the expansion of the
cylinder over the pressurized length (fig. 1) and we
define as the expansion factor:

_ mean expanded area of the cylinder A, .
nonexpanded area of the cylinder A,

a(p)

a(p) is a function of pressure. The relative change
of the area of the cylinder with pressure is
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FIGURE 1. Deformation of sample under pressure with and without

deformation of cylinder.



We further assume that the pressure is uniform
throughout the sample, that the end faces of the sam-
ple are plane, and that the cylinder remains straight.

The expansion of the cylinder does not change the
volume V(p) which the sample assumes at pressure
p, so that

V(p):AoLo(l _Kp):AexLex(p) (2)

where L. (p) is the length of the sample in the ex-
panded cylinder at pressure p, Ly is the sample length
at zero pressure, and K is the compressibility of the
sample (see fig. 1). Whence follows

AEX
Ao

Lo(1 —K(p) - p) _
Lex(l))

L(p)
Lex(p)

a(p)= (3)

According to eq (3) the distortion of the cylinder and
the change of area could then be obtained from a
measurement of the actual length of the sample and.a
computation of the uniaxial compression of the sample
in a rigid-walled cylinder based on the compressibility
K(p) of the sample material.

3. Determination of Sample Length L(p)
for Uniaxial Compression

At low pressures, where the compressibility of the
sample placed in a rigid cylinder is constant, its length

L(p) is

L(p)=Lo(1=Kp). (4)
Generally K is a function of pressure and, if this
function is known, L(p) may be computed from

Lunzum—jfkmwm. (5)

Although data of compressibility versus pressure have
been reported for a number of materials, the agree-
ment between different sources for the same material
is often very disappointing. It is desirable to use
materials with small compressibilities to reduce the
uncertainty in the determination of L(p).

The choice of materials is also narrowed down by
the fact that the present purpose requires a material
with low yield strength to ensure a more nearly
hydrostatic stress pattern.

Typical uncertainties in L(p) caused by an uncer-
tainty of 10 percent in the compressibility of the
material are 0.1 percent for nickel at 20 kbar and
3 percent for the more compressible tellurium at
40 kbar.

In 1957 R. K. Cook published a paper [2] dealing with
the variation of the elastic constants and static strains
with hydrostatic pressure and their calculation from
ultrasonic measurements. The final equation reported
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in that paper relates the sample length at the hydro-
static pressure p with the fundamental resonance
frequencies of the same sample measured as a function
of pressure for longitudinal and shear waves propa-
gating along the axis of the cylindrical sample:

L(p) 3ho Jo 5 4 (6)
fl 3]\

where L, is the length of sample at zero pressure

L(p) is the length of sample at pressure p

ho-4Lﬁpo

/i, f+ are the resonance frequencies for longitudinal
and shear waves, and

A K

—1 ()

where K,q4 is the adiabatic bulk compressibility
Kis is the isothermal bulk compressibility

ho(f1—

modulus Bad— K B
In the derivation ot eq (6) two approximations were

4
—fz.) is essentially the adiabatic bulk

made

1 K ’

( 3p ( )) . ®)

(1 —=pK(p))
and

1 1+Afp
~]1+ K(p)dp
l——1+Af K(p)dp 3 Jo ©)

In the case of very compressible materials like tel-
lurium the first approximation leads to a value of L(p)
that is too large by a few tenths of 1 percent at 40 kbar.
An error of similar magnitude but opposite sign is
introduced if A in eq (6) is neglected. The second
approximation can be avoided by rewriting eq (6).
With less compressible materials like, for example,
nickel, both corrections amount to less than 0.1 percent
in L(p). This indicates again that materials with
low compressibility are to be preferred for such
measurements.

Equation (6) permits the computation of the length
of a sample subjected to hydrostatic pressure from the
resonance frequencies obtained over the entire pres-
sure range. The same equation less the factor 3 in
the denominator in front of the integral holds for a
sample contained in a rigid cylinder and compressed
longitudinally.



If the measurement is made in a nonrigid cylinder
where the length of the sample is reduced by o~ ' due
to cylinder expansion, eq (6) has to be corrected by
multiplying ho=4 L3py with a(p)~2 Since a(p) is a
function of pressure it has to be written under the

integral. Equation (6) for a nonrigid cylinder then
becomes
Lo =14 1+A [Pa?(p)dp
L(p) ho Jo . 4, (10)
fi—=3/3

a*(p) does not differ appreciably from unity. To
facilitate the solution of eq (10) we assume that a(p)
is a linear function of p

o
op

a(p)=1+Bp; =

and we use an estimated value for 8 in the actual
numerical evaluation of this and related equations.

L(p) obtained from eq (10) can be combined with an
Lo (p) obtained from dial gage measurements of the
sample length as described in section 6 to yield the
expansion factor:

Lo 1

al(m:Lex(l)) 14+ 1+A (P o?dp (C
h w 4.
" iy

Instead of using ultrasonic measurements in a solid-
filled piston cylinder device to determine L(p), a sample
length L3(p) could be determined under hydrostatic
conditions with higher precision and then be con-
verted to the hypothetical length L(p) with the help
of the relation

Lg_Lﬁ:L([))_L()

LE 3L, e
and the equation for a(p) is then
Ly 3
NP | I T MR B

3h e 4
WA

The superscript B in these equations denotes values
obtained under hydrostatic conditions.

Equations (12) and (13) are not very sensitive to
errors made in the determination of the frequencies
or the compressibility derived from them as long as
materials with low compressibility are used. The
main source of error is the determination of L..(p).

In a particular experiment to be described below an

error of 25 um in the determination of L.(p) would
cause an error in the change of area, A4, of more than
30 percent.

4. Determination of Actual Sample Length
L ox(p) from Ultrasonic Measurements

In equations (11) and (13) the sample lengths com-
puted for the rigid-walled cylinder were combined with
an actual sample length obtained from dial gage read-
ings. If, from ultrasonic measurements under hydro-
static conditions, both the shear and the longitudinal
wave velocity (v) are known, these, together with the
resonance frequencies or the times of flight (7) through
the sample in the solid-filled cylinder, can be used to
determine the actual length of the sample:

v

Lex(p)zgv: uT. (14)

Two values for L.(p) are obtained; one from shear
waves and the other from longitudinal waves. The
precision required in f is rather high. An uncer-
tainty of less than 0.1 percent is necessary and 0.01
percent is desirable at the highest pressures.

The two values thus obtained for L.(p) can be
combined with the two values for L(p) used in eqs
(11) and (13) in four different ways to yield:

14 IO dp
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The expressions in brackets are very close to unity
and, especially with materials of low compressibility,
do not contribute very much to the total uncertainty.
Lo and L3, the initial sample lengths, can be measured
with sufficient precision. The main source of error is
in measuring the resonance frequencies. While the
frequencies in hydrostatic environments can often be
reproduced to better than 0.01 percent at 20 kbar no
such claim can be made for our solid-filled cylinder
assemblies where a scatter of the data of up to 1 per-
cent was encountered. In planned future work a



very definite improvement is expected from improved
ultrasonic techniques and choice of more suitable
materials.

5. Description of Pressure Equipment and
Pressure Determination

A diagrammatic sketch of the equipment is shown
in figure 2. The cylinders used were made from
cemented tungsten carbide with 6 percent cobalt.
Radial support was provided by hardened steel sup-
port rings with an interference fit. Axial support
was provided by end-loading applied to the carbide
cylinder through a bridge plate resting on extensions
of a thick cylinder wall of a ram with a 15 cm diam
piston. This ram operated on the high pressure piston
through a hole in the bridge plate. Rotation of the
high pressure piston and 15 cm diam piston is accom-
plished by a handle passing between the cylinder wall
extensions. Both the end loading force and the 15 cm
diam piston force are supplied by the large press in

‘ Transducer

4
filler rod cylinder
support ring
sample/l/ I bridge plate

d

<—Transducer

FIGURE 2. Long cylinder.
Tungsten carbide parts hatched. Sample marked by dotted area.

‘ Transducer
Pl % cylinder
~ / Y
piston
S / | support ring
bridge plate
1

\

«—Transducer

*

FIGURE 3. Short cylinder.
Tungsten carbide parts hatched. Sample marked by dotted area.
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which this equipment is inserted. Transition pres-
sure measurements were made in this equipment
using a high pressure cylinder 5 cm long with a bore
of 1.26 cm. Quartz transducers were mounted as
shown in figure 2. In the 5 ¢cm long cylinder a carbide
filler rod was used to give the desired sample length
for an entrance of the movable piston of about 0.1 cm
at zero ram force. This additional member in the
path of the ultrasonic signal was undesirable. It
was later eliminated by the use of a 1 cm long cylinder
as shown in figure 3.

Piston displacement was measured with a dial gage
indicator mounted on the cylinder rim and bearing
against an extension of the rotation handle. The dis-
placement read is the sum of the movement of the
sample end of the high pressure piston, the compres-
sion of the high pressure piston, and the compression
of the carbide pieces which back up the piston. The
movement of the sample end of the high pressure
piston is due to compression of the sample, expansion
of the cylinder, and, if used, the carbide filler rod.

In the 5 cm long cylinder a sample was compacted
from tellurium powder with a particle size of 50 um
or less. The length after compaction to 40 kbar was
0.6858 cm. Conical steel rings were used to prevent
extrusion. The transition pressure with rotation
(approximately two degree oscillation) was determined
to be 40 kbar. In the 1 cm long cylinder a nickel
sample, machined to fit, was used for measurements
to 20 kbar. For the ultrasonic measurements the
equipment was operated without rotation.

The determination of internal pressure requires
correction for friction and the determination of sample
length requires correction of sample length for com-
pression of various members. Figure 4 shows a typi-
cal curve of uncorrected dial gage reading against
uncorrected increasing and decreasing pressure.
The dashed line to A is the calculated change in dial
gage reading with pressure due to the compressibility

Q
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pressure —

FIGURE 4. Change of length of tellurium sample as indicated by
dial gage reading and correction to internal pressure.



of the carbide high pressure piston and its supporting
pieces. A modified mean curve for the pressure on
the tellurium is drawn to point F, the start of a tran-
sition. The corrected pressure is obtained by follow-
ing a line with a slope equal to that of line “A” from
an observed point B or D to the intersection with the
modified mean curve (points C or E) respectively.
These corrected pressures are used with the observed
frequencies for the ultrasonic computations.

6. Determination of the Measured Sample
Length, L. (p)

The measured sample length, L., is obtained by
applying a correction to the dial gage reading for the
compression of the various carbide members. For
pressures to 20 kbar a constant value of Young’s
modulus for the carbide of 5.93 X 102 kbar was used.
For pressures from 20 to 40 kbar a decreasing Young’s
modulus was used.

The effects of uncertainties in Ly on a are computed
for a 5 percent uncertainty in Young’s modulus and
for a 10 percent uncertainty in the estimate of effective
length of the compressible carbides including the
tapered piston and the backup pieces of various cross-
sections. These effects on a(p) are larger in the
tellurium measurements than in the nickel measure-
ments primarily because of the greater length of com-
pressible carbide in the tellurium measurement and
secondarily because of the shorter sample length of
the tellurium. These uncertainties in a(p) due to Ly
are shown in figures 7 and 8 and will be discussed
later.

7. Derivation of Expansion Factor a(p) from
Elastic Theory

The expansion of the bore of a long thick-walled
cylinder due to internal pressure p is
Ad_p (A—p)+ (A +p) W
d FE w:—1
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where E is Young’s modulus, u is Poisson’s ratio,
and W is the ratio of the outer diameter to inner diam-
eter of the cylinder.

The cylinder used with the tellurium had a wall ratio,
W, of 4 and a length of 5 cm with only 0.686 c¢m or
about one radius of that length exposed to internal
pressure.

A proportionality factor, F, to be applied to eq (19)
for this pressure distribution is computed using values
of tangential strain at the inner surface of a cylinder
for a semi-infinite zone of internal pressure from the
“Thick Walled Cylinder Handbook™ [1]. For a long
cylinder with internal pressure over a length equal to
one radius starting at one end, the proportional expan-
sion is computed by assuming a mirror image of the
cylinder at the pressurized end of the cylinder. In
Figure 5 curves (a and b) are drawn for semi-infinite
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FIGURE 5. Derivation of cylinder expansion from the distortion
B I
caused by reflected semi-infinite zones of internal pressure.
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pressure zones starting at the original and reflected
pressure discontinuities. Curve ¢ is the product of
“a” and “b” and is an approximation for the factor
for a pressurized zone of length 2 R in a long cylinder.

A mean value of 0.75 is taken to apply to the expan-
sion calculated from eq (19). «(p) is computed using
the above factor and a Young’s modulus of 5.79 X 103
kbar for pressures 0 to 20 kbar and a decreasing
Young’s modulus for pressures of 20 and 40 kbar.
The computed a(p) for the cylinder used with the
tellurium sample is shown in figure 7. The effects
of a 5 percent uncertainty in £ and a 33 percent uncer-
tainty in F are shown.

The 1 ¢cm long carbide cylinder used with the nickel
sample has a wall ratio #=3. Equation (19) is used
neglecting the increase in effective W due to the steel
rings and the variation of the expansion of this short
section from that of a long cylinder. For a value for £
of 5.97 X 103 kbar and a w of 0.25:

%20.00503 at 20 kbar
%2 a—1=0.0101 at 20 kbar.

An estimated uncertainty of 5 percent in E results in
a 5 percent uncertainty in a—1 and this is shown in
the value of a in figure 8. No value is included for
the uncertainty introduced by applying the theory for
elastic distortion of long cylinders to a short section
and neglecting the friction effects at the end faces.



8. Experimental Determination of Cylinder
Expansion Factors

For the ultrasonic measurements in the solid-filled
piston and cylinder assemblies the signal had to be
generated outside the pressurized zone, radiated
through the sample and picked up again outside the
pressurized zone. Since plane and parallel interfaces
along the ultrasonic path are necessary for all precise
measurements, the signal could only be radiated along
the longitudinal axis of the apparatus. Figures 2
and 3 show how the 10 MHz quartz transducers were
arranged. One transducer was used for shear, the
other for longitudinal waves. Part of the signal origi-
nating from a transducer is reflected at the tungsten
carbide-sample interface, the rest travels through the
sample and undergoes another reflection at the sample-
tungsten carbide interface. The returning echoes plus
usually several artifacts were picked up by the same
transducer. The signal was then amplified and dis-
played on the screen of an .oscilloscope without
demodulation.

The delay time caused by the sample was measured
in two ways: At high attenuations a short pulse was
used and the time between the reflection from the
front (tungsten carbide-sample) interface and the rear
(sample-tungsten carbide) interface was measured by
displaying the rf-pulse on the screen of an oscilloscope
and using the variable sweep delay to let the pulses
successively coincide with a mark on the screen. The
transit times could thus be determined with a sensi-
tivity of =20 ns. At low values of attenuation in the
samples the phase comparison method developed by
MecSkimin [3] was used. The pulse length was ad-
justed to provide sufficient overlap of succeeding pulses
and the rf-frequency was adjusted for destructive
interference. At constant pressure the critical fre-

quencies could usually be reset to =1 kHz at 10 to
12 MHz.
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The electronic equipment consisted of an rf-cw-
generator, a gated amplifier and, on the receiver side,
a wide-band rf-amplifier and a wide band oscilloscope.
The transducers were connected to the circuit through
a tuned transformer bridge.

The same electronic equipment was also used for
ultrasonic measurements with a nickel sample under
hydrostatic pressure. In this case only the phase
comparison method was used. The sample was ce-
mented between two fused quartz buffer rods with a
shear and a longitudinal mode transducer attached to
either end.

Figure 6 shows a typical plot of transit time versus
uncorrected pressure obtained in a solid-filled cylinder.
The large amount of hysteresis is due to the friction
between the piston and the cylinder. In section 5 we
have already described how the uncorrected pressure
is related to the internal pressure. This relation is
now used to re-plot the ultrasonic data versus internal
pressure. The result is, in the case of shear waves
in tellurium, a single curve for increasing and decreas-
ing pressure. In some cases the results were less
satisfactory. Transit time data are read from the
final curves at intervals of 1 kbar to be used for the
computation of the cylinder expansion.

The results of two such computations are shown in
figures 7 and 8. Figure 7 is for the long cylinder shown
in figure 2 filled with sintered tellurium powder com-
pacted at 40 kbar. The expansion factor computed
from elastic theory is shown as a solid line. The un-
certainty is schematically indicated by the vertically
hatched area. Data for the expansion factor computed
from ultrasonic measurements and measurements of
sample length are entered as black dots. The total
of the estimated uncertainties of the measured length
is schematically indicated by the horizontally hatched
area. The estimated uncertainty introduced by the
ultrasonically measured L(p) is considerably smaller.
Also entered in figure 7 are the adiabatic compres-

pressure —»

FIGURE 6. Time of flight for shear waves in tellurium as function of
increasing, decreasing and corrected internal pressure.
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FIGURE 7. Cylinder expansion with tellurium sample in long
cylinder.

Areas of uncertainty hatched.

sibility K,4 obtained from the ultrasonic measurement
and the isothermal compressibility K;; obtained from
the dial gage reading. The latter includes the effect
of cylinder expansion and is therefore not a correct
value.

The overall uncertainty in this determination is
extremely large. The greater part of the uncertainty
is due to the determination of L (p) from the dial gage
measurements. This fact emphasizes the need for an
improved way to measure the actual length of the
sample under pressure.

Figure 8 presents the results obtained with a short
cylinder filled with nickel. The uncertainties are
indicated in the same way as in figure 7. The overall
uncertainties are relatively much smaller. This is
partly due to the improved design of the cylinder and
partly to the smaller compressibility of the sample.
The precision of the ultrasonic measurements was
improved over that with tellurium. Consequently
the disagreement between the measured and the com-
puted values for a is much smaller. Again the com-
pressibilities are entered.

9. Conclusion

The experimentally determined expansions for both
the long and the short cylinder are larger than the
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Fi1GURE 8. Cylinder expansion with nickel sample in short cylinder.
Areas of uncertainty hatched.

expansions computed from elastic theory. The same
relation was reported by Bridgman [4] for his experi-
mental determinations of cylinder distortion under
various conditions. Therefore, a more rigorous com-
putation of elastic distortion of short eylinders, includ-
ing end effects and other modifications, seems to be
desirable. While this mathematical solution does not
seem to be very near at hand, the main effort will
have to be in the direction of improved ultrasonic
measurements with carefully selected materials in
various piston-cylinder devices. The application of
ultrasonic measurements to the determination of
cylinder distortion as proposed in this paper will then
lead to more meaningful and more precise data.
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