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Matrices of Class /2* 

John s. Maybee ** 
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Let J2 be the set of n X n complex matrices A = (aij) suc h that ajJ,aj,j, .. . aj';' = 0 for all r such 
that 3 ,,;;; r ";;; n a nd all distinct j" j2, ... , j,. Then many properties of this se t are given , which may be 
regarded as generalizations of the prope rties of the set of triple diagonal matrices. 
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1. Introduction 

In a previous paper, (1),1 we introduced the class 
of matrices )'2 as a generalization of the class )' of 
Jacobi matrices. We also developed a few of the 
s pec tral properties of certain types of matrices in 
)'2. In [2] we have shown why the members of )'2 enjoy 
many special properties not shared by matrices with 
more complex structure. 

Several years prior to the work done in [1] and [2] 
S . Parter in [3] obtained a spectral theorem for certain 
elements of )'2 by an ingenious argume nt based upon 
the theory of linear graphs. 

Finally, in a recent pape r [10] , Quirk and Ruppert 
obtained very deep stability results for a subset of 
)'2 quite different from that considered by Parter. 
The theore ms in [1] overlap with the work of Quirk 
and Ruppert as well as with the work of Parter. 

The various res ults of the papers [1] , [2], [3] , and 
[10] point to the desirability of constructing a compre· 
hensive theory of the properties of elements of )'2. 
The purpose of the present paper is to initiate such a 
study. We will show that a remarkable number of the 
properties of Jacobi matrices can be generalized to 
the elements of )'2. 

It turns out that the class )'2 contains two subclasses 
of particular importance. We shall refer to the elements 
of these classes as matrices of semi· positive type and 
semi·negative type respectively. The semi· positive 
matrices occur in a variety of problems in the physical 
sciences, particularly in ' the small vibrations of 
mechanical systems. The semi-negative matrices 
occur in the theory of qualitative s tability and find 
their primary application in the social sciences, 
particularly in economics. 

With these applications in mind we have concen­
trated mainly upon the semi· positive and semi·negative 
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ele ments of )'2 although these two classes certainly 
do not exhaust the possibilities . 

The paper is organized into several parts as follows: 
In section 2 we se t forth the basic definitions and 
develop what may be called the combinational proper­
ties of the elements of )'2. Thi s section is not restricted 
by any considerations of positivity or negativity. 
The same is true of section 3 in whic h we give a variety 
of determinant formulas. Some of these results gen· 
eralize known formulas for Jacobi matrices, but the 
problem for elements of )'2 is more diffi cult and some 
problems remain open. In partic ular , our formulas for 
the exterior p·th power of elements of )'2 are not s uffi­
ciently well worked out to e nable us to decide whic h 
matrices have exterior p·th powers of positive c yclic 
type. On the other ha nd many of these formulas hold 
for quite general matrices. 

Section 4 consists of a s tudy of semi-positive ele· 
ments of )'2. Here we concentrate mainly upon the 
ques tions of interlacing and spectral multiplicity. 
Other, more special, aspects of the semi-positive 
matrices are more prope rly reserved for a general 
treatment of certain mechanical problems where such 
questions naturally arise. We intend to treat these 
matters shortly in another paper. 

Finally, section 5 consists of a few miscellaneous 
properties of semi·negative matrices in )'2. The prob· 
lems here are more difficult than those associated 
with the semi·positive matrices because they center 
around the problem of stability and this in turn seems 
to be an inherently difficult problem. We have been 
unable to give an essentially simpler proof of the 
fundamental stability theorem of Quirk imd Ruppert 
[10]. This being so, we have confined ourselves to 
stating the theorem and to deriving those few results 
which follow readily from the general determinant 
formulas of section 3. 

A basic problem remaining unsolved is that of deter· 
mining for the elements of )'2 how the eigenvalues of 
A, or at least the real parts of the eigenvalues, vary 
with the elements along the principal diagonal of A. 
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A solution to this problem in combination with lemma 
5.2 might yield an elegant proof of half of the Quirk­
Ruppert theorem. Another problem not treated here 
is the structure of the eigenvectors for the semi­
positive and semi-negative matrices. For certain im­
portant subclasses of semi-positive matrices this 
question is most strongly motivated by problems in 
mechanics and we intend to deal with it later. Parter 
[3] has some results about eigenvectors , but a glance 
at the extensive results available for the Jacobi 
matrices makes it clear that much more extensive 
theorems should be available for J2. As of the present 
writing nothing is known about the eigenvectors of 
semi-negative elements of J2. 

2. Notation and Fundamental Preliminaries 

We deal with n X n matrices over the real or complex 
field, n > 2. A = (ajk)\' is a Jacobi matrix, A € J, if 
ajk = 0 whenever Ij - kl > 1. To define the class J2 
we recall that an r-cycle in A is an object of the form 

(2.1) 

where the indices in ) = (h . jr) are distinct ele­
ments of the set S" = (1 ... n). The elements ajj on 
the principal diagonal of A are the I-cycles of A. 

DEFINITION 2.1: The matrix A = (ajk)\' is an element 
of J2 if every r-cycle of A of length r > 2 is zero. 

Definition 2.1 leads at once to a formula of funda­
mental importance in any study of the properties of 
the elements of J2. Let} = (h ... jr) be any set of 
distinct indices from S,,; then we denote by A[J] (or 
A[h ... jr]) the principal submatrix of A in rows and 
columns}. We use both the symbol d to denote the 
determinant function and the Bourbaki notation. 
Thus, 

deAr)]) = AJ = d(A[j1 ... jr]) . (2.2) 

We also write A(A) for A-AI, A;(A)=d(A[}; AD. For 
each r=2, 3, ... , n, each sequence}= (jl .. . jr) 
of distinct indices, and each 1 ~ p ~ r, we have 

) 

r 

A;(A )=(a(jp) - A)AJ- jp(A) - 2": a (jpjq)A J - (jJq) (A). (2.3) 
q= 1 
q* p 

In this formula and subsequently we denote by } - H 
(or) - (hI ... hs)) the set of indices remaining in } 
after deleting the indices in H. 

In [1] we defined the class J2 directly by a formula 
having the form (2.3). We were led naturally to it by 
the corresponding formula connecting the principal 
minors of Jacobi matrices. 

The key to our method consists in first showing that 
practically every determinental formula normally 
associated with the Matrix A can be expressed in 
terms of determinents of principal sub matrices and 
certain special products of elements of A which are 
easily studied. The new formulas obtained in this way 
are then systematically exploited. We have already 

done this with the basic determinant formula intro­
duced in [2] and the results obtained there are freely 
used below. Formula (2.3) is at the same time a special 
case of the classical formula of Cauchy and a special 
case of the general formula of [2] for an arbitrary square 
matrix. 

To expedite the study of various products in a matrix 
A we introduce the following concepts. 

Definition 2.2: The product 

aU) = a(jl . . . jp) = ahi. . . . aip_Ijp' (2.4) 

(jl . . . jp) distinct, is called a chain of length p - 1 
in A. 

In dealing with chains we shall often refer to 
a (aJ(3) = a (ajl ... jp(3) as a chain from a to (3. 
The number of distinct chains in A of length p - 1 is 

p ! C). A com plete theory of chains and cycles of 
p 

A is not essential for the study of J2 so we limit 
ourselves here to the few basic concepts and ele­
mentary results needed. 

Definition 2.3: The product 

a()) = a())aitjp (2.5) 

is called the closure of a()). We also refer to a()) 
as a closed chain of length p in A. The cycle 

a()) = ajpit 

will be referred to as the completion of aU). 
Note that a chain of length 1 is closed. All other 

closed c hain s have length ~ 3. In the sequel when we 
refer to closed chains we shall exclude the closed 
chains of length l. 

Clearly there is 'a unique closure and a unique com­
pletion to each chain in A. Conversely each closed 
chain is the closure of a unique chain so that there is a 
1- 1 correspondence between chains of length p - 1 
and closed chains of length p. On the 'other hand a 
cycle of length p is the completion of each of the p 
chains of length p - 1 obtained by striking out any 
term in aU). 

A chain a (j) =1= 0 will be called maximal in A if both 
its closure and its completion are zero. Clearly we 
may also characterize the class J2 by the statement 
that for A € J2 no chain oflength greater than one has a 
nonzero completion in A. Recalling (see [1] , [2] , or 
[3]) that A is combinatorially symmetric if ajk =1= 0 
implies akj =1= 0 , we see that the existence of nonzero 
closed chains in A € J2 is a measure of the extent to 
which A fails to be combinatorially symmetric. On 
the other hand we shall see that A € J2 is irreducible 
(indecomposable) only in the presence of combinatorial 
symmetry. Hence the existence of one nonzero closed 
chain in A € Jz implies A is reducible. This furnishes 
us with an occasionally useful criterion for recognizing 
reducible elements of J2 , 

Definition 2-4: The set Q consists of all A € J2 
which are also irreducible (indecomposable). 
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In [1] we called the elements of Q quasi-Jacobi 
matrices_ The paper [3] of Parter deals with a proper 
subse t of Q_ Some of our results will be valid only fo r 
ele me nts of Q; othe~s will be valid for all elements 
of f2 -

T!-IEOREM 2_1: Let A E f2- A E Q if and only if A is 
combinatoriaLLy symmetric and has exactly n - 1 
nonzero elements above the principal diagonal_ 

PROOF: We confine ourselves here to proving the if 
portion of the theore m since the only if portion was 
proved in [1] (see also [10])_ Suppose, for contradiction , 
tha t the set S" can be divided into disjoint subse ts 
J = VI - - - jp), J' = VP+I - - - j,, ) such that every ele­
me nt having the form ajA' with j E J, k E J' is zero_ By 
combinatorial symmetry the elements akj are also 
zero_ The principal submatrices A(J] and A(J' ] are also 
combinatorially symmetric_ Either A(J] contain s more 
than p - 1 nonzero elements above the principal diago­
nal or A(J'] contains more than n - p -1 non zero 
ele ments above the principal diagonaL For in the 
contrary case A can have no more than n - 2 nonzero 
ele ments above the princ ipal diago naL By theore m 1 
of [1] it follows tha t A , ~ f2 yielding the desired co ntra­
dic tion_ Thu s the conditions imply A is irredu cible. 

We may observe now on the basis of this theorem 
and the previous remarks that A E Q if and only if 
every chain in A of length ;;,: 2 is maximaL 

For many purposes it is desirable to know the rela­
tive positions of the elements of A E f2 which are 
ze ro and the nonzero elements of A_ Of course, each 
nonzero off diagonal element of A is a chain of length 
one. The existence of nonzero chains of greater length 
in A does imply information on the location of zeroes. 
The following result is almost obvious_ 

LEMMA 2.2: Let a(i, ... ip) be a nonzero chain in 
A E f2 of length p ;;':' 2. Then every element a a(3 of A 
such that a = i Q , f3 = i, with 1 ~ r ~ q - 1 ~ p is zero. 

The le mma implies that eac h nonzero chain of le ngth 
p - > 2 in A Ef2 forces (p-1)(p - 2) /2 ele ments of 
A to be zero. If A E Q the number of zeroes beco mes 
(p -1) (p - 2) . It is instructive to look at the two 
extre me cases below (the x's de note the location of 
nonzero elements), 

/: 
x 0 0 0 0 

x 0 x 0 0 

A' ~ q 
0 x 0 x 0 

x 0 x 0 x 

0 x 0 x x 

0 0 x x x 

x x x x x x 

x x 0 0 0 0 

x 0 x 0 0 0 
A2 = 

0 0 0 0 x x 

x 0 0 0 x 0 

x 0 0 0 0 x 

A I, A2 E Q_ Al has the chain a(l24653) =1= 0 of length 
5. By lemma 2_2 this nonzero chain locates all of the 
zero elements of AI . On tbe other hand A2 clearly has 
no nonzero chain of length greater than 2. 

Here is a result which is complimentary to lemma 2.2 
and which we again give without proof. 

LEMMA 2.3: Let A E Q and suppose that for fixed 
1 ~ i ~ n the elements ail" .. . , ail ' jl =1= i, . .. , 

q 

jq =1= i, are aLL different from zero. Then the 

(q - 1)(q - 2)/2 

elements ajpj, with 1 ~ r ~ p - 1 ~ q of A are zero , 
and the symmetricaLLy placed elements are zero. 

These simple ideas may be put to work to further 
classify the eleme nts of f2 with aid of 
Definition 2.5 : The matrix A E 0 belongs to the set 
0"-1 if there exists a nonzero chain of length n - 1 
in A. 

THEOREM 2.4 : The matrix A E Qn _ 1 if and only if 
there exists a sequence AO = 1, AI, _ .. , An = A of 
principal submatrices of A with Ai a matrix of order 
j , j=O, . . . , n , and Ai- I a principal submatrix of 
Ai , satisfying the recurrence formula 

q = 2,. ., n , where the products iiu,j ,,- ,) =1= 0_ 
PROOF: Suppose firs t that A E Q"- I and le t 

a(jl - .. jn) 

be a nonzero c hain of length n- 1 in A. Set AO = 1, 
Jq = [jl . . - j,J for each q= 1, . .. , n , and se t 
A"= A [}q] . Expand d(Aq) relative to the qth column. 
By virtue of le mma 2.2 the elelTIe nts aj i = 0 for 

q - 1"Q 

r ;;,: 2. On the other hand, we are given that aj j =1= 0_ 
'I - I Q 

By combinatorial symmetry the only nonzero off­
diagonal ele ment in th e qth row of Aq is aj . .i • For­

I['q - I 

mula (2.7) follows immediately for q ;;': 2. 
To prove the converse, suppose the sequence 

(AO, . . ., An) exists sati sfying (2.7). The chain 
a (j, . . ., jll) =1= 0 and also the trans posed chain 
a' (jl ... jn) = a (jn . .. jl) =1= O. Thu s A has at least 
n - 1 nonzero off-diagonal ele ments above the prin­
cipal diagonal and at leas t 11 - 1 below. S ince A E Q, 
A EQ" - I. 

As an application of this result consider the matrix 
A . above. A sequ e nce .of prin cipal submatri ces satis­
fymg the formula (2.7) I S the following: 

AI = A[1], A2 = A[12] , A3= A[124], 

A4 = A [1246] , A5 = A [12456] , A6 = A [123456]. 

The sequence A'=A[3J, A2= A[35J, A3= A[356], 
A4 = A [3456J , A5 = A [23456J , A6 = A also satisfies 
such a recurrence formula. It is clear that in general 
there are exactly two sequ ences in AEO" - I satisfying 
the formula (2.7), one sequence running in the oppo· 
site direction from the other. 
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Theorem 2.4 can be put a little differently by saying 
that AEQII - I if and only if there is a nested sequence 
of principal minors of A satisfying a second order dif­
ference equation. 

Here is an alternative important characterization 
of Qn-I. 

THEOREM 2.5: Let AEQ. Then AEQIl - I if and only 
if no row (or column) of A contains more than two non­
zero off-diagonal elements. 

PROOF: Assume first that AEQ~' - I hut that row i 
contains the nonzero elements aip, aiq, air, 

(p * i, q * i, r * i). 

A contains the nonzero chains a(il ... in) and 
a' (i l •.• i,;) . The product 

a(i l ... in)a'(i l •• • ill) *0 

contains all of the nonzero off-diagonal entries of A. 
Each subscript appears at most twice in a(i l • • • in) , 
once as a row subscript and once as a column sub­
script, and the same is true of a' (i l . . . ill). But if 
aip, aiq, air are nonzero so are api , aqi, ari and the 
product a(il ... in) must contain all six of these 
elements so that the index i appears six times in the 
product. This contradiction establishes the only if 
portion of the theorem. 

Assume next that AEQ and the condition is satis­
fied. Denote by a (i l . . . i"i" . . . i I) * 0 the prod­
uct of the n - 1 nonzero 2·cycles of A. Each index 1 
through n appears in this product at most twice as a 
row subscript and at most twice as a column sub­
script, and some pair of indices appear just twice. 
This follows from the irreducibility of A. That AEQ" - 1 

is now clear. 
Let us now complete our remarks on Qn- I by the 

following result: 
THEOREM 2.6: Let AEQIl - I , then there exists a pennu­
tation matrix P such that the similarity P. ' AP trans­
forms A into a Jacobi matrix. 

PROOF: We have merely to observe that the permu­
tation such that T(jq) = q will convert tpe recurrence 
relation (2.7) into the usual relation for a Jacobi 
matrix. 

For the example A , above the permutation 

cr(123456) = (356421) 

will do the job. 
Theorem 2.6 shows that the elements of Qn- I are 

essentially Jacobi matrices. We shall exploit this 
fact below. 

3. Various Determinant Formul~s 

In this section we collect several determinant 
formulas together with a few of their more immediate 
applications. Some of these formulas have interesting 
connections with the linear graph of A, G(A) , as intro· 
duced by Parter in his study of the spectral proper-

ties of the elements of Q. Therefore we shall briefly 
remark on these connections first. 

Definition 3.1 .: Let A = (ajk)\' be combinatorially 
symmetric. By the graph of A, G(A), we mean a set 
{PI, . . ., Pn} together with certain distinguished 
sets of pairs {pi, pj} corresponding to the elements 
aij * 0 of A. The points PI, ... , P1l are called the 
vertices of the graph and the pairs {Pi, Pj} the arcs of 
the graph. 

Note that this graph G(A) is only defined here for 
combinatorially symmetric matrices, hence it is not 
the directed linear graph used, for example, by Varga 
in [13]. 

G(A) is called a tree if it has Betti number zero 
and is connected. The next result is a direct conse· 
quence of the concepts of section 2. 

THEOREM 3.1: Each of the following two conditions 
is both necessary and sufficient in order that G(A) be 
a tree. 

(1) AEQ, 
(2) For each pair of indices i * j there is exactly one 

nonzero chain a(i J k), J = (j, ... , jp). 

The condition (2) of the theorem turns out to play 
a crucial role in our examination of the exterior p·th 
power of A. 

Clearly there is a 1-1 correspondence between 
trees and the elements of Q. Parter exploits this fact 
systematically in obtaining his results. 

We turn next to an examination of the matrices 
AiJA , P = 2, ... , n - 1, AiJA being the exterior p-th 
power of A. We remind the reader that if the row vec­
tors of A are ai , . . ., a", then the row vectors of 
iVA are just the exterior products 

arranged in lexicographic order. Thus AlA = A, 
AnA = d(A), and A"- IA is, except for certain signs, 
the cofactor matrix of A. (The matrix APA is usually 
called the p-th co mpound matrix of A in the older 
literature.) One may pass from the matrix A'HA to the 
cofactor matrix , cof A, by multiplying the j, k-th ele­
ment A"- IA by (- l)jH. We start with cof A, since it is 
the simplest case. 

For fixed a, {3 we shall denote by Aa{l the algebraic 
cofactor of aa{l so that cof A has the elements Aa{l, 
a, {3= 1, ... , n. 

LEMMA 3.2: Ifa * (3, we have 

Aa{l= - a{la a{ll a{ln (3.1) 
a2a 

A(a{l) ' 
ana 

where A(a{l)' is the principal submatrix of A of order 
n - 2 consisting of the elements in all rows and columns 
except a and {3. 
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PROOF: By definition 

A a{3=(- l)a+i3 all . .. al ,/3- I . . . al , /3+I .. . a 1/. 

/la- I, l au- I , ,, 
aa+ l , I lla+ I , II 

anI . .. a n, /3 - 1 ... a,. , /3+1 . . . anll 

(3 .2) 
a + f3 - 3 interchanges of rows and columns converts 
(3.2) into (3.1). 

We now expand the determinant (3.1) relative to 
the element a/3a using the fundam ental determinant 
formula of [2] . This yields 

Aa/3= - [a/3ad(A (a/3 )' ) 

n - 3 

+ L (- 1)1I- r L AJA (a lf3 )(J') ] . (3.3) 
r = O J,O,. , (a/3) ' 

The notation of formula (3.3) is as follow s : 
(a) Or , (af3)' is the set of all increasing se ts of r dis · 

tinc t indices from 5 " minus a and f3 ; 
(b) j' is a compliment of J relative to eithe r one of 

the sets 5" - a or 5" - f3 ; (thus j ' has n - 1 - r 
distinct ele ments); 

(c) A (a lf3) (J') is the sum over all comple mentary 
cycles to AJ in the matrix of Aa{3, (e ac h cycle in 
the sum i~ an n - 1 - r c ycle). 

A typical element of A (a 1f3)(J') is the sum of chains 
having the form 

a(f3Ka) 

where K = (k l • •• kq ) Cj' . In partic ular , every chain 
in A from f3 to a appears as a coefficie nt in some 
term in (3.2). Thus we have 

LEMMA 3.3: A"/3 = 0 if every chain from f3 to a is 
zero. 

LEMMA 3.4: Let AEQ, then f or each fixed a '* f3 
the expansion (3.2) for A afJ has at most one nonzero 
term. 

By lemma 3.4 formula (3.3) can be put into the form: 

(3.3') 

for AEQ and some suitable index set j . Therefore a 
cycle of cof A (or of A"- IA which has equal cycles) 
has the form: 

A i1h . .. Aipi) 

=± a(idpip) ... a (i.JlidAJj .. . AJp' (3.4) 

Now it is clear that a(idpip) ... a(i.Jlil ) is a prod· 
uct of cycles of A on the index i l of length ~ 2. Hence 
the product can only be different from zero if each 
cycle is of length 2. It follows that an even number 
of the chains in (3.4) must be of odd length. Referring 
back to formula (3.3) we see that the sign on the right 
side of (3.3) is therefore positive. Let us formalize 
this result. 

LEMMA 3.5: L et AEQ , then every nonzero cycle of 
length ~ 2 of An- )A (or ofcof A) is a product of 2· 

cycles of A and principal minors of A of the form 
(3.4) with a positive sign. 

As one might expect, the structure of the matrix 
ApA for p=2, ... n-2 is more difficult to analyze. 
Here is how the formula for an arbitrary minor of A 
can be related to the principal minors of A. Let R, 5 
be two increasing sets of indices of length p and sup· 
pose the number of indices in R n 5 is a. Let All, S 

be the determinant of the sub matrix of A in rows R 
and columns 5 and let f3 = p - a. After suitable in· 
terchanges of rows and columns we arrive at the 

submatrix A [R, 5] having the form, 

A[R,S]= a"')k l a".ka a"l jl 

a"akl a"aka a"ail 

aj1k l ajlka AU] 

ajfJk l aji3ka 

in which the index sets 

are pairwise disjoint and A [J] is a princ ipal submatrix. 
Clearly 

A - -= + A 
II , S - II, S ' 

On the othe r hand, repeated application of the 
determinant formula of [2] to A ii, s shows that the 
term s in the expansion of this determinant are ob· 
tained by forming products of a chains in A connecting 
an index from the set H to an index from the set K 
and passing through the set J. (We remark that f3 may 
be equal to zero. If a = 0 we have a principal minor 
and the discussion does not apply. The term passing 
through the set j as used here includes the possibility 
that no element of the set J appears in a given chain.) 
These products are multiplied by a principal minors 
of AJ and a suitable sign attached. Thus we have 

where (J'i is an element from the set K, AJ ,. is a minor 
• 

of A, and the sum is taken over permutations of the 
set K and partitions of J. 

With the aid of this result we may generalize lemma 
3.4 to obtain: 
LEMMA 3.6: Let AEQ , then the formula (3. 5) for A H, s 
has at most one nonzero term. 

PROOF: Suppose for contradiction, that there is 
more than one nonzero term in (3.5). To be specific, 
suppose the factor, a(hdlkl)a(hJzkz) appears in 
one term and the factor a(hJlkz)a(hJzkd appears in 
another term. Consider the principal sub matrix A [L] 
in rows and columns hI, hz, kl, kz, and the q distinct 
elements from the sets JI, Jz, J" and J2. This matrix 
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is of order p + 4 and contains p + 4 nonzero elements 
above the main diagonal. This contradicts the fact 
that AEQ. 

We may also analyze the cycles of ApA. Let 
JJ, ... , Jr be increasing multiindices of length p, 
then 

is an r-cycle of i\PA. It is clear that the interchanges 
of rows and columns used above in passing from A R , s 
to A- - will, when applied throughout the cycle (3 .6) 

R ,S 

of APA, not result in any change in sign . On the other 
hand, it is also clear from (3.5) that the product (3.6) 
consists of cycles of A on the elements of JI with 
principal minors of A. The principal minors of A are, 
of course, just the one cycles of the several matrices 
MA. 

Turning now to the case of AEQ we have the ap­
propriate generalization of lemma 3.5. 

LEMM A 3.7: Let AEQ, then every nonzero cycle 0/ 
length ~ 2 0/ Ai' A is a product 0/2-cycLes 0/ A and 
principal minors 0/ A. 

Lemmas 3.4 and 3.6 generalize the known formulas 
for Jacobi matrices to all elements of Q. Lemmas 
3.5 and 3.7 apparently give new results eve n for the 
elements of c1z . The cycles of A"A for AEclz do not 
seem to have been studied. 

4. Semi~ositive Elements of f2 

The semipositive elements of Q seem to have been 
first studied by Parter in [3]. He was aware of a 
slightly earlier paper of Givens [ll], which treats 
Jacobi matrices of semipositive type. But a funda­
mental study of the Jacobi case contained in chapter 2 
of the beautiful book of Gantmacher and Krein [7] 
seems to be almost unknown. (The only noteworthy 
exception to this statement is in the extensive work 
of Karlin on total positivity. In fact, his forthcoming 
book [8] will contain many results which supersede 
to a considerable extent the work in [7] as well as a 
wealth of new applications.) Our work in this section 
has been influenced primarily by Gantmacher and 
Krein and by Parter. 

Definition 4.1: A Eclz is of semiposi tive type if every 
nonzero 2-cycle of A is positive and ajj is real for 
j= 1, ... , n. A is principally positive if A is of semi­
positive type and ajj ~ 0, j= 1, ... , n . 

In this section we shall restrict our consideration 
to the set Q. The reason for this is sim pI y that the 
author is unaware of any interesting applications of 
the semi positive elements of c12 - Q. We start with: 

THEOREM 4.1: Let AEQ be 0/ semipositive type. 
Then there exists a diagonal matrix D uniquely deter­
mined by A up to the condition d(D) =l= ° and the signs 
0/ the elements such that 

is a real symmetric matrix. 

This theorem has an interesting history. Parter 
pointed out in [3] that AEQ of semi positive type is 
symmetrizable, basing his result upon previous work 
by Hearon [6] and Goldberg [4, 5]. Independently the 
present author pointed out in [1] that A is symme­
trizable and, apparently, first noted that this could be 
accomplished with a diagonal matrix. (In fact, the 
paper [1] gives a more or less explicit formula for D 
when A is real and a similar formula is not difficult to 
obtain for A complex.) It is also possible to show that 
the signs of D can be so chosen that if has nonnegative 
elements except possibly on the princi pal diagonal. 
This leads one to the following theorem which is a 
transcription for the semipositive case of a theorem 
proved in [1]. We do not include a proof. 

THEOREM 4.2: Let AEQ be 0/ semipositive type, 
then: 
(a ) for each b ~ min (aji, 0) the matrix A + bI has a 
unique positive eigenvalue , p(A + bI), such that for 
every A in the spectrum, a (A + bI), ptA + bI) > I A I. 
(b) If x is an eigenvector of A + bI corresponding to 
ptA + bI) then there exists a nonsingular diagonal 
matrix D such that x = Dy where y > 0. 
(c) The spectrum 0/ A and the spectrum 0/ every princi­
pal submatrix 0/ A is reaL. 
(d) If any element 0/ A is increased, then ptA) is strictly 
increased. 

In order to explore the spectral properties of ele­
ments of Q which are not so near the surface, it turns 
out to be useful to single out the class Q"- I for special 
study. For this purpose, let us consider the nested 
sequence AO = 1, AI .... , AI/ = A of principal sub­
matrices associated with AEQI/ - 1 in theorem 2.4. It 
will be convenient to set 

and 
df/ = d(Aq) , q = O, 1, . . . , n , 

} (4.1) 
n. dq(A) = d(A"-AI), q = O, 1, 

Thus do(A) == 1. 
The theory begins with: 
LEMMA 4.3: If AEQn - I is 0/ semipositive type, the 

sequence of polynomials (do(A), d(A), . .. , dn(A)) , is a 
Sturm sequence for every real value of A. 

PROOF: Since the polynomial dq(A) is of degree q for 
q = 0, . : . n , we need only show that , if dp(Ao) = 0, 

(4.2) 

In the present notation the formula 2.7 applied to 
A - AI in place of A reads 

(4.3) 

If we apply (4.3) for q = p + 1, multiply by dp _I(A) and 
set A = Ao, we obtain 

since A is of semipositive type. The lemma is thereby 
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proved unless dp- I(Ao) = O. Suppose, in fact, this is so. 
Applying (4 .3) for q = p and setting A = Ao shows 
dp - 2(Ao) = 0 also. Thus , by the same reasoning, 

contradicting the fact that do(Ao) = 1. It follows that 
dp- t(Ao) '* 0 and the lemma is proved. 

THEOREM 4.4: Let AEQn - 1 be of semipositive type. 
Then the eigenvalues of Aq, q = 1, . .. , n - 1, strictly 
interlace with those of A q+ I. Hence, in particular, the 
eigenvalues of A are distinct. 

PROOF: By Sturm's theorem the Cauchy index 
Igdq- I (A)/dq(A) (see Gantmacher [12] , Vol. 2) equals 
Vq(a)-Vq( b) , where Vq(A) is the number of changes 
in sign in the Sturm sequence (do( A), ... , dq(A» 
and where - 00 ~ a < b ~ + 00. In the present case 
we have dp(A) = (- I) pAP + ... for each value of p. 
Thus Vq(-oo) = 0 and Vq(+oo) =q. The theorem now 
follows immediately from the meaning of the Cauchy 
index. 

If A ~Q is of semipositi ve type and A~Qn - l, then 
A mayor may not have a multiple eigenvalue. For 
example 

.3 -1 -1 -1 

3 0 0 
A I= 

0 2 0 

0 0 1 

is of semi positIve type and not in Qn- I and has no 
multiple eigenvalue. But 

.3 -1 -1 -1 

2 0 0 
A2 = 

0 2 0 

0 0 2 

has the double eigenvalue A = 2. Thus the fact that 
A EQ"- I has no multiple 'eigenvalues if it is of semi· 
positive type does not distinguish this class. We shall 
show now that it is the interlacing of the eigenvalues 
in the sequence A I, ... , A"=A which does dis· 
tinguish the class. 

The following theorem is quite general in its appli· 
cation. 

THEOREM 4.5: The matrix A posses a sequence of 
principal submatrices with strictly interlacing real 
roots if and only if there is a sequence of principal 
submatrices whose determinants f orm a Sturm sequence 
for all real A. 

PROOF: The "if" part is the conte nt of theorem 4.4, 
the proof of which did not make explicit use of the 
hypothesis AEQn - l. Hence we may confine ourselves 
to the only if state ment. 

To be specific suppose JI CJ2 C ... CJ" is a se· 
quence of increasing multiindices with Jq containing 
q distinct elements from the set J n = S" = (l . . . n) . 
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Let Jo be the e mpty set of indices and assume the 
sequence of polynomials. 

(4.4) 

where AJo(A) == 1, is suc h that AJp(A) has p dis tin c t 
real roots which strictly interlace whh those of AJp+1(A) , 
p = 1, . . . , n - 1. Denote by AI' , 1, • . ., AI' , I' the 
zeroes of AJ (A) in increasing order. For each p we 

I' 
require that 

Ap+l, I < AI' , 1< Ap+l, 2 < .. . < AI', I' < Ap+l, 1'+ 1. 

In view of the fact that the leading coefficient of 
AJp(A) is (-1)1', we may write 

I' 
AJp( A)= IT (Ap, q-A), p=l , .. . , n. 

q= 1 

For fixed r we have 

1'+ 1 1'- 1 =IT (Ap, r-Ap+l, q) IT (Ap, r-Ap'l , q) 
Q= l q= 1 

(7.4) 

In the firs t product there are r POSItIve factors and 
p + 1 - r negative factors. In the second produc t there 
are r -1 positive factors and p - ,. negative factors. 
Thus there are 2 (p - r) + 1 negative factors in the 
product and 

AJp+ 1 (AI', r)A Jp _1 (AI), r) < 0, 

for r= 1, ... , p. It follows that the sequence (4.4) 
is a Sturm sequence. This proves the theorem. 

On the basis of theorem 4.5 we can now investigate 
the consequence of AEf2 possessing a S turm se­
quence of principal submatrices. Let us assume that 
the index jp is adjoined to Jp- I to obtain Jp. Then for 
AEf2 the formula (2 .3) applied to the sequence (4.4) 
becomes 

1' - 1 

AJp( A) = (o'(jp) - A)AJ-ip(A) - L a(jpjq)AJ- Upiq)(A). 
q= 1 

(4.5) 
It follows that 

1'- 1 

=- L a (jpjQ) AJ- UpiQ)(Ap_1, 1·)AJp_2 ~J\.p- l , r). 
q= 1 

Clearly we shall have a Sturm sequence only if each 
of the numbers 

1'- 1 

L a(jpjq)AJ-UpiQ)(Ap- l , r)AJp_2 (Ap- t , r) > 0, (4.6) 
q= 1 

~------. ~-



r = 1, . . ., p - 1. Since the inequality is strict, at 
least one term in (4.6) must be different from zero. 
On the other hand, we have conditions of the form 
(4.6) for the n - 1 different values of p, p = 2, ... , n, 
and A has at most n - 1 nonzero 2-cycles. The same 
2-cycle cannot appear in the inequality (4.6) for two 
different values of p. It follows that the left side of 
(4.6) contains exactly I-term for each value of 

p=2, ... , n , 

and A has exactly n - 1 nonzero 2-cycles. But this im­
plies that (4.6) becomes 

a(jpjp-I)A3p_2 (Ap- I, r) > 0 (4.7) 

p = 2 , . . ., n. Therefore each of the n - 1 nonzero 
2-cycles of A is positive. This result is summarized in 
the following theorem: 

THEOREM 4.6: Let AEcf2 possess a sequence of 
principal sub matrices with strictly interlacing roots. 
Then AEQn - I and A is of semipositive type. 

Theorems 4.4 and 4.6 nail down the most important 
spectral property of the semipositive elements of Qn- I. 
Since the elements of Qn- I are essentially Jacobi mat­
rices by virtue of theorem 2.6, we can hardly argue 
that theorem 4.4 is a new result. On the other hand, 
theorem 4.6 appears to be a new result and, as it com­
plements theorem 4.4, we felt it appropriate to include 
both. 

The foregoing analysis can be used conveniently 
to study the spectral multiplicity of the elements Q 
not in Q1!-1. Our intention is to indicate briefly the re­
sults of Parter, but by a method somewhat more alge­
braic in character than his. We only sketch the results 
here, referring the reader to [3] for a more detailed 
argument. 

We use theorem 2.6 to derive a kind of canonical 
form for an element of Q - Qn- I. By theorem 2.5 
AEO - 0" -1 has at least one row with more than two 
nonzero off-diagonal elements. Suppose the pth row 
is one such with the nonzero elements in columns 
qt, . . ., qex, a > 2. By a modification of the argument 
used to prove theorem 2.6 there exists a permutation 
matrix P such that the matrix P A pi has the follow­
ing form: 

P A pi =( A 11 C I 0 . . . 0 ) , 

~: .. ... ~~~ ... ~.~~ .: .. : .. : .. ~~ .. 
o Cex 0 ... Arxa 

(4.8) 

in which Aii is a square matrix of order ni , i= 1, ... , a; 
' CI is a column vector of zeroes except for the nlth 
entry which is aq,p; rl is a row vector of zeroes except 
for the nonzero element ap , q, in the nlth entry; Ci, 
i = 2, . . ., a, is a column of zeroes except for the 
nonzero element aq .p in the first position;, 

I 

ri , i=2, ... , a 

is a row of zeroes except for apq, =l= 0 in the first posi-
I 

-- -------, 

tion; and each block Aii is either a Jacobi matrix or a 
matrix of the form (4.8). Thus P A p i is rec ursively 
defined in the general case. 

Now we apply the basic recurrence formula (2.3) 
to P A pi - AI to obtain 

d(PAPLAI)=(app-A)d(Al1(A) ... d(Aexex(A» 

ex ex 
- L a(p, qi) d(Aii(A» IT d(Ajj(A». (4.9) 
~ I ~l 

H · i 

In (4.9) Aii is the matrix obtained by deleting the last 
row and column of Aii if i = 1; otherwise it is the matrix 
obtained by deleting the first row and column of Aii . 

Since a> 3, it follows immediately from (4.9) that 
A EQ - Qn - 1 has the multiple eigenvalue Ao if Ao is an 
eigenvalue of at least three of the sub matrices Aii . 

Suppose, on the other hand, that Ao is an eigenvalue of 
A of multiplicity at least two. Then Ao must be an 
eigenvalue of the principal submatrix of A, A (p), i.e. , 
Ao must be an eigenvalue of Aii for some value of i, 
say for i = k. Thus 

ex 
O=d(P A P'-AoI)=-a(p , qk)d(Akk(Ai» TI d{AjiAo». 

j = l 
j-I· k 

~nce, either Ajj{Ao) = 0 for some value of j =l= k, or 
(Akk{Ao» = O. In the latter case the block Akk is not a 
Jacobi matrix and must itself have Ao as a multiple 
eigenvalue. Clearly the argument up to this point can 
be repeated for the block Akk, so we may confine 
ourselves to the case where Ajj{AO) = 0 for some value 
of j =l= k. Thus after a finite number of steps we must 
arrive at a matrix having the form (4.8) such that each 
diagonal block is a Jacobi matrix. But it is easy to see 
that such a matrix can have a multiple eigenvalue Ao 
only if at least three of the blocks have Ao as an 
eigenvalue. 

Now, if a diagonal block Aii in the representation 
(4.8) is not a Jacobi matrix, there is some row of A, 
say the qth row, having at least three nonzero off­
diagonal elements. This row could have been used in 
the beginning to set up the form (4.8). Moreover, if 
this is done, we see that Ao a multiple eigenvalue of 
A implies A, is an eigenvalue of at least three of the 
diagonal blocks. 

This sketch establishes the theorem of Parter which 
we here formulate quite differently than his original 
graph-theoretic formulation. 

THEOREM 4.7 (parter): Let AEQ_Qn- l be of semi­
positive type. Then A has the multiple eigenvalue Ao 
if and only if there exists a permutation matrix P such 
that P A pi has the form (4~8) with a~ 3 and Ao an 
eigenvalue of at least three of the diagonal blocks A ii . 

On the basis of this theorem it is obvious that the 
assertions made regarding the matrices Al and A2 in 
subsection 4.2 are valid. 

The theorem on interlacing proved above, theorem 
4.4, for the elements of Qn -I is of considerable interest 

I 
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in the applications to mechanics. That it does not 
extend in precisely this form to the elements of 
Q_Qn - l is quite clear. Nevertheless one may ask 
when Ao can be an eigenvalue of AEQ-Qn - I and also 
an eigenvalue of a certain type of principal submatrix. 
We shall not pursue this question in the present paper. 
It will be taken up elsewhere whe n we study the 
a pplication of matrices in f2 of semi·positive type 
to problems in mechanical vibrations. Similarly the 
results on eigenvectors are more strongly motivated 
in a mechanical setting. On the other hand , some of 
the results of section 3 have special application to 
the semi positive elements of f2 and we take up this 
s ubject next. 

We assume for the remainder of this section that A 
is positive semidefinite. This will be the case, for 
example , if A is diagonally dominant. Lemmas 3.4 
and 3.5 now imply 

THEOREM 4.8: Let AEQ be of semipositive type and 
positive semidefinite. Then cof A has no zero elements 
and is a matrix of positive cyclic type . In particular, 
if A is positive definite, then A - I has no zero elements 
and is of positive cyclic type. 

It should be mentioned at thi s point that some of 
the theory of matrices of positive cyclic type is worked 
out in [2]. In the literature of mathematical economics 
these matrices are usually called Morishima matrices 
in honor of Professor Michio Morishima who first 
characterized them. The a nalogue of the Perron· 
Frobe nius theorem is valid for such matrices. Since 
the largest eigenvalue of A - I is related to the smallest 
eigenvalue of A we have 

COROLLARY 4.9: Let AEQ be of semipositive type 
and suppose A is positive definite. Then if 

are the eigenvalues of A in increasing order, we have 

i.e., Al and An are simple eigenvalues of A. Moreover 
if any element of A - I is increased , then Al is strictly 
decreased. 

We feel the relationship between theorem 4.7 and 
corollary 4.9 should be stressed. If AEQ-Qn - I, is 
semi positive and positive definite, and if A has a 
multiple eigenvalue A *, then A * cannot be equal to 
Ai or to All.' Thus for the matrix A2 of subsec tion 4.2 
the double eigenvalue A = 2 is neither the smallest nor 
the largest eigenvalue. 

The fact that A - I is of positive cyclic type enables 
us to say even more about A itself. Every matrix of 
positive cyclic type is si milar to a positive matrix via 
a diagonal matrix D. Thus, if the conditions of corol· 
lary 4.9 are sati sfied there exists a diagonal matrix D 
such that the matrix B- 1 = D- 1A - ID sati sfi es 

B - 1 > 0. (4.10) 

Now (4.10) implies that B itself is monotone, i.e., if 
Bx > 0 then x > O. Consequently, we deduce that A 

IS similar by the diagonal matrix D to a monotone 
matrix. 

In the special case where Aij ~ 0, i =1= j , and A is 
positive cyclic type, then A is both monotone and of 
positive cyclic type. In this case the inverse of A is 
positive, A - I > O. That A - I ~ 0 follows from the well­
known connection betwee n monotone matrices and 
nonnegative matrices. In order to conclude that 
A - I> 0 we must appeal to the cofactor formula (3 .3), 
and lemma 3.4. This , result is a generalization of a 
theorem of Gautmacher and Krein. 

In conclusion a few remarks on total positivity are 
in order. We cannot use lemma 3.7 directly in the same 
way as lemma 3.5, to conclude that ApA is of positive 
cyclic type, since lemma 3.7 is weaker than 3.5. In 
fact, we have seen above that there exist elements 
AEQ - Qn - I having multiple eigenvalues. Since totally 
positive matrices enjoy the interlacing property 
characterized in theorem 4.4., such elements of 
Q - Q n - I cannot be totally positive. This question 
therefore re mains open. It may be formulated as 
follows: Which elements AEQ of semipositive type 
have the property that AJJA is of nonnegative cyclic 
type for p = 1, . . ., n ?(Of course, we know that 
every such A must be positive se midefinite.) 

5. Semi negative Elements of c12 
The seminegative elements of f 2 fir st became of 

interest through the work of Quirk and Ruppert [10] 
in qualitative economics. We restri ct ourselves here 
to real matri ces in f 2. As usual we also confine our­
selves to the consideration of elements of Q. 

Definition 5.1: A EQ is of seminegative type if every 
nonzero 2·cycle of A is negative. A is principally nega· 
tive if A is of se minegative type and 

ajj ~o,.i= l. .. . , n. 

The following result is established by an argument 
entirely similar to that used to prove a portion of the· 
orem 2 in [1]. We omit the proof. 

LEMMA 5.2: Let AEQ be of seminegative type and set 
A = E + A* where E=diag {all, " " ann} and 
A* - { * } . h * - f . =1= k d * - 0 A* . - a'k wU ajk - aJk ~ ) an a jj-. ~s 

similar J to a skew-symmetric matrix by a diagonal 
matrix D, i.e., there exists a diagonal matrix D such 
that 

D - IAD = E + B, 

where B is skew symmetric. 
Lemma 5.2 leads immediately to the following re­

result : 
LEMMA 5.3: Let AEQ be of seminegative type and have 
a zero principal diagonal. Then all of the eigenvalues 
of A lie on the imaginary axis in the complex plane. 

We shall conclude the paper by formulating the 
Quirk·Ruppert theorem somewhat more elegantly 
than it appears in [10]; (see, however , [9] where the 
result is also better formulated). 
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Definition 5.2: If A = (ajk)f is a real matrix we asso· 
ciate with it the matrix sgn A = (ark) f where ark = sgn 
ajk, j, k = 1, ... n, and the equivalence class QA 
defined by 

QA = {Blsgn B = sgn A}. 

The equivalence class Q A may be called a qualitative 
matrix. 

Definition 5.3: A is a sign stable matrix if B€QA 
implies B is a stable matrix, i.e ., all the eigenvalues 
of B lie in the open left half of the complex plane. 

THEOREM 5.3: (Quirk·Ruppert) Let A be an irreduc· 
ible matrix. Then A is sign stable if and only if 

(i) A€Q and A is principally negative, 
(ii) ajj < 0 for some value ofj, and 
(iii) d(A) * O. 

6. References 

[1] J. S. Maybee, New generalization of Jacobi matrices, J. Soc. 
Indust. Appl. Math. 14 (Sept. 1966). 

[2] J. S. Maybee, Remarks on the theory of cycles in matrices , 
to appear. 

[3] S. Parter, On the eigenvalues and eigenvectors of a class of 
matrices , 1. Soc. Indust. App!. Math. pp . 376-389 (1960). 

[4] Karl Goldberg, A matrix with real characteristic roots, 1. Res. 
NBS 56, 87 (1956)RP2652. 

[5] Karl Goldberg, Random notes on matrices , 1. Res. NBS 60, 
321·326 (1958)RP2850. 

[6] John Z. Hearon, The kinetics of linear systems with special 
reference to periodic reactions , Bull. Math. Biophys. 15, 
121- 141 (1953). 

[7] F. R. Gantmacher and M. G. Krein , Oscillation Matrices and 
Kernels and Small Vibrations of Dynamic Systems, 2d ed., 
Moskow, Gostekhizdat 1950 (in Russian), also available in 
German translation. 

[8] S. Karlin , Total Positivity and Applications , forthcoming book, 
Stanford University Press. 

[9] J . Maybee and J. Quirk, Qualitative problems in matrix theory, 
to appear. 

[10] J. Quirk and R. Ruppert , Qualitative economics and the stability 
of equilibrium, Review of Economic Studies, 32 (1965). 

[11] W. Givens, A method of co mputing eigenvalues and eigenvectors 
suggested by classical results on symmetric matrices, 
National Bureau of Standards. Appl. Math. Ser., No. 29, 
117-122 (1953). 

[12] F. R. Gantmacher, Matrix Theory, Vols. I and II (Chelsea 
Publishing Co., New York, 1959). 

[13] R. Varga, Matrix Iterative Analysis (Prentice·Hall , Inc., Engle­
wood Cliffs, New Jersey, 1962). 

(paper 7lB4-246) 

224 


	jresv71Bn4p_215
	jresv71Bn4p_216
	jresv71Bn4p_217
	jresv71Bn4p_218
	jresv71Bn4p_219
	jresv71Bn4p_220
	jresv71Bn4p_221
	jresv71Bn4p_222
	jresv71Bn4p_223
	jresv71Bn4p_224

