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Matrices of Class 7,
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Let /, be the set of n X n complex matrices 4 = (a;j) such that ajj,aj,, . . .

that 3 < r < n and all distinct ji, jo, . .

ajrj, = 0 for all r such

., Jr- Then many properties of this set are given, which may be

regarded as generalizations of the properties of the set of triple diagonal matrices.
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1. Introduction

In a previous paper, [1].! we introduced the class
of matrices ¢, as a generalization of the class ¢ of
Jacobi matrices. We also developed a few of the
spectral properties of certain types of matrices in
Z>. In [2] we have shown why the members of _#, enjoy
many special properties not shared by matrices with
more complex structure.

Several years prior to the work done in [1] and [2]
S. Parter in [3] obtained a spectral theorem for certain
elements of ¢, by an ingenious argument based upon
the theory of linear graphs.

Finally, in a recent paper [10], Quirk and Ruppert
obtained very deep stability results for a subset of
#» quite different from that considered by Parter.
The theorems in [1] overlap with the work of Quirk
and Ruppert as well as with the work of Parter.

The various results of the papers [1], [2], [3], and
[10] point to the desirability of constructing a compre-
hensive theory of the properties of elements of _#,.
The purpose of the present paper is to initiate such a
study. We will show that a remarkable number of the
properties of Jacobi matrices can be generalized to
the elements of _#,.

It turns out that the class ¢, contains two subclasses
of particular importance. We shall refer to the elements
of these classes as matrices of semi-positive type and
semi-negative type respectively. The semi-positive
matrices occur in a variety of problems in the physical
sciences, particularly in the small vibrations of
mechanical systems. The semi-negative matrices
occur in the theory of qualitative stability and find
their primary application in the social sciences,
particularly in economics.

With these applications in mind we have concen-
trated mainly upon the semi-positive and semi-negative
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elements of #, although these two classes certainly
do not exhaust the possibilities.

The paper is organized into several parts as follows:
In section 2 we set forth the basic definitions and
develop what may be called the combinational proper-
ties of the elements of _#,. This section is not restricted
by any considerations of positivity or negativity.
The same is true of section 3 in which we give a variety
of determinant formulas. Some of these results gen-
eralize known formulas for Jacobi matrices, but the
problem for elements of ¢, is more difficult and some
problems remain open. In particular, our formulas for
the exterior p-th power of elements of _#, are not suffi-
ciently well worked out to enable us to decide which
matrices have exterior p-th powers of positive cyclic
type. On the other hand many of these formulas hold
for quite general matrices.

Section 4 consists of a study of semi-positive ele-
ments of #,. Here we concentrate mainly upon the
questions of interlacing and spectral multiplicity.
Other, more special, aspects of the semi-positive
matrices are more properly reserved for a general
treatment of certain mechanical problems where such
questions naturally arise. We intend to treat these
matters shortly in another paper.

Finally, section 5 consists of a few miscellaneous
properties of semi-negative matrices in #,. The prob-
lems here are more difficult than those associated
with the semi-positive matrices because they center
around the problem of stability and this in turn seems
to be an inherently difficult problem. We have been
unable to give an essentially simpler proof of the
fundamental stability theorem of Quirk and Ruppert
[10]. This being so, we have confined ourselves to
stating the theorem and to deriving those few results
which follow readily from the general determinant
formulas of section 3.

A basic problem remaining unsolved is that of deter-
mining for the elements of _#, how the eigenvalues of
A, or at least the real parts of the eigenvalues, vary
with the elements along the principal diagonal of A.
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A solution to this problem in combination with lemma
5.2 might yield an elegant proof of half of the Quirk-
Ruppert theorem. Another problem not treated here
is the structure of the eigenvectors for the semi-
positive and semi-negative matrices. For certain im-
portant subclasses of semi-positive matrices this
question is most strongly motivated by problems in
mechanics and we intend to deal with it later. Parter
[3] has some results about eigenvectors, but a glance
at the extensive results available for the Jacobi
matrices makes it clear that much more extensive
theorems should be available for _#,. As of the present
writing nothing is' known about the eigenvectors of
semi-negative elements of #,.

2. Notation and Fundamental Preliminaries

We deal with n X n matrices over the real or complex
field, n > 2. A= (ap)} is a Jacobi matrix, 4 € ¢, if
ajx =0 whenever |j—k| > 1. To define the class £,
we recall that an r-cycle in 4 is an object of the form

ar - . . J)= GGy - - - @G58, 2.1)
where the indices in J=(j; . . . j,) are distinct ele-
ments of the set S,=(1 . . . n). The elements a;; on
the principal diagonal of 4 are the 1-cycles of A.

DEFINITION 2.1: The matrix 4 = (ajx)} is an element
of &, if every r-cycle of A of length r > 2 is zero.

Definition 2.1 leads at once to a formula of funda-
mental importance in any study of the properties of
the elements of #,. Let J=(; . . . j;) be any set of
distinct indices from S,; then we denote by A[J] (or
Alj: . . . jr) the principal submatrix of 4 in rows and
columns J. We use both the symbol d to denote the
determinant function and the Bourbaki notation.

Thus,
dAJ) =A,=d(Alji . . . ji]).
We also write A\) for A — N, A;N) = d(A[J; \]). Fpr

each r=2.3, . . ., n, each sequence J=(j; . . . j,)
of distinct indices, and each 1 < p < r, we have

(2.2)

-

ANY=(@0ip) = N3, 0) = 32 @i, — (j,j,) (V) 2-3
s

In this formula and subsequently we denote by J — H

(or J—(hy . . . hy) the set of indices remaining in J

after deleting the indices in H.

In [1] we defined the class _#, directly by a formula
having the form (2.3). We were led naturally to it by
the corresponding formula connecting the principal
minors of Jacobi matrices.

The key to our method consists in first showing that
practically every determinental formula normally
associated with the Matrix 4 can be expressed in
terms of determinents of principal submatrices and
certain special products of elements of 4 which are
easily studied. The new formulas obtained in this way
are then systematically exploited. We have already

done this with the basic determinant formula intro-
duced in [2] and the results obtained there are freely
used below. Formula (2.3) is at the same time a special
case of the classical formula of Cauchy and a special
case of the general formula of [2] for an arbitrary square
matrix.

To expedite the study of various products in a matrix
A we introduce the following concepts.

Definition 2.2: The product

al)=als . . - ) =apjs + - - @, e (24)

(1 . . . jp) distinct, is called a chain of length p —1
in A.

In dealing with chains we shall often refer to
a(aJB)=alaj . . . jyB) as a chain from «a to B.
The number of distinct chains in A4 of length p—1 is

n
p!( ) A complete theory of chains and cycles of

A is not essential for the study of #, so we limit
ourselves here to the few basic concepts and ele-
mentary results needed.

Definition 2.3: The product

a())= al)ajy, (2.5)

is called the closure of a(/). We also refer to a(/)
as a closed chain of length p in 4. The cycle

?l(/) —= (lleil

will be referred to as the completion of a()).

Note that a chain of length 1 is closed. All other
closed chains have length = 3. In the sequel when we
refer to closed chains we shall exclude the closed
chains of length 1.

Clearly there is a unique closure and a unique com-
pletion to each chain in 4. Conversely each closed
chain is the closure of a unique chain so that there is a
I-1 correspondence between chains of length p—1
and closed chains of length p. On the other hand a
cycle of length p is the completion of each of the p
chains of length p—1 obtained by striking out any
term in a(J).

A chain a(/J) # 0 will be called maximal in A4 if both
its closure and its completion are zero. Clearly we
may also characterize the class _#, by the statement
that for 4 € _#, no chain of length greater than one has a
nonzero completion in 4. Recalling (see [1], [2], or
[3) that 4 is combinatorially symmetric if aj +0
implies ax; +0, we see that the existence of nonzero
closed chains in 4 € ¢, is a measure of the extent to
which A4 fails to be combinatorially symmetric. On
the other hand we shall see that 4 € ¢, is irreducible
(indecomposable) only in the presence of combinatorial
symmetry. Hence the existence of one nonzero closed
chain in 4 € Z, implies A is reducible. This furnishes
us with an occasionally useful criterion for recognizing
reducible elements of ¢,

Definition 2.4: The set Q consists of all 4 € g,

which are also irreducible (indecomposable).
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In [1] we called the elements of Q quasi-Jacobi
matrices. The paper [3] of Parter deals with a proper
subset of (). Some of our results will be valid only for
elements of Q; others will be valid for all elements
of 7».

THEOREM 2.1: Let A€ #,. A €Q if and only if A is
combinatorially symmetric and has exactly n—1
nonzero elements above the principal diagonal.

PrROOF: We confine ourselves here to proving the if
portion of the theorem since the only if portion was
proved in [1] (see also [10]). Suppose, for contradiction,
that the set S, can be divided into disjoint subsets
J=0U1 - - . Jjp)sJ =0p+1 - . . ju) such that every ele-
ment having the form aj. with je J, k€] is zero. By
combinatorial symmetry the elements a;; are also
zero. The principal submatrices A[/] and A[J'] are also
combinatorially symmetric. Either 4[/] contains more
than p —1 nonzero elements above the principal diago-
nal or A[J'] contains more than n—p—1 nonzero
elements above the principal diagonal. For in the
contrary case A can have no more than n — 2 nonzero
elements above the principal diagonal. By theorem 1
of [1] it follows that 4 ¢ _#, yielding the desired contra-
diction. Thus the conditions imply A is irreducible.

We may observe now on the basis of this theorem
and the previous remarks that 4 € Q if and only if
every chain in A of length = 2 is maximal.

For many purposes it is desirable to know the rela-
tive positions of the elements of A € ¢ which are
zero and the nonzero elements of 4. Of course, each
nonzero off diagonal element of 4 is a chain of length
one. The existence of nonzero chains of greater length
in A does imply information on the location of zeroes.
The following result is almost obvious.

LEMMA 2.2: Let a(iy . . . i) be a nonzero chain in
A€ 7, of length p=2. Then every element a.z of A
such that a=i,, B=1i, with 1 <r<q—1=<p is zero.

The lemma implies that each nonzero chain of length
p—=>2in A € ¢ forces (p—1)(p—2)/2 elements of
A to be zero. If A€ the number of zeroes becomes
(p—1)(p—2). It is instructive to look at the two
extreme cases below (the x’s denote the location of
nonzero elements),

x x 0 0 0 O
x x 0 x 0 O
0 0 x 0 x O
A1:
0 x 0 x 0 «x
0 0 x 0 x «x
0 0 0 x x «x
X X X X X X
x x 0 0 0 O
x 0 x 0 0 O
Az_—'
x 00 x 0 O
x 00 0 x O
x 0 0 ()

Ay, A> €(Q. A, has the chain a(124653) + 0 of length
5. By lemma 2.2 this nonzero chain locates all of the
zero elements of A;. On the other hand A4, clearly has
no nonzero chain of length greater than 2.

Here is a result which is complimentary to lemma 2.2
and which we again give without proof.

LEMMA 2.3: Let A € Q and suppose that for fixed
1<i<n the elements ay, ... a;, ji+1i,...,

ja F 1, are all different from zero. Then the
(q—1(g—2)/2

elements a;; with 1<r<p—1=<gq of A are zero,
and the symmetrically placed elements are zero.
These simple ideas may be put to work to further
classify the elements of _#, with aid of
Definition 2.5: The matrix 4 € (Q belongs to the set
Qn-1 if there exists a nonzero chain of length n—1
in A.
THEOREM 2.4: The matrix Ae Q"-1'if and only if
there exists a sequence A°=1, A', .. . A"=A of
principal submatrices of A with A’ a matrix of order

J, =0, . . ., n, and A" a principal submatrix of
A}, satisfying the recurrence formula
d(A") = a()d(AY™") = a(aja-1)d(A2), (2.7
q=2, . . ., n, where the products a(jqjq-1) # 0.
PROOF: Suppose first that 4 e Q" ! and let
(l(j] e o o j")
be a nonzero chain of length n—1 in 4. Set A°=1,
Jo=1U1 . . . jg for each ¢=1,. . ., n, and set

A1=A[J,]. Expand d(AY) relative to the gth column.
By virtue of lemma 2.2 the elements 4, ., =0 for

r = 2. On the other hand, we are given that @, F 0.

By combinatorial symmetry the only nonzero off-
diagonal element in the gth row of A, is Wy’ For-
mula (2.7) follows immediately for ¢ = 2.

To prove the converse, suppose the sequence
(A°, . . ., A") exists satisfying (2.7). The chain
a(j, . . ., ju) #0 and also the transposed chain
a (Gi...jn)=a(n...j1) ¥0. Thus A4 has at least
n—1 nonzero off-diagonal elements above the prin-
cipal diagonal and at least n—1 below. Since 4 €0,
A € Qn -1,

As an application of this result consider the matrix
A above. A sequence of principal submatrices satis-
fying the formula (2.7) is the following:

A'=A[1], A2= A[12], 4* = A[124],
A*=A[1246], A4>= A[12456], A5 = A[123456].

The sequence A'=A[3], A>=A[35], A3=A[356],
A*=A[3456], A>=A[23456], A=A also satisfies
such a recurrence formula. It is clear that in general
there are exactly two sequences in 4eQ” ! satisfying
the formula (2.7), one sequence running in the oppo-
site direction from the other.
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Theorem 2.4 can be put a little differently by saying
that 4eQ” ! if and only if there is a nested sequence
of principal minors of A satisfying a second order dif-
ference equation.

Here is an alternative important characterization
of Qn-1.

THEOREM 2.5: Let AeQ. Then AeQ"~! if and only
if no row (or column) of A contains more than two non-
zero off-diagonal elements.

PROOF: Assume first that 4eQ” ' but that row i
contains the nonzero elements aiy, aiq, air,

(p*+i,qFi,r+1).
A contains the nonzero chains a(i; . in) and
a'(iy . . . iy). The product
a(i1 5 oo i,,)a'(i1 5 o o ln) :FO

contains all of the nonzero off-diagonal entries of A.
Each subscript appears at most twice ina(i, . . . i),
once as a row subscript and once as a column sub-
script, and the same is true of a'(i; . . . i,). But if
Qip, Qig, Qir are NONZETO SO are api, dqi, ari and the
product a(i; . . . i) must contain all six of these
elements so that the index i appears six times in the
product. This contradiction establishes the only if
portion of the theorem.

Assume next that 4eQ and the condition is satis-
fied. Denote by a(i; . . . iwin . . . i1) ¥ 0 the prod-
uct of the n -1 nonzero 2-cycles of 4. Each index 1
through n appears in this product at most twice as a
row subscript and at most twice as a column sub-
script, and some pair of indices appear just twice.
This follows from the irreducibility of 4. That AeQ" !
is now clear.

Let us now complete our remarks on ("' by the
following result:

THEOREM 2.6: Let AeQ" ', then there exists a permu-
tation matrix P such that the similarity P'AP trans-
forms A into a Jacobi matrix.

PRroOOF: We have merely to observe that the permu-
tation such that 7'(j;) = ¢ will convert the recurrence
relation (2.7) into the usual relation for a Jacobi
matrix.

For the example 4, above the permutation

o(123456) = (356421)

will do the job.

Theorem 2.6 shows that the elements of Q" ! are
essentially Jacobi matrices. We shall exploit this
fact below.

3. Various Determinant Formulas

In this section we collect several determinant
formulas together with a few of their more immediate
applications. Some of these formulas have interesting
connections with the linear graph of 4, G(A), as intro-
duced by Parter in his study of the spectral proper-

ties of the elements of Q. Therefore we shall briefly
remark on these connections first.

Definition 3.1.: Let A= (ajx)} be combinatorially
symmetric. By the graph of 4, G(4), we mean a set
{pi, . . ., pn} together with certain distinguished
sets of pairs {pi, pj} corresponding to the elements
aij ¥ 0 of A. The points p;, . . ., p, are called the
vertices of the graph and the pairs {pi, p;} the arcs of
the graph.

Note that this graph G(A4) is only defined here for
combinatorially symmetric matrices, hence it is not
the directed linear graph used, for example, by Varga
in [13].

G(A) is called a tree if it has Betti number zero
and is connected. The next result is a direct conse-
quence of the concepts of section 2.

THEOREM 3.1: Each of the following two conditions
is both necessary and sufficient in order that G(A) be
a tree.

(1) AeQ, )
(2) For each pair of indices i ¥ j there is exactly one
nonzero chain a(i J k), J =@, . . ., jp)

The condition (2) of the theorem turns out to play
a crucial role in our examination of the exterior p-th
power of A.

Clearly there is a 1-1 correspondence between
trees and the elements of (). Parter exploits this fact
systematically in obtaining his results.

We turn next to an examination of the matrices
APA, p=2, . . ., n—1, AP4 being the exterior p-th
power of A. We remind the reader that if the row vec-
tors of A are a', . . ., a", then the row vectors of
A?A are just the exterior products

ahAai:A . . . Adp

arranged in lexicographic order. Thus A'A=A,
A"A=d(A), and A"'A is, except for certain signs,
the cofactor matrix of 4. (The matrix A?A4 is usually
called the p-th compound matrix of 4 in the older
literature.) One may pass from the matrix A"~'A4 to the
cofactor matrix, cof 4, by multiplying the j, k-th ele-
ment A"'4 by (— 1)/**. We start with cof 4, since it is
the simplest case.

For fixed a, B we shall denote by 4,3 the algebraic
cofactor of aag so that cof A has the elements Ay,
a, =1, ..., n

LEMMA 3.2: Ifa *+ B, we have

AaBZ—- aga agr . . . agn| » (3.1)
A2
Apy
Ana

where A(p)y is the principal submatrix of A of order
n — 2 consisting of the elements in all rows and columns
except o and .
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PRroOOF: By definition

AaB:(_ ])‘HB aa ... a1,8-1 ... Q1,8+1 - . - A1
Aa—1, 1 Aoa—1,n
Aa+1, 1 Qo+1, n
QApr - . - Ap,B-1 - « - An, B+1 « « « Ann

(3.2)
a+ B — 3 interchanges of rows and columns converts
(3.2) into (3.1).

We now expand the determinant (3.1) relative to
the element ag, using the fundamental determinant

formula of [2]. This yields
Aop=— [apad (A (apy)

Yy S Ad@Ble]. 33
r=0

JeQbr, (aB)’

The notation of formula (3.3) is as follows:

(a) Q. (¢B)" is the set of all increasing sets of r dis-
tinct indices from S, minus « and ;

(b) J" is a compliment of J relative to either one of
the sets S, —a or S, — B; (thus J' has n—1—7r
distinct elements);

(c) A(a|B)) is the sum over all complementary
cycles to A, in the matrix of 4,5, (each cycle in
the sum is an n — 1 — r cycle).

A typical element of 4 («|B)() is the sum of chains

having the form

a(BKa)

where K= (k;...ky)CJ'. In particular, every chain
in A from B to « appears as a coefhicient in some
term in (3.2). Thus we have

LEMMA 3.3: Au=0 if every chain from B to « is
zero.

LEMMA 3.4: Let AeQ, then for each fixed o =+ f3
the expansion (3.2) for A has at most one nonzero
term.

By lemma 3.4 formula (3.3) can be put into the form:

Awp==*a(BJa)Aj 3.3")
tor Ae() and some suitable index set /. Therefore a
cycle of cof A (or of A" 'A which has equal cycles)
has the form:
Ai i

ko o o it

Now it is clear that a(iiJpip) . . . a(iz/1i1) is a prod-
uct of cycles of 4 on the index i; of length = 2. Hence
the product can only be different from zero if each
cycle is of length 2. It follows that an even number
of the chains in (3.4) must be of odd length. Referring
back to formula (3.3) we see that the sign on the right
side of (3.3) is therefore positive. Let us formalize
this result.

LEMMA 3.5: Let AeQ, then every nonzero cycle of
length =2 of A" 'A (or of cof A) is a product of 2-

cycles of A and principal minors of A of the form
(3.4) with a positive sign.

As one might expect, the structure of the matrix
A?4 for p=2, . . . n—2 is more difficult to analyze.
Here is how the formula for an arbitrary minor of 4
can be related to the principal minors of 4. Let R, S
be two increasing sets of indices of length p and sup-
pose the number of indices in RNS is a. Let Ag, s
be the determinant of the submatrix of 4 in rows R
and columns S and let B=p—a. After suitable in-
terchanges of rows and columns we arrive at the

submatrix 4 [R, 5] having the form,

A[R, S]= an,k, . angk, Ang, - - - Gnjg
ank, . an, Ahgy « - - @nyig
ke, - - - Ak, AlJ]

Ajgky -+ - - gk,
in which the index sets
H=(h ... h), K=k . . . ka), J=0(jx . . . JB)

are pairwise disjoint and A[J] is a principal submatrix.
Clearly

e
R, S —AR,S'

A
On the other hand, repeated application of the
determinant formula of [2] to A& s shows that the
terms in the expansion of this determinant are ob-
tained by forming products of a chains in 4 connecting
an index from the set H to an index from the set K
and passing through the set J. (We remark that 8 may
be equal to zero. If «=0 we have a principal minor
and the discussion does not apply. The term passing
through the set J as used here includes the possibility
that no element of the set J appears in a given chain.)
These products are multiplied by « principal minors
of A, and a suitable sign attached. Thus we have
AR,S=2ia(h1J1m) 5 oo o

a(hqjaoa)AJrl o oo AJ{’X,

3.5)

where o7 is an element from the set X, AJ% is a minor
of A, and the sum is taken over permutations of the
set K and partitions of J.

With the aid of this result we may generalize lemma
3.4 to obtain:

LEMMA 3.6: Let AeQ, then the formula (3.5) for Ay g
has at most one nonzero term.

PRrROOF: Suppose for contradiction, that there is
more than one nonzero term in (3.5). To be specific,
suppose the factor, a(hiJiki)a(hsJoks) appears in
one term and the factor a(hiJ1k:)a(hoJok,) appears in
another term. Consider the principal submatrix A[L]
in rows and columns h,, hs, ki, k2, and the g distinct

elements from the sets J;, Jo, ,71, and J,. This matrix
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is of order p+4 and contains p +4 nonzero elements
above the main diagonal. This contradicts the fact
that A€Q.

We may also analyze the cycles of APA. Let
Ji, - . ., Jr be increasing multiindices of length p,
then

Ar(J, . .

o JT):AJlJz o oo o AJ'Jl

(3.6)
is an r-cycle of APA. It is clear that the interchanges
of rows and columns used above in passing from A ¢
to AE 3 will, when applied throughout the cycle (3.6)

of A?4, not result in any change in sign. On the other
hand, it is also clear from (3.5) that the product (3.6)
consists of cycles of 4 on the elements of J; with
principal minors of A. The principal minors of 4 are,
of course, just the one cycles of the several matrices
APA.

Turning now to the case of 4e() we have the ap-
propriate generalization of lemma 3.5.

LEMMA 3.7: Let AeQ, then every nonzero cycle of

length =2 of APA is a product of 2-cycles of A and
principal minors of A.

Lemmas 3.4 and 3.6 generalize the known formulas
for Jacobi matrices to all elements of (. Lemmas
3.5 and 3.7 apparently give new results even for the
elements of #Z,. The cycles of A?4 for Ae_#, do not
seem to have been studied.

4. Semipositive Elements of ¢,

The semipositive elements of ) seem to have been
first studied by Parter in [3]. He was aware of a
slightly earlier paper of Givens [11], which treats
Jacobi matrices of semipositive type. But a funda-
mental study of the Jacobi case contained in chapter 2
of the beautiful book of Gantmacher and Krein [7]
seems to be almost unknown. (The only noteworthy
exception to this statement is in the extensive work
of Karlin on total positivity. In fact, his forthcoming
book [8] will contain many results which supersede
to a considerable extent the work in [7] as well as a
wealth of new applications.) Our work in this section
has been influenced primarily by Gantmacher and
Krein and by Parter.

Definition 4.1: Ae ¢ is of semipositive type if every
nonzero 2-cycle of A is positive and aj is real for
j=1, . . ., n. A is principally positive if 4 is of semi-
positive type and a;; =0, j=1, . . ., n.

In this section we shall restrict our consideration
to the set (). The reason for this is simply that the
author is unaware of any interesting applications of
the semipositive elements of #, —(Q. We start with:

THEOREM 4.1: Let AeQ be of semipositive type.
Then there exists a diagonal matrix D uniquely deter-
mined by A up to the condition d(D) = 0 and the signs
of the elements such that

A=D-'AD

is a real symmetric matrix.

This theorem has an interesting history. Parter
pointed out in [3] that 4eQ) of semipositive type is
symmetrizable, basing his result upon previous work
by Hearon [6] and Goldberg [4, 5]. Independently the
present author pointed out in [1] that A is symme-
trizable and, apparently, first noted that this could be
accomplished with a diagonal matrix. (In fact, the
paper [1] gives a more or less explicit formula for D
when A is real and a similar formula is not difficult to
obtain for 4 complex.) It is also possible to show that

the signs of D can be so chosen that 4 has nonnegative
elements except possibly on the principal diagonal.
This leads one to the following theorem which is a
transcription for the semipositive case of a theorem
proved in [1]. We do not include a proof.

THEOREM 4.2: Let AeQ be of semipositive type,
then:

(a) for each b = min (aj; 0) the matrix A+ bl has a
unique positive eigenvalue, p(A +bl), such that for
every N in the spectrum, o(A + bl), p(A + bl) > |A|.

(b) If x is an eigenvector of A + bl corresponding to
p(A+bl) then there exists a nonsingular diagonal
matrix D such that x = Dy where y > 0.

(c) The spectrum of A and the spectrum of every princi-
pal submatrix of A is real.

(d) If any element of A is increased, then p(A) is strictly
increased.

In order to explore the spectral properties of ele-
ments of ) which are not so near the surface, it turns
out to be useful to single out the class Q"' for special
study. For this purpose, let us consider the nested
sequence A°=1, A', . . ., A"=A of principal sub-
matrices associated with AeQ"~' in theorem 2.4. It
will be convenient to set

d¢=d(A%,q=0,1, . . ., n,
and

}(4.1)
d¢(N\) =d(A?9—Al),q=0,1, . . ., n.

Thus dy(N) = 1.

The theory begins with:

LEMMA 4.3: If AeQ"~! is of semipositive type, the
sequence of polynomials (do(N), d(N), . . ., dy(N), is a
Sturm sequence for every real value of \.

PRoOF: Since the polynomial dy(\) is of degree g for
q=0, . . . n, we need only show that, if d,(\o)=0,

dyho)dy_1(\) < 0. 4.2)

In the present notation the formula 2.7 applied to
A — M\ in place of A reads

dq()\) = (ajqjq i )\)dq_l()\) = ajq_ljpajp,-qildqﬁz()\).
(4.3)

If we apply (4.3) for ¢= p + 1. multiply by d,_(\) and
set A = Ay, we obtain

dp+1(No)dp—1(ho) = — (ljp_ljpujpip_ldlzlq()\o) <0,

since A is of semipositive type. The lemma is thereby
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proved unless d),_1(A¢) = 0. Suppose, in fact, this is so.
Applying (4.3) for g=p and setting A=\, shows
dy-»(Nog) = 0 also. Thus, by the same reasoning,

dp-s(ho)=". . .= di(N) = do(Ng) =0
contradicting the fact that dy(\o) = 1. It follows that
dp-1(No) # 0 and the lemma is proved.

THEOREM 4.4: Let AeQ"~' be of semipositive type.
Then the eigenvalues of A%, q=1, n—1, strictly
interlace with those of A“"'. Hence, in particular, the
eigenvalues of A are distinct.

Proor: By Sturm’s theorem the Cauchy index
I%dg-1(N)[dy(N) (see Gantmacher [12], Vol. 2) equals
Vo(a) —V4(b), where V4(N) is the number of changes
in sign in the Sturm sequence (dy(\), , dy(N))
and where —@o<a<b<-+o. In the present case
we have d,(N) = (—1)PA?+ . . . for each value of p.
Thus Vy(—)=0 and V4(+*) =g. The theorem now
follows immediately from the meaning of the Cauchy
index.

If A¢Q is of semipositive type and A¢Q" !, then
A may or may not have a multiple eigenvalue. For

example
5 =] = | —1
F =]| 3 0 0
- 0 2 0
—1] 0 0 1

is of semipositive type and not in "' and has no
multiple eigenvalue. But

S =] =] =1
=1l 2 0 0
A2:
== || 2 0
= |l 0 2

has the double eigenvalue A=2. Thus the fact that
AeQ"~' has no multiple eigenvalues if it is of semi-
positive type does not distinguish this class. We shali
show now that it is the interlacing of the eigenvalues
in the sequence A', .. ., A"=A which does dis-
tinguish the class.

The following theorem is quite general in its appli-
cation.

THEOREM 4.5: The matrix A posses a sequence of
principal submatrices with strictly interlacing real
roots if and only if there is a sequence of principal
submatrices whose determinants form a Sturm sequence
for all real \.

PRroOF: The “if”’ part is the content of theorem 4.4,
the proof of which did not make explicit use of the
hypothesis 4e()”~'. Hence we may confine ourselves
to the only if statement.

To be specific suppose J;CJoC . . . CJyis a se-
quence of increasing multiindices with J, containing
q distinct elements from the set J/,=S,=(1 . . . n).
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Let Jo be the empty set of indices and assume the
sequence of polynomials.
(AJ()(A)w AJ](A)s ) AJ"()\)), (4'.4')

where A4,,(\) =1, is such that A, (N) has p distinct
real roots which strictly interlace with those of A;,,,(N),
p=1, ., n—1. Denote by A\, 1, . . ., \p,p the
zeroes of AJp(}\) in increasing order. For each p we
require that

Apt1,1 < )\p, 1< Apt1,2<...< Ap, p < Ap+1, p+1-
In view of the fact that the leading coeflicient of
AJp()\) is (—1)?, we may write

D
1T (o=,

q=1
For fixed r we have

AJ ()\p,r)AJp_]()\p,r)

p+1

p+1 p—1
:H (}\pvr_)\pﬂ.q) H (Ap.r—)\p—l,q)
g=1

g=1
(7.4)

In the first product there are r positive factors and
p+1—r negative factors. In the second product there
are r—1 positive factors and p—r negative factors.
Thus there are 2(p—r)+1 negative factors in the
product and

()\p r)AI ()\/:, r) = O,

p+1
forln—11" ., p. It follows that the sequence (4.4)
is a Sturm sequence. This proves the theorem.

On the basis of theorem 4.5 we can now investigate
the consequénce of Ae #, possessing a Sturm se-
quence of principal submatrices. Let us assume that
the index j, is adjoined to J,-; to obtain /,. Then for
Ae #, the formula (2.3) applied to the sequence (4.4)
becomes

p—1
=Y alpia) Ar-Gyip(N).
a=1
(4.5)

(A) = (0p) = N Asesy (V)

It follows that
AJP()\I)—I, r)AJp_z()\p—l, r)

p=1
Sl 2 a(.iniq)AJ*(J‘,,;‘,I)(}\p—l, r)AJ,,_.z()\pﬂ, r)-
=1

Clearly we shall have a Sturm sequence only if each
of the numbers

p—1

2 a (fqu)AJ—(jqu) (Ap-1, r)AJp_g

=1

Moerr) >0, (4.6)



r=1, ..., p—1. Since the inequality is strict, at
least one term in (4.6) must be different from zero.
On the other hand, we have conditions of the form
(4.6) for the n — 1 different values of p, p=2, . . ., n,
and A has at most n — 1 nonzero 2-cycles. The same
2-cycle cannot appear in the inequality (4.6) for two
different values of p. It follows that the left side of
(4.6) contains exactly 1-term for each value of

p=2, ..., n,

and A has exactly n — 1 nonzero 2-cycles. But this im-
plies that (4.6) becomes

aGpip-1)A4%,_,(Ap=1,+) >0 @.7)
p=2, . . ., n. Therefore each of the n —1 nonzero
2-cycles of A is positive. This result is summarized in
the following theorem:

THEOREM 4.6: Let Ae ¢, possess a sequence of
principal submatrices with strictly interlacing roots.
Then AeQ"~" and A is of semipositive type.

Theorems 4.4 and 4.6 nail down the most important
spectral property of the semipositive elements of Q1.
Since the elements of Q"' are essentially Jacobi mat-
rices by virtue of theorem 2.6, we can hardly argue
that theorem 4.4 is a new result. On the other hand,
theorem 4.6 appears to be a new result and, as it com-
plements theorem 4.4, we felt it appropriate to include
both.

The foregoing analysis can be used conveniently
to study the spectral multiplicity of the elements Q
not in Q"~'. Our intention is to indicate briefly the re-
sults of Parter, but by a method somewhat more alge-
braic in character than his. We only sketch the results
here, referring the reader to [3] for a more detailed
argument.

We use theorem 2.6 to derive a kind of canonical
form for an element of Q —(Q"-'. By theorem 2.5
AeQ — Q"' has at least one row with more than two
nonzero off-diagonal elements. Suppose the pth row
is one such with the nonzero elements in columns
qi, - - -5 qa, > 2. By a modification of the argument
used to prove theorem 2.6 there exists a permutation
matrix P such that the matrix P 4 P’ has the follow-
ing form:

P A P’Z A11 Cq 0 5 5 o 0 N (4,8)
r App rgs . . . ra
0 Co Agz : 0
6 ...... Ca ....... OAM
in which A4;; is a square matrix of order n;, i=1, . . ., o

‘c; is a column vector of zeroes except for the n;th
entry which is aq,p; r1 is a row vector of zeroes except
for the nonzero element a,, 4, in the nith entry; ci,
i=2, ..., a, is a column of zeroes except for the
nonzero element ag in the first position:

ri,i1=2, ... «

is a row of zeroes except for apq; ¥ 0 in the first posi-

tion; and each block A4;; is either a Jacobi matrix or a
matrix of the form (4.8). Thus P A P’ is recursively
defined in the general case.

Now we apply the basic recurrence formula (2.3)
to P A P' —\I to obtain

d(P A P-N) = (app—N)d(A1:(N) . . . d(Aaa(N))
~ 3 alp, @) dAO) [ A4V, @.9)
(=i j=1
ji

In (4.9) A;; is the matrix obtained by deleting the last
row and column of 4;; if i =1; otherwise it is the matrix
obtained by deleting the first row and column of A;;.

Since a > 3, it follows immediately from (4.9) that
Ae(Q — Q"1 has the multiple eigenvalue Ay if \¢ is an
eigenvalue of at least three of the submatrices A;;.
Suppose, on the other hand, that A is an eigenvalue of
A of multiplicity at least two. Then Ay must be an
eigenvalue of the principal submatrix of 4, A(p), i.e.,
Ao must be an eigenvalue of A;; for some value of i,
say for i=k. Thus

0=d(P A P-\ol)=—a(p, q)d @kk(xa))ﬁ d(Aj(No))-
J=1
j*k

Hence, either A4;(Ao)=0 for some value of j=+ £, or

(Akk(Ao0))=0. In the latter case the block Ak is not a
Jacobi matrix and must itself have Ay as a multiple
eigenvalue. Clearly the argument up to this point can
be repeated for the block Ak, so we may confine
ourselves to the case where 4;;(A\))=0 for some value
of j= k. Thus after a finite number of steps we must
arrive at a matrix having the form (4.8) such that each
diagonal block is a Jacobi matrix. But it is easy to see
that such a matrix can have a multiple eigenvalue \,
only if at least three of the blocks have Ao as an
eigenvalue.

Now, if a diagonal block A4; in the representation
(4.8) is not a Jacobi matrix, there is some row of 4,
say the gth row, having at least three nonzero off-
diagonal elements. This row could have been used in
the beginning to set up the form (4.8). Moreover, if
this is done, we see that Ay a multiple eigenvalue of
A implies A, is an eigenvalue of at least three of the
diagonal blocks.

This sketch establishes the theorem of Parter which
we here formulate quite differently than his original
graph-theoretic formulation.

THEOREM 4.7 (Parter): Let AeQ—Q"-! be of semi-
positive type. Then A has the multiple eigenvalue \o
if and only if there exists a permutation matrix P such
that P A P’ has the form (4.8) with o' =3 and \¢ an
eigenvalue of at least three of the diagonal blocks Aj.

On the basis of this theorem it is obvious that the
assertions made regarding the matrices 4, and A4 in
subsection 4.2 are valid.

The theorem on interlacing proved above, theorem
4.4, for the elements of Q" ! is of considerable interest

222



in the applications to mechanics. That it does not
extend in precisely this form to the elements of
Q—Qn" ' is quite clear. Nevertheless one may ask
when Ay can be an eigenvalue of 4e() —(Q"~ ' and also
an eigenvalue of a certain type of principal submatrix.
We shall not pursue this question in the present paper.
It will be taken up elsewhere when we study the
application of matrices in _#, of semi-positive type
to problems in mechanical vibrations. Similarly the
results on eigenvectors are more strongly motivated
in a mechanical setting. On the other hand, some of
the results of section 3 have special application to
the semipositive elements of _#, and we take up this
subject next.

We assume for the remainder of this section that 4
is positive semidefinite. This will be the case, for
example, if A is diagonally dominant. Lemmas 3.4
and 3.5 now imply

THEOREM 4.8: Let AeQ be of semipositive type and
positive semidefinite. Then cof A has no zero elements
and is a matrix of positive cyclic type. In particular,
if A is positive definite, then A~' has no zero elements
and is of positive cyclic type.

It should be mentioned at this point that some of
the theory of matrices of positive cyclic type is worked
out in [2]. In the literature of mathematical economics
these matrices are usually called Morishima matrices
in honor of Professor Michio Morishima who first
characterized them. The analogue of the Perron-
Frobenius theorem is valid for such matrices. Since
the largest eigenvalue of 4 ' is related to the smallest
eigenvalue of A we have

COROLLARY 4.9: Let AeQ be of semipositive type
and suppose A is positive definite. Then if

< M\
are the eigenvalues of A in increasing order, we have

O< N < ANi<Ny,1=2,...,n—1

i.e., \; and A\, are simple eigenvalues of A. Moreover
if any element of 4! is increased, then \; is strictly
decreased.

We feel the relationship between theorem 4.7 and
corollary 4.9 should be stressed. If 4eQ—Q""1, is
semipositive and positive definite, and if 4 has a
multiple eigenvalue \*, then A\* cannot be equal to
Ni or to A,. Thus for the matrix 4, of subsection 4.2
the double eigenvalue A =2 is neither the smallest nor
the largest eigenvalue.

The fact that 4! is of positive cyclic type enables
us to say even more about A4 itself. Every matrix of
positive cyclic type is similar to a positive matrix via
a diagonal matrix D. Thus, if the conditions of corol-
lary 4.9 are satisfied there exists a diagonal matrix D
such that the matrix B~'= D~14-1D satisfies

B-1>0. (4.10)
Now (4.10) implies that B itself is monotone, i.e., if
Bx >0 then x > 0. Consequently, we deduce that A

is similar by the diagonal matrix D to a monotone
matrix.

In the special case where 4;;<0, i+, and 4 is
positive cyclic type, then A is both monotone and of
positive cyclic type. In this case the inverse of A4 is
positive, A= > 0. That A -1 = 0 follows from the well-
known connection between monotone matrices and
nonnegative matrices. In order to conclude that
A-1>0 we must appeal to the cofactor formula (3.3),
and lemma 3.4. This result is a generalization of a
theorem of Gautmacher and Krein.

In conclusion a few remarks on total positivity are
in order. We cannot use lemma 3.7 directly in the same
way as lemma 3.5, to conclude that APA is of positive
cyclic type, since lemma 3.7 is weaker than 3.5. In
fact, we have seen above that there exist elements
AeQ — Q"1 having multiple eigenvalues. Since totally
positive matrices enjoy the interlacing property
characterized in theorem 4.4., such elements of
Q—Qn"~' cannot be totally positive. This question
therefore remains open. It may be formulated as
follows: Which elements Ae(Q of semipositive type
have the property that A?4 is of nonnegative cyclic
type for p=1, . . ., n?(Of course, we know that
every such 4 must be positive semidefinite.)

5. Seminegative Elements of 7,

The seminegative elements of _#, first became of
interest through the work of Quirk and Ruppert [10]
in qualitative economics. We restrict ourselves here
to real matrices in _Z,. As usual we also confine our-
selves to the consideration of elements of Q.

Definition 5.1: A€Q) is of seminegative type if every
nonzero 2-cycle of A is negative. A is principally nega-
tive if A is of seminegative type and

{ij$0,j:1. 5 o ag s

The following result is established by an argument
entirely similar to that used to prove a portion of the-
orem 2 in [1]. We omit the proof.

LEMMA 5.2: Let AeQ be of seminegative type and set
A=E+A* where E=diag {an, . . ., am} and

*={aj} with ajy=ay if j ¥k and aj;=0. A* is
similar to a skew-symmetric matrix by a diagonal
matrix D, i.e., there exists a diagonal matrix D such
that

D-'AD=E+ B,

where B is skew symmetric.
Lemma 5.2 leads immediately to the following re-
result:
LEMMA 5.3: Let AeQ be of seminegative type and have
a zero principal diagonal. Then all of the eigenvalues
of A lie on the imaginary axis in the complex plane.
We shall conclude the paper by formulating the
Quirk-Ruppert theorem somewhat more elegantly
than it appears in [10]; (see, however, [9] where the
result is also better formulated).
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Definition 5.2: If A= (a;x)} is a real matrix we asso-
ciate with it the matrix sgn 4 = (aj)} where aj;, = sgn
ajk, j, k=1, . . . n, and the equivalence class Q4
defined by

Q4= {B|sgn B= sgn A}.

The equivalence class Q4 may be called a qualitative
matrix.

Definition 5.3: A is a sign stable matrix if BeQ,
implies B is a stable matrix, i.e., all the eigenvalues
of B lie in the open left half of the complex plane.

THEOREM 5.3: (Quirk-Ruppert) Let A be an irreduc-
ible matrix. Then A is sign stable if and only if

(i) AeQ and A is principally negative,
(i) aj; <O for some value of j, and
(i1i) d(A) #+0.
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