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1. Introduction 

The problem of the solution of a given se t of lin ear 
equations Ax = b on a high-speed digital computer 
has been studied intensively, and there are a large 
number of method s, more or less sati sfactory , for 
carrying out such a solution. Nevertheless occasions 
arise when existing methods are inadequate, either 
because the solutions are required exactly, or because 
the coefficie nt matrix A is "ill-conditioned." A no
torious exam ple of the latter is furnished by the Hilbert 
matrices A = H" given by 

1 ~ i, j~ n. 

Here even for moderate values of n (say 7 or 8) th e 
~011l !i0n b~l ?~)' ~£ !!-: ~ ~~~Cil HICl~IUU~ uecomes awk~ 
ward, if not impossible. For these reasons, as well as 
many others, the method of solution described in this 
note is of interest. It is not at all sensitive to the con
dition of A, since it determines the exact solution (and 
not an approximate one) by number-theoretical 
methods. Thus the usual ills caused by round-off, 
truncation, etc., do not exist. It can fail, of course, 
but not for any of the reasons which cause the usual 
methods to fail. Its principal disadvantages are that 
it is limited to systems with integral elements, and that 
it is somewhat time-consuming. It is not particularly 
suited to hand computation, and definitely finds its 
role in high-speed digital co mputation. 

A related discussion and elaboration are given by 
I. Borosh and A. S. Fraenkel in their article . l 

2. Description of the Method 

Let A be a nonsin gular integral n X n matrix , b an 
integral n X 1 vector. Put 

d= det (A) 

and denote the adjoint of A by Aadj , so that Aadj is also 
a non singular integral n X n matrix, sati sfying 

AAadi = AadiA = dI. 

For any matrix B = (bij ) define 

M (B) = max Ibijl. 
i, j 

Let x be the solution of the system 

Ax=b. 

where 
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y=Aadib 

is also an integral vector. 
The method is based on the following simple obser

vation: Suppose that m is an integer such that 

(d, m) = 1, 

m > 2 max (Idl, M(y)). 

Then any pair of solutions dm, Ym, of the congruences 

d=d", mod m, 

AYm= db mod m 



satisfying 

Idml < tm, 

M(YIIt) < tm 

must in fact coincide with d, y. 
It is clear that d = dill, since d == dm mod m and 

Idl < tm, Idml < tm. Furthermore since Ay== db 
mod m, AYm == db mod m, we have A (y- Yin) == 0 
mod m. Hence AadiA(Y-Ym) == 0 mod m, d(Y-Ym) 
== 0 mod m; and since (d, m) = 1, it follows that 
Y == Yin mod m. Finally, since both M(y) < tm, 
M(Ym) < tm, we have Y=Ym. 

In applying the observation above we choose 
m = mI' m2 ... ms , where (mi' mj) = 1 for i "" j, and 
use the Chinese remainder theorem. Define m; by 

O~ m; < mi , 

Then the solution of the system 

is given by 

-z == ai mod mi, 1 ~ i ~ s 

S m 
z == L - m; ai mod m 

i= 1 mi 

1 ~ i ~ s. 

For each i , 1 ~ i ~ s determine dlni , Ylni so that 

d == d llti mod mi , 

AYmi == db mod mi . 

(We shall show how this can be done without having 
computed d previously.) 

Next determine d"" Y", by 

S m 
d", == L - m;dm. mod m, 

i=i mi l 

S m 
Y", == L - m;Ym. mod m . 

i= i mi 1 

Finally, determine d, Y so that 

d== dill mod m , 

y== Y", mod m, 

and Idl < tm, M( y ) < tm. 

The practical utility of this method rests primarily 
on the fact that the bulk of the computations are per
formed modulo the "single-length" numbers mi, 
1 ~ i ~ s. The final reconstruction according to the 
Chinese remainder theorem is done accumulatively 

throughout- the computation and is the only time when 
multi-length operations are required. In practice the 
moduli mi are chosen as prime powers, for then the 
solution of the congruential system 

becomes partic ularly simple. 
The ideal program would first determine a permis

sible value for m. This can be done by Hadamard's 
inequality, for example, which states that the absolute 
value of a determinant does not exceed the product 
of the euclidean lengths of its row vectors. This im
plies that 

" Idl ~ n 2 M(A)n , 

1/ - 1 

M(y) ~ n(n-l)-2 M(A)'l-IM(b) 

which are at once derivable from Hadamard's ine
quality and from the specific form of the elements of 
Aadi as cofactors of the elements of A_ Thus it is cer
tainly sufficient to choose 

n n - I 

m>c=2 max (n2M(A)n, n(n-l)Z- M(A)n-1M(b» 

and satisfying 

(m , d) = 1. 

The simplest way to do this effectively would be to 
generate a sequence of different primes PI, P2, . .. , Ps 
such that (d, Pi) = 1, 1 ~ i ~ s, PIP2 ... Ps > c; and 
then choose m = PIP2 . . . Ps. 

In practice, the procedure outlined above is unneces
sarily conservative and time consuming. A good prac
tical alternative is to operate instead with a prede
termined set of moduli mi, knowing full well that in 
certain instances the process will fail. Failure prin
cipally occurs if (mi, d) > 1 for some i. By choosing 
the mi as large primes, the probability of such an oc
c urrence can be made so small that this is not an 
important practical consideration. 

3. The Detai led Program 

Suppose that the machine for which the program is 
being written is capable of multiplying or adding 
together any pair of whole numbers < K in absolute 
value. We choose as moduli the s largest primes 
mj < K , and precompute and store the numbers 
m 
- , m;. Notice that 0 ~ m,: < mi < K, but that the num
mi 

m 
bers - must be stored as multilength numbers. In ad

mi 
m-l 

dition m and -2- are required and must be stored 
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similarly. The choice of s is a matter of expediency: 
If K = 1010 then s = 10 should suffice for most pur· 
poses. The program (in broad outline) is as follows: 

(1) Read in n, A, b. 
(2) Clear s-length answer cells d, y. 
(3) Set i = 1 (modulus tally). 
(4) Transfer A, b modulo mi to working temporaries. 
(5) Determine drn ., Ym. so that 

• I 

AYm. == db mod mi, • 
and d lll . and the components of Ym. lie between 0 and 

• • 
mi -1, inclusive. (As will be shown, d need not be 
known.) 

(6) Accumulate s-length results: 

m I 

d+-m.dm·~d 
mi ''l , 

nl I 

y+-m'YIIl'~ y. 
mi 1 'l 

(7) If i < s, replace i by i + 1 and go to (4); otherwise 
go on. 

(8) Reduce d, Y modulo m so tha t 

Idl< t m, 

M(y) < t m. 

(9) Check s-length answers by multiplication: 

Ay= db. 

(10) Compute (in floating) the components of 
1 

x=(jY. 

(11) Print results (d, y as s-length integers; x as 
floated numbers). 

The basic computation of course takes place in 
(5), and we describe this in some detail. Suppose then 
that p is a prime, and we are interestp.rl ~"- ovlvill l!, 

rip == d mod p, 

Ayp == db mod p. 

Let B= (bij) be the nX (n+l) matrix (A, b). The 
procedure is as follows: 

(5.1) Set k= 1. 
(5.2) Set 5= 1 (cell in which dp is calculated). 
(5.3) Determine r so that r ~ k ~ n, and (b"k, p) = 1. 

(If no such r exists, the machine prints out the infor
mation that the system is singular modulo p and halts.) 

(5.4) If r= k, go to (5.6); otherwise go on. 
(5.5) Interchange rows rand k, and replace 5 by 

- S. Continue to denote the resulting matrix by B. 
(5.6) Determine b~k (by the euclidean algorithm) so 

bkkb~k == 1 mod p. 

(5.7) Replace 5 by bkkS , and bkt by b~kbkt, k ~ t ~ n 
+ 1 , all computations being performed modulo p. 
Continue to denote the resulting matrix by B. 

(5.8) For 1 ~ s ~ n, s oF- k, replace bst by 

k~t ~n+l, 

all computations being performed modulo p; a nd con
tinue to denote the resulting matrix by B. 

(5.9) If k < n, replace k by k + 1 and go to (5.3); 
otherwise go on. 

(5.10) dp=S . 
(5.11) :Vi) == Sb in+1 (mod p), 1 ~ i ~ n. 
It will be seen that the time required to accomplish 

step (5) is approximately equivalent to that required 
to solve a single linear system by the elimination 
method. Thus the total time is roughly that required 
to solve s such systems, and so is quite moderate. 

We note one or two other points: In the accumula
tion described by (6), we reduce mid",. and m~ym. 

'l t 1 ', 

m 
modulo mj before multiplication by -. The effect of 

mi 
this is that at the end of step (6), 0 ~ d < sm, M(y) < sm. 
The reduction required by s tep (8) is then relatively 
easy to accomplish. 

It is certainly possible to provide for the contin
gency that (d, mj) > 1 for some i by a more elaborate 
program. If this occurs, the faulty mj must be discarded 
and a new one substituted. The necessary constan ts 
would then have to be recomputed and the problem 
started anew. 

4. An Existing Program and Numerical Results 

A pilot version of this program was written for the 
Q32 computer at the System Development Corpora
tion, Santa Monica, Calif. The computer was used on 
a "time sharing" basis, under partial support of the 
National Institutes of Health on project number 
2050404. The writer would like to thank Russell Kirsch 
of the National Bureau of Standards for generously 
providing access to this computer-

The following 10 primes were chosen as moduli: 
9999889,9999901,9999907,9999929,9999931,9999937, 
9999943,9999971,9999973,9999991. 

In the appended JOVIAL program, the lines have 
the following function: 
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1-8. Array declarations. 
9-26. Precomputed constants. 

27-40. Read in n, A, b. 
41-42. Clear answer cells. 
43-44. Set up modulus p. 
45-51. Transfer A, b modulo p to temporaries. 
52-74. Solve Axp == b mod p. 
75-78. Compute dp, yp. 
79-85. Accumulate d, y. 

86. Reset modulus. 
87-93. Reduce to range (-t m, t m). 
94-97. Print exact results Cy, d). 

98-109. Multilength normalization subroutine. 



110-117. Euclidean algorithm. 
118. Error print. 

119-122. Compute and print floated results (x). 

A number of test problems were run with uniform stand for the 10-length integer 
success, amon~ which were the Hilbert matrices of all 
orders up to and including n = 13 (a limit imposed by Ao + 107A 1 + ... + 1063A g• 

considerations of time). Define 

t,,=L.C.M.(1,2,3, ... ,2n-l). 

Then t"H" has integral elements. We chose b as the 
first unit vector, so that the output was the first column 

1 
of (t"Hn) - l=- Hnl. Since Hn 1 is known exactly,2 we 

tn 
were able to verify the results. In the numerical results 
that follow, the lines 

2296512 8395179 399 0 0 
o 0 0 0 0 
- 1860480 - 5807169 - 15993 0 0 
000 0 0 
8876160 9525337 205250 0 0 
o 0 0 0 0 

The print-out has the form 

y 

d 

x 

We give the results for n= 9, 10, 11, 12 as repre
sentative examples. 

- 3256960 -7152027 - 1231505 0 0 
o 000 0 n=9 
8085120 5744088 4002393 0 0 
o 000 0 
-1092224 -6722299 -7471134 0 0 
o 000 0 
6170240 1488177 8004787 0 0 
o 000 0 
-2097280 -850387 -4574164 0 0 
o 000 0 
3134080 9645230 1080010 0 0 
o 000 0 
5508480 132897 480614 6 0 
o 000 0 
+.661103602E - 005 
-.26444144lE - 003 
+.339366516E - 002 
-.20361991OE - 001 
+.661764 706E - 001 
-.123529412E + 000 
+.132352941E + 000 
-. 75630252lE - 001 
+.178571429E - 001 

1454720 2473993 2532211 4345 0 
o 000 0 
-7008640 -7462660 - 344456 - 215090 0 
o 0 0 0 0 
2138240 9402571 5511307 3441440 0 
o 000 0 
-7048320 - 8802831 - 8460751 - 6097590 - 2 
o 000 0 
1602944 8971893 5535157 9609881 10 

tn = 12252240 
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00000 n=1O 
-9007360 -7429732 -8837894 -4024703 -27 
o 0 0 0 0 tn = 232792560 
2773120 845307 5372030 7561453 41 
00000 
-1275520 - 3984119 - 8999527 - 279180 - 38 
00000 
5637760 6992059 4499763 139590 19 
00000 
- 2412416 - 2253879 - 2061061 -140580 - 4 
00000 
7928832 7977568 9387428 5426211 1011 
o 0 0 0 0 
+ .429566993E - 006 
-.212635662E - 004 
+ .340217058E - 003 
- .257997936E - 002 
+.108359133E - 001 
-.270897833E - 001 
+ .412796698E - 001 
-.375939850E - 001 
+. 187969925E - 001 
-.396825397E - 002 
7570112 599090 7074703 1 0 
00000 
- 4206720 - 5945445 - 4482183 -102 0 
00000 
7031040 936185 7402580 1997 0 
o 0 000 
- 5623040 - 2071066 - 5757414 -18645 0 
o 0 000 
4520960 5873099 2726424 97889 0 
o 0 000 
-2467072 -6793918 -6724558 -313245 0 
o 0 000 
1183360 416263 5752083 633949 0 
00000 n=l1 
- 8664320 - 1963766 - 252678 - 815078 0 tn = 232792560 
o 0 000 
1025920 2387982 1033370 645270 0 
o 0 000 
-6011520 -3283547 -7125942 -286786 0 
o 0 000 
6329472 7172313 1905861 54750 0 
o 0 000 
9768320 338817 4351703 3285011 0 
o 0 0 0 0 
+.519776062E - 006 
-.311865637E - 004 
+.608137992E - 003 
-.567595459E - 002 
+.297987616E - 001 
- .953560372E - 001 
+ . 192982456E + 000 
-.248120301E + 000 
+ .196428571E + 000 
-.873015873E - 001 
+. 166666667E - 001 
126080 3885341 3441 107 9248615 3937 
o 0 0 0 0 
-4014720 -2801882 -1039178 -6275997 -281561 
o 0 000 
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3676800 8710589 914159 3106599 6569771 
o 0 0 0 0 
- 3864000 - 5494130 - 7784298 - 2449239 - 3909927 
-70000 
4729600 7162434 5819510 3675134 3023534 
47 0 0 0 0 
- 4094080 - 1744323 - 5084059 - 3244700 - 6326686 
-187 0 0 0 0 
6241920 3056831 7359009 5486372 4840050 
482 0 0 0 0 
-7910400 -721410 -8912605 -3235810 -4996514 
-818 0 0 0 0 n= 12 
5456000 801567 5458450 4706456 4440571 tn = 5354228880 
909 0 0 0 0 
-2819200 -561097 -5820915 -294519 -6108400 
-636 0 0 0 0 
9127680 224438 8328366 117807 6443360 
254 0 0 0 0 
-7499520 -2008803 -5466306 -2444769 -3698464 
-44 0 0 0 0 
4841600 2905237 3881046 6773950 493200 
14642 0 0 0 0 
+.268946291E - 007 
- . 192296598E - 005 
+.448692063E - 004 
-.504778570E - 003 
+.323058285E - 002 
-.128146453E - 001 
+.329519451E - 001 
-.559006211E -001 
+.621118012E - 001 
-.434782609E - 001 
+.173913043E - 001 
-.303030303E - 002 

Jovial Program 

1.00 ARRAY A 16 17 I; 
2.00 ARRAY C 16 17 I; 
3.00 ARRAY V 17 10 I; 
4.00 ARRAY W 12 10 I; 
5.00 ARRAY MOD 10 I; 
6.00 ARRAY INV 10 I; 
7.00 ARRAY Z 10 I; 
8.00 ITEM SS F; ITEM TT F; ITEM NUM F; ITEM DEN F; 
9.00 VALUES MOD 9999889 9999901 9999907 9999929 9999931 9999937 

10.00 9999943 9999971 9999973 9999991; 
11.00 VALUES INV 7369185 2629157 6854848 9534445 6502552 
12.00 3472916 5202223 3251378 129200 5053746; 
13.00 VALUES W 4977739 8027834 5690123 538898 3121137 3768638 5584115 
14.00 115082 9999483 0 5278071 15291 9546516 9532061 5812518 
15.00 9202123 4699699 120098 9999471 0 6263753 7229845 9363502 8209581 
16.00 9936740 6614348 4222392 122714 9999465 0 7782099 9773154 8216183 
17.00 5103433 3253672 3499315 2247429 132922 9999443 0 3659841 431474 
18.00 2231991 6034197 1042630 5307831 2048927 133898 9999441 0 9722683 
19.00 2791024 2958205 5033108 173657 4212244 1433022 136874 9999435 
20.00 0 6535597 4607850 2424276 3272840 1038248 8705894 785509 139922 
21.00 9999429 0 2501001 296996 4616307 9611859 4673074 5857613 7307785 
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22.00 155097 9999401 0 9352927 6498696 8521281 1579588 4721737 3700720 
23.00 7028477 156241 9999399 0 8058781 9352296 9214244 9260206 9463057 
24.00 2740085 4312028 166897 9999381 0 7470971 3888109 6424092 5872382 
25.00 4092685 4802284 3931831 2809951 172468 9999372 8735485 1944054 
26.00 3212046 7936191 2046342 7401142 6965915 1404975 86234 4999686; 

27.00 READ M ;N=M+l; 
28.00 PRINT 14H (MATRIX BY ROWS); 
29.00 1=0; 
30.00 R1. H=O; 
31.00 R2.READ C[I ,J]; 
32.00 IF J EQ N -2; GOTO R3; 
33.00 J = J + 1; GOTO R2; 
34.00 R3. IF I EQ M - 1; GOTO R4; 
35.00 1= 1+ 1; GOTO Rl; 
36.00 R4. PRINT 10H (RIGHT SIDE); 
37.00 1= 0; 
38.00 R5. READ C[I ,N -1]; 
39.00 IF I EQ M-l ; GOTO Cl; 
40.00 1= 1+1; GOTO R5; 

41.00 C1. 1=0;C2.J = 0;C3.V[1 ,J]=O;IF J EQ 9;GOTO C4; 
42.00 J = J+l;GOTO C3;C4.IF I EQ M ;GOTO R6;1 = I + l;GOTO C2; 

43.00 R6. L = 0; 
44.00 R7. P= MOD[L] ; 

45.00 1= 0; 
46.00 RlO. J = 0; 
47.00 R8. REMQUO (C[I ,J] ,P = Q ,A [I ,J]); 
48.00 IF 1 EQ N -1; GOTO R9; 
49.00 J = J + 1; GOTO R8; 
50.00 R9. IF I EQ M -1;GOTO Rll; 
51.00 1= I + I;GOTO RIO; 

52.00 Rl1. K=O;SGN = 1; 
53.00 QO.R= K ;EX= 1; 
54.00 Ql.B =A[R ,K] ;GOTO EO ; 
55.00 Q2. IF D EQ l;GOTO Q3; 
56.00 IF R EQ M - l:GOTO ERR;R=R+l;GOTO Ql; 
57.00 Q3.IF R EQ K ;GOTO Q5; 
58.00 T = K ;SGN =-SGN; 
59.00 Q4.F = A[R ,T] ;A[R ,T] = A[K ,T] ;A[K ,T] = F; 
60.00 IF T EQ M ;GOTO Q5; 
61.00 T = T+ l;GOTO Q4; 
62.00 Q5.S = 0;Q8.IF K EQ S;GOTO Q7; 
63.00 G = X* A[S ,K] ;REMQUO (G ,P = Q ,G); 
64.00 T = K; 
65.00 Q6.REMQUO (G * A[K ,T] ,P = Q ,F);F = A[S ,T] - F ;REMQUO (F ,P = Q ,A[S ,T]); 
66.00 IF T EQ M ;GOTO Q7;T = T+l;GOTO Q6; 
67.00 Q7. IF SEQ M - l;GOTO Q9;S=S+ I;GOTO Q8; 
68.00 Q9. IF K EQ M-l;GOTO Q12;K=K+l;GOTO QO; 
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69.00 Q12.K=0;EX=2;QlS.B=A[K,K] ;GOTO EO; 
70.00 Q13.F = X * A[K ,M] ;REMQUO (F ,P = Q ,F); 
71.00 IF F GQ O;GOTO Q14;F=F+P; 
72.00 Q14.A[K ,M]=F; 
73.00 IF K EQ M-l;GOTO P16;K=K+l;GOTO QlS; 
74.00 Q16.GOTO LI8; 

7S.00 LI8.I = 0;Rl2.SGN = SGN * A[I ,I] ;REMQUO (SGN ,P = Q ,SIGN); 
76.00 IF I EQ M-l;GOTO F3;1=I+l;GOTO R12;F3. IF SGN GQ 0; 
77.00 GOTO Fl;SGN = SGN+P;GOTO Fl;F1.K=M-l;F2.T=A[K ,M] *SGN; 
78.00 REM QUO (T ,P=Q ,A[K ,M]);IF K EQ O;GOTO R13;K=K-l;GOTO F2; 

79.00 Rl3.EX= l;K=O;REMQUO (INV[L] *SGN ,P=Q ,R); 
80.00 R14.Z[K]=W[L,K] *R+V[M ,K] ;IF K EQ 9;GOTO NRM ;K=K+l;GOTO Rl4; 
81.00 RlS.K=0;R16.V[M ,K]=Z[K] ;IF K EQ 9;GOTO R17;K=K+l;GOTO R16; 
82.00 Rl7.EX=2;1=0;R20.K=0;REMQUO (INV[L] *A[I ,M] ,P=Q ,R); 
83.00 R18.Z[K] = W[L ,K] *R + V[I ,K] ;IF K EQ 9;GOTO NRM ;K = K + 1 ;GOTO R18; 
84.00 R22.K = 0;R19.V[1 ,K]= Z[K] ;IF K EQ 9;GOTO R21;K= K + l;GOTO R19; 
8S.00 R21.1F I EQ M -l;GOTO RM ;1 = 1+ l;GOTO R20; ~ 

86.00 RM. IF L EQ 9;GOTO RR ;L=L+l;GOTO R7; 

87.00 RR.I=O;RR 1 .K=9;CMP .IF V[I ,K] LS W[l1 ,K] ;GOTO RR2; 
88.00 IF V[I ,K] GR W[l1 ,K] ;GOTO RR3;IF K EQ O;GOTO RR3 ; 
89.00 K= K -l;GOTO CMP; 
90.00 RR3.EX = 3;K = 0; RR4.Z[K] = V[I ,K] - W[lO ,K] ;IF K EQ 9;GOTO NRM; 
91.00 K= K + l;GOTO RR4; 
92.00 RR6.K=0;RRS.V[1 ,K]=Z[K] ;IF K EQ 9;GOTO RRl;K=K+l;GOTO RRS; 
93.00 RR2.1F 1 EQ M ;GOTO PR ;1=I+l;GOTO RRl; 

94.00 PR.I= 0; 
95.00 PR1.PRINT V[I ,0] ,V [I ,1] ,V[I ,2] ,V[I ,3] ,V[I ,4]; 
96.00 PRINT V[I ,S] ,V[I ,6] ,V[I ,7] ,V[I ,8] ,V[I ,9]; 
97.00 IF I EQ M ;GOTO G4;1=1 + 1 ;GOTO PRl; 

98.00 NRM.K = 0; 
99.00 N1.REMQUO (Z[K] ,10000000=Q ,Z[K]) ;Z[K+l]=Q+Z[K+l]; 

100.00 IF K EQ 8;GOTO N2;K=K+l;GOTO Nl; 
101.00 N2.K = 9; 
102.00 N3.1F Z[K] GR O;GOTO N6;1F Z[K] LS O;GOTO N7; 
103.00 IF K EQ O;GOTO NN ;K=K-l;GOTO N3; 
104.00 N6.K = 0;N4.1F Z[K] GQ O;GOTO N5;Z[K] = Z[K] + 10000000; 
105.00 Z[K+l]=Z[K+l]-1;N5.IF K EQ 8;GOTO NN;K=K+l;GOTO N4; 
106.00 N7.K =0;N8.1F Z[K] LQ O;GOTO N9;Z[K]=Z[K]-10000000; 
107.00 Z[K+l]=Z[K+l]+l ;N9.1F K EQ 8;GOTO NN ;K=K+l;GOTO N8; 
108.00 NN.lF EX EQ l;GOTO R15;1F EX EQ 2;GOTO R22;IF EX EQ 3; 
109.00 GO TO RR6; 

110.00 EO.F=B ;D=P ;S= 1 ;X=O; 
111.00 El.REMQUO (F ,D = G ,T); 
112.00 IF T EQ O;GOTO E2; 
113.00 F = D ;D=T;T=S-G *X; 
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114.00 S=X ;X=T ;GOTO E1; 
115.00 E2.IF D GQ O;GOTO E3; 
116.00 D=-D ;X =- X; 
117.00 E3.IF X LS O;X = P + X ;IF EX EQ l;GOTO Q2;IF EX EQ 2;GOTO Q13; 

118.00 ERR .PRINT P ,13H (DIVIDES DET A) ;GOTO RM; 

119.00 G4.I = 0;G3.NUM = V[I ,9] ;DEN = V[M ,9] ;K = 2; 
120.00 G1.TT= V[I ,10- K] ;SS= V[M ,10- K] ;NUM= 10000000. *NUM + TT; 
121.00 DEN = 10000000. *DEN + SS ;IF K EQ lO;GOTO G2;K = K + 1 ;GOTO G 1; 
122.00 G2.PRINT NUM/DEN ;IF I EQ M - 1 ;STOP ;1 = 1+1 ;GOTO G3; 

(Paper 7lB4-240) 
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