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Seve ral new proofs are give n of the fact that an entire automorphic form of positive dimension is 
ze ro. The first proof is modeled on the method used by Hecke to es timate the Fourier coefficie nts of 
cusp form s of nega tive dimension. The other proofs involve well-known theore ms of complete fun c tion 
theory. 
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L It is a result familiar in the theory of automorphic 
form s that an entire automorphic form of positive 
dimension on an H-group is identically zero (see sec. 2 
for the definitions). This follows immediately , for 
exa mple, from the well-known exac t formula for the 
Fourier coefficie nts of automorphic forms of positive 
dimension ([1], p. 314).1 Another proof is by means 
of a formula for the numbe r of zeros minus the number 
of poles of an automorphic form in a fundamental 
domain. This formula (obtained by contour integration 
around the fundamental domain) shows that whe n 
the dime nsion of the form is positive, thi s difference 
is negative, and he nce such a form mu st have poles. 

In section 3 of thi s note we give what appears to be 
a new proof of this result by using the method Hecke 
e mployed to estimate the Fourier coeffi cients of cusp 
forms of negative dimension ([1] , p. 281). I This proof 
is simpler and more direc t than the proofs mentioned 
above. In sections 4- 5 we give two variations of this 
method. The me thod of section 5 is applicable to a 
larger class of groups than the H-groups , and in 
particular applies to compact groups and groups 
conjugate to H-groups. 

2. A group r of real linear fractional transformations 
acting on :J't', the upper half-plane 1m 7 > 0, is an 
H-group provided 

(i) r is discontinuous on :J't', but is not di scontinuous 
at any point of the real line, 

(ii) r is finitely generated, and 
(ii i) r contains translations. 
With each transformation v~r we associate a real 

2 X 2 matrix (; ~) such that 
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V7=aT+b 
c7 +d' 

and ad - bc = L This can be done in precisely two ways 

since ± ( ; ~) are both associated with V. 

Since r is finitely ge nerated it has finitely many 
parabolic cusps in any fundamental region R, and 
since r contains translations R has at least one such 
cusp. Suppose R is a fundam e ntal region for r with 
parabolic cusps PI , ... , PI-" Without loss of gener­
ality we may assume no Pi = 00. For if say PI = 00, let 
AEr be suc h that A does not fix 00, that \s A is .not a 
translation. (If e very element of r were a translation, 
then in fact r would be a c yclic group and would be 
discontinuous at every point of the real line, contrary 
to assumption.) Let 

N= {7E:J't' 11m 7 > I}, R,, = RnN. 

Then R* = (R - R,,) uA (R oo ) is a fundamental region 
for r in which 00 is not a parabolic cusp. 

Let r be a real number. We want to consider func­
tions F(7), meromorphic in :J't', such that 

F(V7) = v (V) (c7+d) - "(F7) , (1) 

for every V =- (; ~) Er and 7E:J't'. Here v (V) IS a 

complex number independent of 7 such that Iv (V) I = 1 
for all VEr. In order to fix the branch of (c7+d) -r 
when r is not an integer, for any complex number z 
and real number s, we define 

zs= Izls, exp (i. s arg z), -7T ~ arg z < 7T. 

For each j, 1 ~ j ~ ,.,., the stabilizer of Pj in r (that is 
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{MEflMPj '- Pj}) is a cyclic group generated by a 
paraboiic element of f. From this fact, eq (1), and the 
fact that F (T) is a meromorphic in :Jr, it can be de· 
duced ([1, p. 157]) that F(T) has an expansion "at P/, 
of the form 

00 

F(T) = (T-Pj)r L b"U)e 2"i (n+k))Aj'T/AJ, l~j~l1-, 
n=-oo 

(2) 

where Aj is a real linear fractional transformation 
such that AkXl) = Pj, 0 ~ kj < 1, and Aj > O. 

Suppose that F(T) is meromorphlc in :Jr, satisfies 
(1), and for each j only finitely many terms such that 
n < 0 appear in (2). Then we say that F (T) is an auto­
morphic form of dimension r with respect to the group 
f and the multiplier system v. If F (T) is holomorphic 
in :Jr and for each j only terms such that n + kj ~ 0 
appear in (2) we say that F ( T) is an entire automorphic 
form. If F(T) is an entire form such that only terms 
with n + kj > 0 appear in (2), we say that F (T) is a 
cusp form. 

3. We now assume that F (T) is an entire automorphic 
form of dimension r > 0 with respect to r. We will 
show that 

IF( T) 1=IF(x+ iy) I~Kyr/2 (3) 

for all TE!it', where K IS independent of x and y . Con­
sider the function 

cp( T) = cp(x + iy) = y- r/21F(x + iy) I, TEH. 

A simple calculation shows that for T = X + iy, 

1m T Y 

leT + di 2 = !cT+ di 2 ' 
1m VT 

for V = C :) Ef. This fact and (1) together imply 

that cp(VT) =CP(T) for all VEr. 

We will show next that as T ~ Pj from within R*, 
cP (T)~ 0 (1 ~ j ~ 11-)' Now T ~ 00 from within a vertical 
strip if and only if AfT ~ Pj from within R*. Consider 

where Aj = (~ !). Here we have used the expansion 

(2) and the fact that F (T) is an entire form. As T ~ 00 

from within a vertical strip the infinite sum is bounded. 
On the other hand 

aT+b a 1 
A(T-P·=----=- . 

J J CT + d C C ( CT -+- d) 

Hence 

y- r/2IcT+ dlrlAfT- Pjlr= y-r/2icT + dlrl 
C(CT+ d) I- r= IeI-ry- r/2. 

Since r> 0, we conclude that cp(Ap')~ 0 as y~+oo; 
hence cp(T)~O as T~Pj from within R*. 

An H-group has a fundamental region R with the 
property that the closure of R intersects the real line 
only in parabolic cusps [1, p. 145, Th. 6G]. The funda­
mental region R* constructed in section 2 from R 
also has this property. Therefore sup {cp(T)ITER*} is 
actually achieved at a point of :Jr, since cp(T) is con­
tinuous in :Jr. Hence there exists K> 0 such that 
cp(T)~K for all TER*. Since CP(VT) = cp(T) for VEf, 
cp(T) ~ K for all TEH, and (3) follows. 

We proceed to show that F (T) is identically zero. 
Since F (T) is an entire form and r has translations, 
F (T) has an expansion "at 00" of the form 

F ( T) = L a ne2Tri(n+k)T/A, 

n+k~O 

(4) 

where 0 ~ k < 1, and A> O. This expansion is valid 
in all of :Jr. There are several ways to complete the 
proof. The first of these closely follows Hecke's method 
for estimating the coefficients of cusp forms of nega­
tive dimension. 

A calculation involving (4) shows that 

n~O, 

where To = Xo + iYoE:Jr and the integral is taken along 
the horizontal path. Hence by (3), -

Letting Yo~O+ we get a,,=O for n=O, 1, 2, ... , 
and therefore F(T)=O for all 'TE:Jr. 

4. Here is another method. There exists a linear 
fractional transformation L which maps the open unit 
disk D onto :Jr, the unit circle T onto the real line (in­
cluding (0) and the complement of 15 onto the lower 
half-plane. L can be chosen so that L (1) = 00. Con­
sider the function 

f(z)=F(L(z» , zED . 

Then f is holomorphic in D. Since r > 0 the inequality 
(3) shows that F (T) has radial limit 0 at every point 
of the real line, except possibly 00. By (4) F (T) is 
bounded uniformly for 1m T> 1, say IF (T) I ~ K 1. On 
the other hand (3) implies that for 0 < 1m T < 1, 
IF(T)I ~K. Hence for TEH, IF(T)I ~max (K, Kd. 
It follows that f(z) is a bounded holomorphic function 
on D with radial limit 0 at every point of T, except 
possibly at z = 1. By a standard theorem of function 
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theory ([2] pp. 300-301) 2 f(z) == 0 in D and therefore 
F(T) == 0 in JY. 

5. We give a slight variation of the second method 
which works for "compact groups" as well as H-groups. 
A di scontinuous group f acting on JY is called compact 
if f has a fundamental region R whose closure is a 
compact subset of JY. The nomenclature ste ms from 
the fact that this condition on the group is equivalent 
to the compactness of the Riemann surface JY/ f . 

We have already proved (3) for H-groups. For com­
pact groups (3) is trivial. As before, cp(T) =y- r/2IF(T ) I 
is invariant under f; also cp(T),s; K for TEl{, since cP 
is continuous in JY and R is a compact subse t of JY. On 
the other hand (3) and the Schwarz reflection prin­
ciple imply that F (T) can be extended to an entire 
function which is zero on the real axis. Hence F ( T) == O. 

6. The method of section 5 is not restric ted to 

2W. Rudin, Real and complex ana lysis (McCraw. HiII Book Co., New York, N.Y. , 1966), 

H-groups and compact groups. It can in fact be adapted 
without difficulty to the class of di scontinuous function 
groups f with domain of existence 9 satisfying 

CONDITION A. f has a fundamental region R c 9 
with the property that R n Bd 9 either is empty or 
consists entirely of parabolic verti ces. 

The method of section 5 yields the following 
THEOREM. Let f be a discontinous function group 

with a simply connected domain of existence 9 sat­
isfying Condition A. If F(7-) is an entire automorphic 
form of positive dimension on f, then F == 0 in 9 . 

To prove this we consider A(T)- '·/2. F(T) in place of 
y- r/2 . F(r) , where A(r)- I is the Poincare metric for 
the hyperbolic geometry in 9 . F or example if 9 is the 
unit disk , A(T) = 1 -ITI2. 

Condition A is trivially satisfied for compact groups; 
for H-groups and their conjugates it is satisfied by 
([1], p. 145, Th. 6G). By ([1], p. 133, Th. 4J) any group 
satisfying Condition A is finitely generated. 

(Paper 71B4-239) 
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