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In high precision calibrations one measures differences between nominally equal objects or group
of objects and establishes a value for the individuals with reference to one or more standards. The
solutions to the classical tournament problem, which calls for arranging v individuals into teams of p
players so that a player is teamed the same number of times with each of the other players and also
that each player is pitted equally often against each of the other players. provide balanced designs for
scheduling the measurements. These designs are useful in weighing and other measurements when
the objects to be measured can be combined into groups without loss of precision or accuracy in the

comparisons.

This paper presents solutions to the tournament problem for all » < 13 and for p < > I'he statistical
analysis, a worked example, and computational procedures are given.
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1. Introduction

In high precision calibration only differences be-
tween nominally equal objects (or groups of objects)
can be measured, and the process of calibration con-
sists of assigning the value for the “‘unknown’ objects
in terms of “known” or accepted standards. Where
there are v objects and the intercomparisons can be
made between groups of size p then one has a situation
analogous to the classical tournament problem.
Schedules for intercomparison which are balanced
in the sense that each object (or player) is teamed up
with each of the other objects (or players) an equal
number of times and is in opposition to each of the
other objects (or players) the same number of times are
found in solutions to the tournament problem.

In a previous paper [6]' solutions to the tournament
problem for p=2 and v =< 50 were given and this paper
extends those results to include balanced weighing
designs (BWD) for v <13 and p < v/2. The statistical
analyses appropriate when the designs are used in
calibration, and an example from mass calibration are
given.

The paper has two main parts; one related to the
construction of the design, the other to their use and
analysis. Those primarily interested in the use of the
designs in measurement should begin with section 3.

*Consultant. Permanent address: Department of Statistics, University of North Carolina,
Chapel Hill, North Carolina 27515.
1 l'_"i;ulrv.\ in brackets indicate the literature references at the end of this paper.
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2. Construction of Balanced Weighing Designs

1. Let there be v players or objects. We have to
arrange them in b blocks of size 2p, each block con-
sisting of two half-blocks of size p. Two objects appear
in the same half-block A; times, and in opposite half-
blocks of the same block A\, times. Then

v, b, r, p, A, s

are said to be the parameters of the tournament
design or balanced weight design (BWD). Here r is the
number of blocks in which each object appears. It
is readily shown [6] that
Mo—1)=r(p—1), A@—1)=rp.

Hence r=B(v—1), where 3=\, — A;. Then counting
the number of objects in the b blocks in two different
ways we have

2pb=vr=v(v—1)B8 (2.1.1)

Hence
b= Bu(v—1)/2p. (2.1.2)
Let h be the highest common factor of v(v—1) and

2p, and let 2p=hn, then 8=\, — \; must be divisible
by n. Hence the least possible value of 8 is n, and in



general B=gn where g is a positive integer. If the
design for B=n exists, we shall call it minimal in the
sense that no smaller number of blocks could possibly
lead to a balanced design. The parameters of the
design then are

v. b=vw—1)/h. r=nw—1), p, \=np—1), a=np

where h is the highest common factor of ®(v—1) and
2p=hn.

It is known that a design with 8=rn does not always
exist. Such an example is given later in this paper.
A BWD design will therefore be called minimal if g
is the smallest positive integer such that a design with
parameters

v, b=gv(w—1)/h, r=gnlv—1),
p. Mi=gn(p—1), \a=gnp

exists. If the design with g =1 exists, then it is of course
minimal.

Designs with p= 2, v < 50 were studied in an earlier
paper [6]. In this section we shall give some series
of BWD designs for p > 2, which include all minimal
designs for v < 13, except the design

v=10,b6=15.r=9, p=3, A\, =2, \y=3.

It is not known whether this is combinatorially possible.
However the corresponding design with g¢=2, i.e., the
design

v=10, 6=30,.r=18, p=3, A\i=4, =6

will be obtained.

Except for a few cases, the construction is based on
the method of symmetrically repeated differences first
used by Bose [3]. The theorems relevant to the con-
struction of BWD designs have been given in Bose
and Cameron [6], to which reference should be made.
As in the earlier paper the notation

{((l,l. @hie, 5 o no (l,,), (1)1. bg. 5 0 oo b,,)}EB(cl. iy 0 o oo Cu)

will be used to denote the set of blocks

- bpci)}s
t=1,2,. . ., u

{(aici, asci, . . ., aycy), (bici, baci, .

where a, as, . . ., ap, b1, b, . . by 1,00,
are elements of a field or a commutative ring.

2. Let v be a prime power of the form 4¢+ 3. Let h
be the H.C.F. of 2p and (4¢t+2)(4t+3) and let

n=2p/h. Then a design with parameters

D Cu

v=4t+3, b= (4t+2)(4t+3)/h.

r=n4t+2), p, M=n(p—1), N=np (2.2.1)
is minimal if it exists.
(a) If p is relatively prime to 2¢+1 and 4¢+ 3. then

h=2. n=p and the design has parameters

v=4t+3, b= (4t+3)(2t+1),

M=p(p—1),

r=p(4t+2), p,
A= p2. (2.2.2)

A solution of this design is obtained by cyclically
developing the initial blocks

ap), (bi, b2y . . .. by)]

D(1, x, 2%, . .

[(ay, as, . . .,

. a2l

where @i, a», . . ., @, b1, bs, . . ., by are distinct
elements of GF(4t+3), and x is a primitive element.
By cyclical development of, for example, (ajas) (b,162),
is meant the series of blocks {(ajaz) (b:1bs)}, {(a;+1,
as+1), (bi+1,b+1)} . . . {(ei+v—1,a:+v—1)
(bi+v—1, b+v—1)} reduced mod v where v is a
prime. If v is a power of a prime, say p”, then in place
of 1,2, . . . v—1one adds 1, g1, g2, . . ., gv_1 where
the g; are elements of the Galois field of order p”. For
example, for v=9=3 the elements of the field are
1, x, 2x+1, 2x+2, 2, 2x, x+2, x+ 1 and the addition
is carried on mod (x*+x+2). A detailed discussion
is given in reference 3.

The within half-block differences arising from the
initial blocks are
{. . fla1i—q), .. ..

= (bi—0bj), . . .}
D(1, x, x%, . .

oo S )

Since x is a primitive element of GF(4¢+ 3), x*+!

=—1. Hence the differences may be written as

{ .. (a—aq), ...

R x-l[fl).

It is evident that each nonzero difference is re-
peated Ay =p(p—1) times.

Again the differences arising from the cross pairs,
i.e., pairs belonging to opposite half-blocks within
the same initial block are

{ ... =(a—=bj), .. .} BA, x, 2% ..., x¥)
and these may as before be written as

{. .., (ai—=b), ... 3D, x, 2 . .., xit)
so that each nonzero difference is repeated \,= p?
times.

The proof follows as in [6].
Example (2.2.1). Let t=2, p=3. Let the objects be
represented by elements of GF(11). Note that 2 is a
primitive element of GF(11). A solution of the design
v=11, b=55, r=230, A=06,

p=3, =9

is obtained by developing the initial blocks
{(1,2.3), (4.5,6)}P(1,2,4,8,5).

Example (2.2.2). Let t=2, p=4. As in the previous
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example let the objects be represented by elements
of GF(11). A solution of the design
v=11, b=55 r=40,

p=4, M=12, \N=16

is obtained by developing the initial blocks

{(1,4,5,10), (9.7,3,6)}D(1,2.4.8,5).

(b) Next suppose that 2t+1 is.a multiple of p say
2t+1=p8p then h=2p and n=1. Then from (2.2.1)
the parameters of the design become

v=4t+3, b= (4t+3)p,

p. M=p—1,

r=4¢+2,

Na=p. (2.2.3)
A solution of this design is obtained by developing
the initial blocks

{(1, a8, x%, . . ., x20-DB),

(xB, x38, . . ., x2r=DB)}

D, x, 2%, . . ., KB,
The proof follows from the method of differences.
Example (2.2.3). Let t=1 and p=3. Then g=1.

Let the objects be represented by elements of GF(7)

and note that 3 is a primitive element. A solution of

the design
v=1,

b=17, r=6, p=3., =2, =3

is obtained by developing the initial block

{(1,2,4), (3,6,5)}.

Example (2.2.4). Let t=2 and p=5. Then B=1.
Let the objects be represented by elements of GF(11).
A solution of the design

v=11, b=11, r=10, M=4,

p=>, A2=5

is obtained by developing the initial block

{(1.4.5.9.3). (2.8.10.7.6)}

3. Let v be a prime power of the form 4¢+ 1. Let h be
the H.C.F. of 2p and 4¢(4t+ 1), and let n=2p/h. Then

a design with parameters

v=4t+1, b=4t(4¢+1)/h, r=4nt, P

M=n(p—1), Na=np (2.3.1)

is minimal if it exists.

(a) If p is relatively prime to 2t and 4¢+ 1, then h=2
and n=p. The parameters of the design become

v=4¢t+1, b=2t(dt+1),

M=p(p—1),

r=4tp, p,
A= pZ. (2.3.2)

Let x be a primitive element GF(4¢+ 1). Then a so-
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lution of the design is obtained by developing the ini-
tial blocks
{(ar, az, . . ., ap),

(bl- 1)2, o 0 e [)I')}
D(1, x, x%, . . ., 2%

where a, as, . . .. @y, by, b, . . .. b, are distinct ele-
ments of GF(4¢+1).

The proof follows from the method of differences.

Example (2.3.1). Let t=3., p=>5. Let the objects be
represented by elements of GF(13). Note that 2 is a
primitive element. A solution of the design

v=13, b=178, r=60,

p=5, M=20, A=25

is obtained by developing the initial blocks
{1,2,3,4,5),6,7,8,9,10)}B(1, 2, 4, 8, 3, 6).

(b) Next suppose that 2¢ is a multiple of p, say
2t=Bp, then h=2p and n=1. Then from (2.3.1),
the parameters of the design become
v=4t+1,

b= (4+1)8, r=4t,

p, M=p—1, Ah=p.
Let x be a primitive element of GF(4¢+1). Then a
solution of the design is obtained by developing the
initial blocks
{(1, 228, . . .,

XA (B, a8, w8 L

B(1, x, . . ., aB1).
The proof follows from the method of differences.
Example (2.3.2). Let t=2, p=4. Then B=1. Let

the objects be represented by the elements of GF(32).

A solution of the design

v=9, b=9, r=38,

p=4, M=3, =4

is obtained by developing the initial block

{(1, 22, x4, x8), (x, 3, 2%, 27) }
where x is a primitive element of GF(32).

Example (2.3.3). Let t=3, p=3. Then B=2. Let
the objects be represented by the elements of GF(13).
A solution of the design

v=13, b=26,

r:]Q. [):3. )\122. )\_7:3

is obtained by developing the initial blocks
{(1,3,9), 4,12, 10)}B1, 2).

Example (2.3.4). Let t=3, p=6. Then 8=1. Let
the objects be represented by the elements of GF(13)
as in the previous example. Then a solution of the
design

v=13, b=13.

/\1:5, )\3:6



is obtained by developing the initial block
{1, 4, 3,12, 9,10)., (2, 8, 6,11, 5, 7)}.

(¢) If p=4 and t is odd, then the conditions assumed
in neither (a) nor (b) are satisfied. In this case h=4,
n=2. The parameters of the design (2.3.1) become
v=4t+1,

b=t(4t+1), r=8t,

p=4, N=6, \=8.
As before let x be a primitive element of GF(4¢+ 3).
A solution of the design is obtained by developing the

initial blocks

{(1. X[. x‘.’l. Xiil). (XZZ‘ XI*'.Z. X2t+2. x.‘}l*:l)}

D, x, 22, . . ., x7D).
The proof follows from the method of symmetrically
repeated differences.
Example (2.3.5). Let t=3, p=4. Let the objects be
represented by elements of GF(13) as before. A solu-
tion of the design

v=13, b=39, r=24, p=4, M=6, A=38
is obtained by developing the initial blocks
{(1,8,12,5), 4, 6,9, ))}D(1, 2, 4).

4. (a) If 6¢ + 1 is a prime power and p= 3. there exists
a minimal BWD with parameters

v==6t+1, b=t(6t+1), r=6t,

p=3, M=2, M=3 (241

whose solution is obtained by developing the initial

blocks

O, 52, 229 (00 o, F) @D, 555 2% o o a0 1)

(2.4.2)

The proof follows at once by using the method of
symmetrically repeated differences.

(b) We can modify the above solution to obtain a
solution of the design

v=6t+2, b= 3t+t)(6t+1), r=3(6t+1),

p=3. M=6, A=9  (2.4.3)
when as in (a), 6t+1 is a prime power. Let 6¢+ 1 ob-
jects be represented by elements of GF(6s+1), and
to these let us adjoin another object . Let us take as

initial blocks, the blocks

=)

(2.4.4)

{00, 220, a2t (&, x3t, ) N Di(x, %2, . . o,

each repeated thrice, together with the four initial

blocks

{(1, 22, 24), («f, 23, x50)} (2.4.5)
{(<, 1, 22), (xf, 23, x51)} (2.4.6)
{(e<, 1, x4), (af, 23, x5)} (2.4.7)
{(e<, a2, x%), (af, 28, 250)}. (2.4.8)

Then by developing we shall obtain a solution of
(2.4.3). Observe that when we develop (2.4.6), (2.4.7),
(2.4.8), «< is replicated 3(6¢t+ 1) times, and occurs 6
times in the same half-block and 9 times in opposite
half-blocks with each other object. Also any difference
occurring in (2.4.4) occurs thrice in (2.4.5), (2.4.6),
(2.4.7), (2.4.8).

Example (2.4.1). Let t=1. Let the objects be rep-
resented by < and the elements of GF(7). Then the
solution of the design

v=8, b=28, r=21,

p=3. N=6. AN=9

is obtained by developing the initial blocks

{(1,2.4),
{(<.1.4),

(3.5.6)}.
(3.5.6)}.

{(=,1,2),
{(x,2,4),

(3.5.6)}
(3.5.6)}

Example (2.4.2). Let t=2. Let the objects be rep-
resented by < and the elements of GF(13). Then a
solution of design

v=14, b=91, r=39,

[):3, )\l:()' }\_):9

is obtained by developing the initial blocks

{(1.3.9), (4,12.10)}

@(1.2,2,2), {(x,1.3)., (4,12,10)}

{(=.1,9), (4,12, 10)}, {(x<.3.9). (4,12.10)}.

5. A balanced incomplete block design (BIBD) is
an arrangement of v* objects in b* blocks such that
(i) each block contains exactly k* different objects
(i) each object appears in exactly r* blocks (iii) any
pair of distinct objects appear together in exactly \*
blocks. The BIB design is then said to have the param-
eters v*, b*, r*, \*, k*. Suppose the solution of a BIBD
with parameters

v*=4¢t+3,b*=4¢+3, r*=2t+1,k*=2t+1,\*=1.
(2:55)

From this we can obtain a solution of a BWD with
parameters

v=4t+4,b=4t+3, r=4t+3,p=2t+2,\, =2t +1,

No=2t+2 2.5.2)
in the following manner:

Let S denote the set of the 4¢+ 3 objects of the BIBD.
Then for the objects of the BWD we take the set
« U S, i.e., we adjoin new object <. If B; is the set
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of objects in any block of a BIBD, then for the cor-

responding block of the BWD we take the set
{(OCUBI),(S—B,)} 1=1,2,. . .,4t+3;

divided into two half-blocks as indicated. The 4¢+ 3

blocks S —B; form the design complementary to the
given BIBD. It has parameters

vE=dt+3,b5=4dt+3, r¥=2+2, ki=2t+2,
ANi=t+1.

Then clearly < occurs in 4¢+3 blocks and with each
object of S, r*=2t+ 1=\, times in the same half-
block, and with r*=2¢+ 2=\, times in opposite half-
blocks of the same block. Also any two elements of
S occur in the same half-block \*+\¥=2t+1=)\
times. Again since every block of the BWD contains
all treatments exactly once, so every pair occurs
once in each block and therefore 4¢+3 times in the
whole design. Hence any two treatments occur in
opposite half-blocks 4t+3—\;=2t+2 times. This
proves the required result.

If-4¢+ 3 is a prime power then the BIBD, with param-
eters given by (2.5.1) can be obtained [Bose, 3] by
developing the initial block

(1, 2,24, . . .,x*)
where x is a primitive element of GF(4¢+ 3). Hence a
solution of the BWD with parameters (2.5.2) can be
obtained by developing the initial block

L(lse 0t 25 S A8 (0 a0, 03 e AL S

Alternatively the BWD with parameters (2.5.2) can
be obtained from a Hadamard matrix H of order
n=4t+4 i.e., a matrix of order n each of whose
elements is +1 or —1, and such that HH"=nl.
Hadamard matrices of order n=2 and n=4¢+4 are
known to exist for all values of ¢ < 200 except for the
unknown case, n=188 [1, 2, 9, 10] Also the existence
of a Hadamard matrix of order n=4¢+4 is equivalent
to the existence of a BIBD with parameters (2.5.1)
[Bose and Shrikhande, 7]. Hence for any value of ¢ for
which a Hadamard matrix H of order n=4¢+ 4 exists
we can get a BWD with parameters given by (2.5.2).
We can take H = (hj;) in the normalized form in which
the elements of the last row are all +1. Let the first
4t+ 3 rows of H correspond to the blocks and let the
columns of H correspond to the objects. Then the ith
block of the BWD is obtained from the ith row of H by
placing the object j in the first or the second half-block
of the ith block, according as hjj=+1 or — 1.

Example (2.5.1). Let t=1. Let the objects be rep-
resented by the elements of GF(7) and «. Then a
solution of

v=8,b=7,r="7, k=4, A1 =3, =4

is obtained by developing the initial block

{(=,1,2,4),0,3,6, 5}

Alternatively the design can be obtained from a
Hadamard matrix of order 8 by the method explained.

Example (2.5.2). Let t= 2. Let the objects be rep-
resented by the elements of GF(11) and <. Then a
solution of

v=12,b=11,r=11, p=6, \; =5, \=6
is obtained by developing the initial block

{(<,1,4,5,9,3),(0,2,8,10,7,6)}.

Alternatively the design can be obtained from the
Hadamard matrix of order 12.

6. Let v=4¢t+2, p=2t+1. Then h=4t+2, n=1.
The minimal design if it existed would have the
parameters

v=4t+2,b=4t+1,r=4t+1, p=2t+1,

}\1:2t, A =2t+1. (261)
We shall however show that a solution of (2.6.1) is
impossible. Suppose, if possible, the design exists.
Then the 8t+2 half-blocks give a solution of the
BIBD with parameters

v¥=4t+2, b* =8t+2, r*=4d¢+1,

k*=2t4+1, \*=2¢. (2.6.2)
Since the two half-blocks of any block of (2.6.1) con-
tain all the 4¢ + 2 objects, the BIBD (2.6.2) is resolvable
in the sense of Bose [4]. Since b*=v*+r*—1, the
design is affine resolvable. Since A**/v*=(2t+1)/2
must be integral, we have a contradiction.

We shall now give a construction for the BWD with
parameters

v=4t+2,b=8t+2,r=8t+2, p=2t+1,

A1 :4l, Ao =4t +2 (263)
when 4¢+1 is a prime power. The design thus obtained
is minimal according to our definition.

Let the objects be represented by the elements of
GF(4t+1) and «<. Then a solution of the BWD with
parameters (2.6.3) is obtained by developint the initial
blocks

{(m9 l?xZ’ x4’ L -

e R S

., 2D},
The proof follows from the method of differences by

noting [Bose, 5| that among the 2¢(2¢t—1) mutual
differences among

{(00 ]‘9 xz, x47 ot x4(72)9 (q 9 x’ x:g’ . 4

4t — 2
e

each nonzero square element (quadratic residue) of
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GF@t+1) occurs t—1 times and each nonsquare
element (nonquadratic residue) occurs ¢ times.
Example (2.6.1). Let t=1. Let the objects be rep-
resented by the elements of GF(5) and <. Then a
solution of
v=06, b=10

r=10,p=3, \i=4, .,=6

is obtained by developing the initial blocks
{(=,1,4),(0,2,3)}, {0, 1, 4), (<, 2, 3)}.

Example (2.6.2). Let t=2. Let the objects be rep-

resented by the elements of GF(3?) and <. Then a

solution of

v=10, =18, r=18, p=5, \i=8, =10
is obtained by developing the initial blocks

{(=, 1, a2, x*, x5), (0, x, 2%, x°, x7)}

{0, 1, 22, x*, x5), (<, x, 23, 2°, x7)}

where x is.a primitive element of GF(3?).
7. We shall next consider the BWD with parameters

v=9,b=12,r=8,p=3, \i=2, \a=3. (2.7.1)
Consider the BIBD with parameters
=9, b*=12, r*=4, k*=3,\*=1 2.7.2)

This is a resolvable design (ismorphic with the finite
affine plane EG(2, 3)). The blocks can be arranged in
4 sets, each set consisting of 3 blocks containing all
the 9 treatments. Each set of blocks corresponds to a
parallel pencil of EG(2, 3). The blocks can be written
down by taking the rows, columns, and the diagonals
of the scheme

Thus the blocks are

Set 1,2,3),4,5,6),(7,8,9)
Set 11 (1,4,7),2,5,8),3,6,9)
Set 111 1,6,8),2,4,9), 3,5,7)
Set IV 1,5,9),(2,6,7), 3, 4,8)

Let us obtain the blocks of (2.7.1) by taking for
half-blocks of the same block all possible pairs of
blocks from the same set. Thus each set gives rise to
4 blocks. We thus get the design

{4,5,6),(7,8,9)},{(7,8,9), (1,2, 3)}, {(1,2, 3),4,5,6)}
{2,5,8),(3,6,9)}, {(3,6,9),(1,4, 1)}, {(1,4,7),(2,5,8)}
{2,4,9),3,5,7},{3,5,7),(1,6,8)}, {(1,6,8),(2,4,9)}
{2,6,7),(3,4,8)},{(3,4,8),(1,5,9},{(1,5,9),(2,6,7)}.

Since every block of (2.7.2), occurs as a half-block
twice it is clear that we have v=9, b=12, r=8, p=3,
A1 =2. Also the design formed by the complete blocks
is a BIBD complementary to (2.7.2), and therefore
has parameters =9, b*=12, =8, kf=6
Nf=b*—2r*+\*=5. Hence in the full blocks each
pair occurs 5 times. Thus each pair occurs \f —\; or
3 times in opposite half-blocks.

8. Let v=10, p=3. Then h=(90,6)=6, n=1. Hence
a BWD design with these values of v and p must have
the parameters
v=10, b=15g, r=9g, p=3, \i=2g, ho=3g. (2.8.1)
If a combinatorial solution for g=1 is possible, then
this would provide the minimal design. However no
such solution is available and the question of its
existence is open. We shall however give a solution
of (2.8.1) with g=2. In this case the parameters are

v=10,6=30,r=18,p =3, A\ =2, A\, =3. (2.8.2)
Let the objects be represented by elements of GF(32)
and <. We obtain 18 blocks by developing the initial
blocks
fE o N0t ) i e=ie e (0 = e N )
Then clearly =< occurs in each of the 18 blocks, and
occurs 4 times with every other treatment in the
same half-block and 6 times with every other treat-
ment in opposite half-blocks.

It is easily checked that every non-zero element
of GF(3?% occurs exactly twice among the differences
obtained from all pairs formed from elements (other
than <) occurring in the same half-blocks in (2.8.3)
and exactly thrice among the differences obtained from
all pairs formed from elements (other than <) occurring
in the opposite half-blocks of (2.8.3).

Hence any pair of objects (other than <) occurs
exactly twice in the same half-block, and exactly
thrice in opposite half-blocks in the 18 blocks obtained
by developing the two initial blocks (2.8.3). Also each
object other than = occurs exactly 10 times.

The required solution of (2.8.2) is now obtained by
adding the 12 blocks of the design

v=9,6=12,r=8,p=3,\1=2,\,=3.
A solution of this has already been given in para. 7,
but the objects there were called 1, 2, 3, . . ., 9. We
can identify them with the elements of GF(32) by
making the object i correspond to the element xi~! of
GF(3? for i=1, 2, . . ., 8; and making the object 9
correspond to the element 0 of GF(32).

9. We give below the solutions for a number of
minimal designs. In each case the proof depends on
the method of differences.

(a) The solution of

v=12,6=22,r= 2, =3

11,p=3, \= (2.9.1)
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is obtained by developing the initial blocks

(<,1,4),5,9,3)},{(0,8,1), (2,7,6)}  (2.9.2)

where the objects correspond to the elements of GF(11)
and <.

Clearly « occurs 11 times, and occurs twice with
every other object in the same half-block, and thrice
with every other object in opposite half-blocks.

Again every nonzero element of GF(11) occurs
exactly twice among the differences obtained from
pairs formed from elements (other than <) occurring
in the same half-blocks in (2.9.2). This shows that
A1 =2. In the same way we show that A, =3.

(b) Gonsider the design

v=10,b=45,r=36,p=4,\; =12, \2=16.

Let the objects be represented by < and the ele-
ments of GF(32). Then the solution is obtained by
developing the initial blocks
{(x,0,1,x%), (x, 2%, 2%, x7) } D (1, x, x2, x3)

{1, 202, x4, x8)), (2, 23, 205, 7)1},

(c) Consider the design

v=12,b=66,r=>55,p=>5, \; =20, A\, =25.

The objects may be represented by the elements
of GF(11) and <. A solution of the design is obtained
by developing the initial blocks
{(«<,2,6,7,8),(1,4,5,9,3)} & (1,2, 3,4.,5)

{(1,4,5,9,3), (2,8,10,7,6)}.
(d) The solution of the design
v=12,6=33,r=22,p=4,\=6,\,=38
is obtained by developing the initial blocks
{(=.5.6,8).(0,1,3.7)}
{(=,5,6,8), (2,4,9,10)}
{(0,1,3,7),(2,4,9,10)}

where as before the objects are represented by <
and the elements of GF(11).

3. The Use of Solutions to the Tournament
Problem in Calibration

Calibration is the process of assigning to an object a
value for its mass, length, angle, electrical resistance,
capacitance or some other property by intercompari-
son with one or more accepted standards. For high

precision calibration, these comparisons must be
made between nominally equal objects (or groups of
objects).

The balanced weighing designs of this paper give
groupings into subsets of equal size so that the equal-
ity in nominal size is satisfied. The designs are espe-
cially appropriate in mass measurement but are
equally applicable to other areas where the property
being measured is additive without loss of precision
of measurement.

The advantage of these designs can be illustrated
by an example. If one had nine 1-gram weights, one
could form n(n—1)/2=36 distinct pairings and could
make the 36 measurements of the differences in value
between elements of the pair. One can achieve the
same precision in the estimate of the values (when the
sum of all is known) with only 18 measurements by
intercomparing subsets of size 2 as shown in design 10
of the appendix; with only 12 measurements using
subsets of size 3 as shown in design 11; and with
9 measurements using subsets of size 4 as shown in
design 12.

Statistical analysis. The v objects under study have
unknown true values 6, 0, . . . 0,. In a balanced weigh-
ing design one uses two distinct groups of p objects
at a time, say 6, 0i,, . . . 0;,and 6 0 Oy,
and measures the difference between the values for
the two groups so that the expected value for an obser-
vation is

ips1s Oipios - o -

E(y)—(0,~1+0,-2+ 5 oo o in)_(aip+1+0i1)+2+ S 9,‘2”).
In the complete design, b such observations will be
made, each object being used r times.

For design 2 of the appendix, the 5 measurements of
the quantities 6, 6., 03, 6, and 6; have expected
values

E(}’]): 01 ot 04 - 02 - 03
E(y;): 02 Sia 0', s 03 b 04
E(ys)=6;+60,—0,—6;
E(}/4)= 0,4+ 6, — 05— 0,
E(}’s): 0;+0;—0,—0,,

The normal equations will be

4'01_ 02_ 0';_ 04— 05=y1+)’3_)”4_ 5
—0,+ 46, — 03_ 0y — 05:)’2+}’4_}’5—y1
—60i— 6,+40;— 0,— 05:}’34‘)’5*)’1_}’2
—01— 0,— 03+40,— O:=y,+y1—y2—y3
—0,— 6,— 63— 04+405:}’5A+}’2_y3_}’4-

Because only differences are measured, the normal
equations will be singular so that a restraint is needed
for a unique solution. In calibration work this is pro-
vided by one or more standards or values derived
from them. Let us denote this restraint by

k101+k202 5 G D kUOD:m

or in matrix notation, by K'6=m. The normal equa-
tions then become [8]
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where 8=\, —\, [ is the identity matrix, / is a matrix
of all ones, ¢ is the Lagrangian multiplier entering
in the minimization and 7 is the vector of sums of the
observations for each object (the sign of the observa-
tion being changed if the object enters negatively in
the equation for its expected value). It is worthwhile
to discuss two cases in connection with the restraint;
one in which the sum of all is given and the other in
which the sum of the first ¢ objects is known.

(a) Restraint that the sum of all is given

If the value, m, for the sum of all v objects is given,
then the inverse of the matrix of normal equations is
(letting ¥ denote a vector of ones)

[(_rtli)l_—ﬁl_i}]"‘_l [UI—J vB+]

1 1ol B lupt 0
and the estimates for the unknowns are
A Ti m
6;= E‘F;
and for the variance
1 1 IR
2 2 __ =
S = {2 UB}
The variances of the estimates are
A (v—1)o?
Var (0): W
N\ 202
Var 0,~—6j)=%

(b) Restraint: sum of any number is known.
If the restraint is of the form

i@izm,
1

i.e., that the sum of the first ¢ objects is known, then
the inverse of the matrix of normal equations becomes
(letting @ represent a vector of zeros)

(r+BI—BJ  —BJ 1|
—BJ r+pI—-pJ 9
+ 0 0
:E}E d—J 0 vBt
0 il=F vt
Br  pE 0

The estimates now become

A Tj S m

i:v,B tvﬁ+7

t
where S= E s
ik

The variance estimate is the same as before but the
variances of the § become

" . 2
V(Oi)z(tt% i=12, .. .t
- t+1)o?
V(oi)z% R
2 2
V(oi—oj)=%-

4. Example and Computational
Procedures

Weighing devices for large masses characteristi-
cally have groups of weights of the same nominal size
(e.g., five 2000 Kg wt; ten 10,000 Kg, etc.). A typical
configuration is that in use at the Instrument Develop-
ment Branch, Test Laboratory, Marshall Space Flight
Center at Huntsville, Ala., which has in its 25,000 Kg
dead weight test machine a group of seven 1000 Kg
weights, two of which were actually pairs of 500 Kg
test weights which had been independently calibrated
in terms of National Bureau of Standards weights.
This assigned value for the sum of these weights is
taken as the restraint in terms of which the other
weights will be determined.

The measurements were made by using a load cell
as a comparator so that the “observations’ are the
values for the differences between two nominally equal
masses. For the group of seven 1000 Kg weights the
design involving comparisons between pairs of weights
was used and the results shown in table 1 were ob-
tained following the order given in Design Number 5
of the appendix.

TABLE 1. Values of mass difference in calibration of seven 1000 Kg

weights.

Restraint: sum of first two weights m=—0.0014 Kg.

Design: Weight No. Observations Deviations
1 2 3 4 5 6 1 (observed-calculated)
Kg Kg
<P AR = = 0.1846 —0.032493
¥ G = = —.0018 .038115
T —.0286 —.060285
S 1500 —.071522
— S S —.0400 .059799
S SERNETE —.3451 —.029307
S = A —.0016 .013193
= dr = —.4471 —.086864
= = 1700 —.040314
+ - - .0730 —.006322
= 4 = qp =21079 —.023050
- + = = =10612 1055151
13 = o = .2062 005942
= o5 = 5F —.0038 —.075343
= 3= AP = .3031 .077993
= - == == —.1704 —.032629
= = e —.0388 .006135
= = S = L) .029836
= = oF =10228 —.001536
= = = ¢ .1355 —.035842
iy et = =, —.0070 .037443
Sum of squares 0.62545461 0.0451268243
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Computational procedure. The following steps refer
to table 2 and indicate the order of the calculations.

1. Form sums corresponding to each weight, i.e.,
add or subtract those observations involving the weight
depending on the sign given in the design.

T, = {(.1846) — (— .0400) — (— .3451) + (—.0016)
(0730 (G 070206 2) B2 (R 003 8)
—(—.3031)—(—.0388)+ (—.0228)+ (—.0070)}

=.6649

T,={(.1846)+(—.0018)—(—.3451) . . . etc.}=1.6533.

These sums are shown in column 2 of table 2 and
have a check sum of zero, i.e., 27;=0.
t

2. Form the sum, S= ZT,-, of the ¢ totals involved in

the restraint.
In this example t=2 and

S=T,+T,=0.6649 +1.6533 = 2.3182

3. Form the differences tT;—S which will have as a
check sum —uS which in this example is —7(2.3182)
=—16.2274.

4. Divide tT;—S by tvB (in this example tvp= 28).

5. Add the restraint value

0.0014
5 —0.007).

6. The calculated value for each observation is
computed by substituting the estimates in the design
as illustrated below for the first two observations.

(in this example

(Calculated value); = (—0.036)+ (0.0346)
—(—0.170186) — (— 0.048307)= 0.217093
(Calculated value), = (0.0346) + (0.170186)

—(—0.048307) — (— 0.047364) =— 0.039915

The deviations are computed from
(Deviation); = (Observed), — (Calculated),
=(0.1846) — (0.21709) =—0.03249
(Deviation), = (Observed), — (Calculated),
=(—0.0018) — (—0.03991)= 0.03811

etc. and are entered in table’1.
7. The standard deviation, s, may be calculated as

_ _[X(deviations)*
g b=t

where b is the number of observations and b —v+1
is the number of degrees of freedom, or from

praA \/b_iljﬁ { Y (observations)* — %' T%/vf }

the former being preferred for machine computation.
8. The standard deviation of the estimates are

: : ; f==1
s.d. (weight in the restraint)=y/ p_ye o=

t+10____ o
B V/28/3

The standard deviation for the difference between the

V28

s.d. (other weights)=

—_——

o . . q o
two weights in the restraint is \/ o or — for the

V7

vp
example.

TABLE_Z. . Computational form for analysis of data from balanced
weighing design: Design 5 for 7 weights in 21 measurements

v="7 b=21 df.=b—v+1=15.

B=2
Restraint: Sum of first t=2 weights is —0.0014, i.e., 6,4+ 6, =m=—0.0014

1 3 4 5
Weight | Sums =S = 'TTU_—? f=B+"=B—0.0007
Nunllber T; 2T==S B=2T; -%)/28
i
1 0.6649 —0.9884 —0.0353 —0.036
2 1.6533 9884 0353 0346
3 —1.2137 —4.7456 o _:T69_48_6 _____ —_.778156 ________
4 .4926 —1.3330 —.047607 —.048307
S 5058 —1.3066 —.046664 —.047364
6 —1.6705 —5.6592 —.202114 —.202814
7 —.4324 —3.1830 —.113679 —.114379
Sum 0 —16.2274 —.57955 —.58445
Check 0 —uvS —SiB —S/tB +wvm|t
=—17(2.3182) =—(2.3182)/4 =—(2.3182)/4 + 7(—.0014)/2
=—16.2274 =—.57955 =—.58445
@S=T+T,. .. =T +T.=0.6949 + 1.6533 = 2.3182

® Deviations are shown in table 1.

Standard deviation:

SZZﬁ {E(obs)’*Zﬂ‘/vﬂ} df.=b—v+1=15

(0]

(Mo 2

5 [0.62545461 = (8.124-589)/14} =0.0451268243/15

5$=0.05485

Alternatively

0.0451268243

5 =0.05485.

s= \/%E(deviau'ons)2 =

@® Standard deviation of estimates

Weights inside the restraint o/ EzL_=0.188900‘
B /38

jt+1

wp

= [
Vasjs

Standard deviation of difference of two weights

2
0\/%=\/7

Weights outside the restraint o =0.327330.

<2 —0.37790.
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APPENDIX: Balanced Weighing Designs for
v <13, p < v/2—Continued
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APPENDIX: Balanced Weighing Designs for

APPENDIX: Balanced Weighing Designs for

v=<13, p < v/2—Continued

v <13, p < v/2—Continued
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3
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p
r=30 b

18. v=11

Develop the following initial blocks (mod 11)
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8
5
2
0
7
3
and replace the symbol < by 12.
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APPENDIX: Balanced Weighing Designs for
v <13, p < v/2—Continued

25 v=12 p=6 M=5 df=0
r=11 b=11 =6
1345912 2 6 7 81011
2 4 5 61012 378911 1
356 71112 48910 1 2
4 6 78 112 591011 2 3
5789 212 61011 1 3 4
6 8 910 312 711 1 2 4 5
7 91011 412 812356
81011 1 512 9 23 46 7
911 1 2 612 1034578
10123 712 11 456 8 9
112 3 4 812 15670910
2. v=13 p=2 n=1 df=27
r=12 b=39 A=2
112 8 5 211 310 49 6 7
213 9 6 312 411 510 7 8
31 10 7 413 512 611 8 9
4 2 11 8 51 613 712 910
53 12 9 6 2 71 813 10 11
6 4 1310 73 82 9 1 1112
s 8 4 93 10 2 1213
8 6 212 9 5 10 4 1n 3 13 1
9 7 313 10 6 11 5 12 4 12
08 41 11 7 12 6 135 23
1mn9 5 2 12 8 13 7 16 3 4
1210 6 3 139 138 27 45
BI11 7 4 110 2 9 38 56
27. v=13 p=3 M=2 df=14
r=6 b=26 A
139 41210 2.6 5 811 7
2 410 51311 376 912 8
3511 6 112 487 1013 9
4 612 7 213 598 11 110
5713 8 3 1 610 9 12 211
681 9 42 71110 13 312
792 1053 812 11 1 413
810 3 11 6 4 9 13 12 2 5 1
911 4 12 75 10 113 36 2
1012 5 13 8 6 1m 21 4 73
1113 6 197 12 3 2 5 8 4
1217 210 8 13 4 3 6 9 5
1328 3119 15 4 710 6

APPENDIX: Balanced Weighing Designs for
v <13, p=<v/2—Continued

28. v=13 p=4 M=6 d.f.=27

r=24 b=39 A=8
1 8125 46 9 7 2 31110 812 5 1 46 9 7 31110 2
2 913 6 5 710 8 3 41211 913 6 2 SERTRTOMISEAE] 2 511083
3101 7 6 811 9 4 51312 10 1 7 3 6 811 9 51312 4
411 2 8 7 91210 56 113 11 2 8 4 791210 6 113 5
512 3 9 8101311 6 72112 395 8101311 7 2 1 6
613 410 911 112 7 83 213 410 6 GRS SO B S0 ST
7 1511 1012 213 894 3 15117 1012 213 9 4 3 8
8 2 612 1113 3 1 910 5 4 2 612 8 1113 3 1 10 5 4 9
9 3 713 12 1 4 2 1011 6 5 3 713 9 12 1 4 2 11 6 510
10 48113253 11127 6 48 110 13 2 5 3 12 7 611
1 59 2 136 4 1213 8 7 5 9 211 136 4 13 8 712
12 610 3 2 4 75 1319 8 610 312 20 A5 S TSR0 B3
13 711 4 3 5 8 6 1 210 9 711 413 35 g6 28100 R
29. v=13 p=5 M=20 d.f.=66

r=60 b=78 A2=25

The initial blocks to be developed cyclically are

{@ 234 5(67 8 910)}

{2 46 810021 3 5 7)}

{4 812 3 7)(11 2 610 1)}

{8 311 6 (9 412 7 2)}

{3 6 912 2)(5811 1 4)}

{612 511 410 3 9 2 8)}
30. v=13 p=6 M=5 df=

r=12 b5=13 A=

1 4 312 910 2 8 611 5 7

2 5 4131011 3912608

8 GG kbl ap) 410 813 7 9

4 7 6 21213 511 9 1 810

58 7 313 1 61210 2 911

6 9 8 4 1 2 71311 31012

7109 5 28 3 8 112 41113

81110 6 3 4 9 213 512 1

91211 7 4 5 10 3 1 613 2

101312 8 5 6 1 4 2 7 1 3

1 113 9 6 7 1285 3R 2 4

12 2 110 7 8 13 6 4 9 3 5

13321188 1 7 510 4 6
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