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The problem of studying the growth of the error is most important for the numerical solution of
differential equations. In this paper the Wilf’s criterion is generalized to be applied for systems of
differential equations. A general theorem is investigated and regions of stability have to be deter-
mined. The use of an electronic computer is more essential for such regions to be characterized. These
regions of stability have the property that, the error introduced at any stage tends to decay. The regions
of stability for particular numerical methods are explicitly determined.
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1. Introduction

The system of m ordinary differential equations can be written in the vector form as follows:

dY

'=—=F(x;Y),
Y I (x; Y) (1)
with the initial value Y (x¢) =Y,
where
Y1 fl(ﬁ\% Yi, Y25 « « <y ym)
¥2 Fo(x vy, ¥2, o o oy Ym)

Y= ! F(x; Y)=
Yon S %5 y1, y2, -« oy Ym)

Let the vectors:

Y(x) be the exact solution of the system (1),

Y, be the theoretical (approximate) solution at x = x,,
*

Y. be the practical (computed) solution at x = x,.
We define the error €, of the solution at the point x, by:

€n—"Yn—(xnl) 2)

*An invited paper.
**Present address: Faculty of Science, University of Khartoum, Sudan, Khartoum, P.O. Box 321.
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Hence we get,
*
=Y =Y (x2)

*

*
=F(xn; Yn) —F (xn; Yn—€).

Assume that:
(a) F(xn; Y) is a continuous function of Y for Y contained in the closed intervals whose end-
points are Y (x,) and Y,,
(b) the matrix (—aﬁ (ax"’ ¥)
5
points are Y(x,) and Y,.

); (i,j=1,2, . . ., m) exists for Y in the open interval whose end-

Therefore, by the mean value theorem we get:

; afi o
rl=<i> En:JnGn, (La]=1$ 2’ RN -’m)’ (3)
dayj
where the elements of the Jacobian matrix J,= (%) are taken at suitable places
j/n

ES
(xn, Yo—diag (6) €),0<6,<1,i=1,2,. . ., m.

THEOREM: Stability criterion for numerical integration methods for the solution of systems
of differential equations.
The integration formula

0
Yo=Y aYaut+h 3 b, @

v=—q v=—q

for the solution of m ordinary differential equations Y' =F(x; Y) is stable if and only if, the Hermi-
tian forms with the coefficients

h min(r, s) — —

Ay = "E {CoiiiriComris 1= G i€ il o)
150

foralli=1,2,. . ., m are positive definite

where Cs,i=kbs_q—asq, 6=0,1,. . ., q+1 (6)

with ki=—hp;, h the step of integration, a,=—1,

pi=the eigenvalues of the Jacobian matrix (g—f’>
Y5

if (4)

=0 an extrapolation formula
b,
#0 an interpolation formula.

PrROOF: The formula (4) gives the theoretical approximating vector Y, for the exact value
Y (xn+ h). The computed (practical) solution at x=1x, ., is determined as follows:
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* 0 * 1 *
Yn+|: 2 a,,Y,,+,,+h 2 va,'Hu_"Rnﬂ, (7)

v=—q v=—q

where R, the round off error.
The corresponding exact solution is

0 1
Y(xn+h) = 2 a,Y(x,+vh)+h 2 bY' (xn+vh) + Tisy, (8)

v=—q v=—q

where the truncation error Tri1 = s R¥YED+0(R*2), k =1, iy # 0. Subtracting (8) from (7)
we have

* 0 * 1 i
Yoi1—Y(xu+h)= E a,(Yuiv—Y(xn+vh))+h E b(Y,,,— Y (xn+vh))+R, 9)

v=—q v=—q

where R, 1 —Ti+1=R is generally a nonzero vector.
Substituting (2) and (3) in (9) we get the difference equation for the error

0 1
€n+1= E Avensyt+h 2 vaIl+l'€Il+l'+R, (10)
v=—q v=—q
v
Where .In+l': (i) n+v.
ay;

In studying the local growth of the error €, it is reasonable to assume that R and the matrices
(ﬁf_;) in a small interval (x g4, x1) are both constants and they may be written in the form R and
9y

J respectively. In practice they vary slowly from step to step, otherwise the step size of inte-
gration is too large, Hamming [2].! Under these assumptions we get from (10) the nonhomogenous
system of linear difference equations with constant real coeflicients in the form:

0 - 1| =
€p+1 = 2 a€nivthj 2 b€+ R. (11)

v=—q v=—q

. . . A, . ~
To solve this system, we introduce a new vector variable € in place of the variable € by means of a
nonsingular linear transformation:

€=T-'e, where det T #0. (12)

Therefore the system (11) is transformed into:

0 1 -
‘e\ll+l: 2 au%n+u+hK 2 bV%IH-V_*_R’ (13)

v=—q v=—q

where

T-'R=R, K=T"JT.
In particular the transformation T may be chosen so as to put the matrix T“jT into the classical
canonical form, Zurmiihl [3].

! Figures in brackets indicate the literature references at the end of this paper.
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The corresponding homogeneous system of (13) has the form

0 1
%n+1: E au‘én+u+hK 2 bugnﬂ)- (]4*)

v=—q v=—q

CASE I: If the eigenvalues p; of the matrix J are all distinct then the matrix K has these eigen-
values in the principal diagonal and zeros elsewhere. In this case the system (14) has the form:

(Kibl+1)€i,ll+1: E (a’V—KibV)gi,’l+V7 (15)

where
Ki—— }lpi.

Put &, ,=\?, Norlund [4], we get from (15) the characteristic equations:

q
(Kib1’+‘ 1)}\?+1 I E (Kibfy_a—u))\?iyzo’ (16)
v=0
i=1,2, ..., m.

CAsE II: If the eigenvalues p; of the matrix J are not all distinct, then the matrix J may be
transformed to:

K,

Kie,

where each submatrix Kjj is of the form:

with p; in each position in the leading diagonal, unity in each position in the diagonal immediately
above it, and with zeros elsewhere. In this case of nondistinct eigenvalues, we have for every
submatrix of order y a system of equations in the form:
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= = - = Ty =
0 1
A ~ A
€1, n+1 2 Ay€1, niv Po 0 E buel, n+v
v=—q 1 v=—q
A 0 1
- a
€2, n+i1 E ay€, niv Pa 2 bwf‘.’, n+wv
v=—q 1 v=—q
= +h
1
0 1
- a N
€Y. n+i1 E AyEY n+tv 0 Pa E bu€Y. n+v
L J | v=—q d L dl L=a =
That means
€iinril— E au£i,n+v+h 2 by{paéi, n+u+')’5i +1,n+u}, (17)
v=—q v=—q
where 4 i<y
i=1,2, ..., 9, y= for
0 1=.

The characteristic equations system can be got as follows:

q
(K(,b,+l))\?*‘+2 (Kab—y—a—_,)Ns=0, (18)

r=0
i=1,2, ..., 7.

According to (16) and (18) the characteristic equations system has the form:

q
(K,-b1+1)/\,'1*'+2 (kib—y—a—,)N7*=0 (19)
v=0
1=1,2, ..., m,

independent of whether the eigenvalues of the matrix J are distinct or not. According to (6), the
equations'system (19) has the form:

C,.iNv=0, i=1,2,... m, (20)

where
C,.iis generally a complex value.

Due to Wilf’s definition [1]: The numerical integration method (4) is said to be stable if the
roots of (20) for all i=1, 2, . . ., m are inside the unit circle in the complex plane, so that the
error introduced at any stage tends to decay than build up.

In this connection we state a theorem of Schur [5]:

The zero points of the polynomial:

f()\)EC()+C1)\+ Gl O +Cq+1)\q+1
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are all inside the unit circle, if and only if the Hermitian form:

Gf = — —
HZZ |Cq+1/\1+Cq)\,+1+ o o +C1+1}\q|2'C0)\1+C1)\1+1+ P +Cq_1)\q|2}

1=0

s positive definite.?
The quadratic form H can be formed as follows:

q q—1
H=z{z (1Cas -2 [Col2) N2

=0 Lr=0

=l o=l — = =
+2R. z E (C(Hl*jcllﬂflf_CJCL‘)}\I-U}\H—A}

J=0 K55+

[Zi {2 (|C11+1+1 912_103 IIZ)I}\ '2

+2R. 2 Z Corir1-rCor1s1-s—Cy_ ,Cé 1))\,« }

r=I0 s=r+1

q

=SV NS (1Cartsraf2— o)

$=0 =0

q q o S
+2Re E 2 { }\ E q+1+1 qu+l+1 a—Cr ICs l)}

r=0 s=r+1

With
min (r,s)
Ars 2 {Cq+l+1 qu+I+1 s‘_Cr lCe I} r, S=0, l, i w vy

=0

we have directly the form:

For the system of differential equations (1) we have the Hermitian forms

HO= 5: ADNN,,  i=1,2,. . ., m.
r,s=0
Therefore A{) has the form (5) and accordingly the integration formula (4) is stable, if the Hermi-
tian forms H® are positive definite for all ¢, so that theorem (1) is proved.
SPECIAL CASE: For m=1, we have one single differential equation in the form y'=f(x; y).
The Jacobian matrix reduces to one single element df/dy and k=—hdf]/dy is a real value. The
stability criterion reduces to Wilf Stability Criterion [1].

2. Simple Examples

ExAaMPLE 1:
Yo=Y, +hY,, To=1h2Y"(x,) + O(h%), (Euler-Cauchy method). (21)
2 means the conjugate complex value of
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With ¢=0, ap=1, a;=—1 and by=1 we have from (5) and (6):
AP=|C,i|2—|Co, i|2=1— = i/2A

Thus A{) >0, i=1, 2, . . ., m, if and only if hp; is inside the circle |hp;+1|=1 (fig. 1) and so
the integration method (21) is stable.

: 4 hIm(p,)
V2

STABLE h Re(pi)

. 4
-2 -] 0 =
FIGURE 1
EXAMPLE 2:
1 4 2 ,
Yn+l:_§ Yn—l+§ YII+§hY"’ (22)

T =§ h2Y" (%) + O ().

With ¢=1, a_; :—%, aozg, a;=—1 and b(,=§, we get from (5) and (6):

AP =|Cs,, i|2—|C,, i|2=A4\),

A},’?Z Cz, iC1, i Co, iCI, ii== A(1i())9

1

2, _ =
C().i_ga Cl,i—3 (K, 2)» C2,1_1-

The determinants:

; .8
DY=Ag=,

D= () — |AI = {16~ [3i— i — 4]

With kj=— (i + V—1 B;) it follows:

D =22 {(ai-+2)2+ 45— 4} > 0

(a,-+2)2

1 +B2=1 (fig. 2) and so the integration method (22)

if and only if Ap; is inside the ellipse
is stable.
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hIm(p.)
v hp,— PLANE
STABLE
1 1 1
s = —= h Re(p,)
=
FIGURE 2
ExXAMPLE 3:
h
Yn+1 Y + (Y;1+Y;1+1) T‘_—%Ym (x") +0(h4) (23)

(Trapezoidal formula).
With ¢=0, ap=1, a;=—1 and by=>5b,=1 we get from (5) and (6):

2
AY=CLiP=1Co il =3 ki =1 =3 ki+1[2=2 Re (k).
We have A{) > 0 if and only if Re (p;) <0, for A >0, and so the integration method (23) is stable.

3. More Difficult Examples

EXAMPLE 4:
Y,,+1=% Yo 1+ Y,l+ hQVAYL), T:—;—O YV () + O (B5) @4)
, 1 4
With ¢g=1, a-1=z, G=7g, a=—1, bp= and b= we get from (5) and (6):

AP =|Cs,i|2—|Co,:|>= A4,
AQ=C;, €y, i1— Co,iCr,i= A,

1 4 1
Co,i:_g, C1,i=g (ki—1), Cg,izg (2ki+5).

We have
DY = dgh=5= {126+5[2=1} >0,

if and only if hp; is outside the circle |hpi—2, 5|=0, 5 (fig. 3), this means, the circle is the region
of instability.
Further:

D = { AG}* —| 4G

16

22 2 JS
{Pmtspoips o

625 (2ki+5) (ki—1) +ri — 1[2

= {4l +5 Re () 6} ~|2lwl* 5~ k= 6]}
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: hIm(p,)

hp, - PLANE hRe(p.)
L 2
| 2 2.5 3

|hp;—2.5|=0.5
FIGURE 3
With ki=— (i + V—1 Bi) we get DY >0 if
{(ti—2) (i —3) +p#}2 > 4{{ (i —3) (s + 1) + BF}2+ 982}

The inequalities IX) > 0, v=1, 2, are satisfied simultaneously, i.e.. the integration formula (24)
is stable if Ap; is inside the region R (fig. 4).3

STABLE

FIGURE 4
EXAMPLE 5:
Y,,+,=Y,,+-l%(— W A A 5V ) T4=—%Y“'(x,,)+()(h5).4 (25)
With ¢=1, ay=1, a;=—1, b_1=—11—2, b()zg and b1=15—2 we get from (5) and (6):

AR =

Coil2—1Coil?

=L {2 +5 Re () +6} = A4,
A((;",=Ez‘i(:1,i—co,ia‘i

R —
:E(4‘|Kil +7K,'—5K,'—12):A|'&.

Coi=— '1‘12' Ki,

3The regions of stability (figs. 4, 5, and 6) are determined by means of the electronic digital computer Z 22.
4 This formula is given by Southard and Yowell [6].
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C;,i:% (2ri—3),
Cz»":ll_Z (5ki+12).
We have
DY) :61 {|xi]*+5 Re (k;) + 6}

— £ {Ixi+2.5=0.25) >0

if hpi is outside the circle |hp;—2.,5= 0,5 (fig. 3).
Further:

D = {AG@}> —|AGQ

144{4-{|K,|2—+-5 Re (ki) +6}2—|4|ki|? + Tki— 5k — 12|}
With ki=— (i +V—1 Bi) we get D{) >0, if

{(@i—2) (i—3) + B2} > { (i—2) (204+3) +2B2}2+ 36p2.

The inequalities DX) >0, v=1,2 are satisfied simultaneously, i.e., the integration formula (25) is
stable, if hp; is inside the region R (fig. 5)

hIm(P )

STABLE

FIGURE 5

EXAMPLE 6:

Yo = Y,. g+ Yoor+Yn + ( 4Y, +11Y,+5Y,.,), Ts= BTI(?hs YV (xa) +0(h8) (26)

(Hamming [2]).
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1 1
With ¢=2, a_s=— 9 26,(lo=1,411=—1,
8 22 1
boj=— 27,1) 2—7,b,—2—7we get from (5):

1 1
Co,i=§ s Cl,iz—ﬁ (8ki+3),
Cay= = (22— 27), Coy=== (10%i+27)
2,1—27 Ki » Usi 27 Ki -

The elements of the Hermitian Matrix follow
AQ=Cy,i C3,—Co,; Coi= A8,
A@=Cy,i C2,i—Co,i Cri=AQ=AB=44,
AR=Cs; C1,—Co; Coi=A4),
AQ=C3; C3;+ Coi C2i—Cy; Cri —Coy; Coy
We have
DY =AR= |Cy[*— | Co,i|?

I
o (27)2 {110k; +27|2—9} >0, if hp; is outside the circle |hp;—2,7|=0,3, (fig. 6).

hIm(pi)

lhpi —2.7|=o.3

FIGURE 6

Further
DP = A AR — |AQ|2={|C3,|>—|Co;i|?} {|Cs5|2+|C2,|?

—|C14|2—1Co4|2} — |Cs4 Cay— Co Cr4|2={|Cs4|2— |Co|%2—|Cs, C1,0— Coys Tal?
16

=7 [25(5(c¢+B7) =27 ait 36} — 4{{10(cf +B?) —39 ai}? +225p7}].

From this it can be proved, that D§) > 0 for a; < 0. Finally we get:

A Ay A
Dp= A9 AY A
7 R R
= AQ{(4)2 — 1412} — 2 AQIAGI2+2 Re (AR (D).
101
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Put

32

AW 32
— 243|480 2=wfz(ai, Bi),
2 Re (Z(i)(Am)z) :—32—f3(ai Bi)
02 01 (27)6 ) )

where
fi (o, Bi) =4[65 (a2 + B3) + 8701+ 180] [25(5 (aF +32)
—27a;+ 36}2—4{ (10( a3 + B?) — 39a:)? + 22583} ],
fo(ai, Bi) =—20[5 (a2 + B?) — 270y + 36] [{55 (a2 + 32)
—87a;— 180} 2+ 4410082],
falai, Bi) =—8[(10(eg + B}) —392:){ (55(a; + B}) — 87«
—180)2— 4410082} + 630082 (55 (a2 + B2) — 87c;— 180)].
From these we get D{) >0, if

Silai, Bi) + fo(ai, Bi) + fs(ai, Bi) > 0.

The inequalities D) >0, v=1, 2, 3 are satisfied simultaneously, i.e., the integration formula is
stable if hp; is inside the region R (fig. 7).

FIGURE 7
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