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A Converse to Banach’s Contraction Theorem

Philip R. Meyers

Institute for Basic Standards, National Bureau of Standards, Washington, D. C. 20234

(March 3, 1967)

The class of all continuous self-mappings of a metrizable space which can become contractions
(in the sense of Banach) under metrics compatible with the topology on the space is characterized.
I'he characterization amounts to a converse to the Contraction Mapping Principle.
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1. Introduction

Throughout this paper, X denotes a metrizable topo-
logical space and f: X — X denotes a continuous map.
If p is a metric on X, then fis called a p-contraction
in case there exists Ae(0, 1) which is a contraction
constant for fon (X, p), i.e., for all x, yeX,

p(f(x), f(¥)) < Ap(x, ¥).

Consider the hypothesis (H) that X admits a metric p
(yielding the correct topology) such that fis a p-con-
traction. In a previous paper [1]' we gave conditions
on X such that £, if for some metric it satisfied (1.1)
locally at all points of X, would in fact obey (H). Note
that such results have a hypothesis which is metric
in nature. The present paper is concerned with topo-
logical conditions for (H), conditions whose statements
do not refer to any particular metric or metrics on X.

In view of the Banach Contraction Theorem [2],
two conditions which naturally suggest themselves
are that, for some £eX,

(i) Flel=—=C
(i1) fr(x) — & as n— o, for all xeX.

(1.1)

These are among the usually stated conclusions of
the Contraction Theorem, and so are surely necessary
if (H) is to hold for some complete® metric p. We
shall add to them a third condition, an easy (though
usually unstated) conclusion of the Contraction The-
orem, and then show that these three conditions to-
gether are sufficient (as well as necessary) to guarantee
(H). The third condition is that there exist an open
neighborhood U of ¢ such that

(iii) f(U) —{¢}.

' Figures in brackets indicate the literature references at the end of this paper.
> Completeness is rather inessential if we are willing to operate with an equivalence class
of Cauchy sequences rather than an actual point.

This means that for any open neighborhood V of &,
there is an n(V) >0 such that f*(U) C V for all
n=n(V).

If (H) holds, take U= {x: p(x, &) <1}. Since A <1
in (1.1), we can for any neighborhood V of ¢ choose
n(V) so large that for all n =n(V),

{x:plx, &) <N} CV,

which implies by (1.1) that f(U) C V. Thus (iii) is
indeed a consequence of (H). It remains to show how
(H) can be deduced from (i), (ii), and (iii).

2. Results and Corollaries

At this point we state all of the results of the paper.
As above, fis a continuous self-mapping of the metriz-
able topological space X.

THEOREM 1: If f satisfies conditions (i), (ii), and
(iii) above, then for each \e(0, 1) there exists a metric
px on X, complete if X admits a complete metric, such
that f is a py-contraction with contraction constant A.

COROLLARY 1.1: If & has a compact neighborhood,
then (i) and (ii) are sufficient conditions in Theorem 1.

COROLIARY 1.2:3 If X is compact, and if {&} is the
only nonempty set D such that

f(D)=D

then the conclusions of Theorem I are valid.

THEOREM 2: If some iterate f™ of { satisfies condi-
tions (i), (ii), and (iii) then there is a metric p, complete
if X admits a complete metric, such that f and all its
iterates are simultaneously p-contractions.

Theorem 2 suggests some further questions. Under
what conditions do two mappings which satisfy con-
ditions (i), (ii), and (iii) become contractions under

3This corollary is a restatement of a theorem due to Janos [3]. The proof of Theorem 1
uses ideas first used by Janos in his proof of this theorem: the proof has just been published.
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the same metric? More generally, when can X be
metrized so that a given family of self-mappings simul-
taneously become contractions? These and similar
questions will be addressed in another paper under
preparation.

The proof of Theorem 1 involves a somewhat lengthy
construction of the desired metric py. While this con-
struction will be deferred to the next section, we give
here the derivations of the remaining results from
Theorem 1.

To derive Corollary 1.1, it suffices to show that (iii)
follows from (i) and (ii) if ¢ has a compact neighbor-
hood C. Let U=Int(C), an open neighborhood of &
Consider any open neighborhood V of & For each
x€C, there exists by (ii) a smallest n(x) such that
f"(x)eV for all n =n(x). We need only show that

n(V)=sup {n(x) : xeC}

is finite. If not, then C contains a sequence {x;} such
that n(x;) >, and since C is compact we may assume
xi— vy for some yeC. The desired contradiction fol-
lows by observing that n(y) <<, and that by conti-
nuity n(x) <n(y) +1 for all x in some neighborhood
of y.

To derive Corollary 1.2, we show that (ii) follows
from the stated hypotheses when X is compact and
then use Corollary 1.1. Define successively

Ao=X, A1 =f(X), As=f2 (X)=f(4), ete.

Since f(X) C X and if X # {¢} the inclusion is proper,

the sets A, are a descending sequence of compact

nonempty sets. Then F\A,,,ZD#d). We show that
fD)=D

and conclude that D={¢&}. It is then a standard argu-
ment that diam (4,,) =0 and hence f"(x)— ¢ for
xeX. It is clear that

ﬁmspzﬂm:ﬁAm

In the other direction choose xeD and consider the
sequence of nonempty compact sets

m :f*'(x) M Am.

Since NS, =f"'(x) N D # ¢ ‘we have xef(D) and
f(D)D D which completes the proof.

To derive Theorem 2, we show that f obeys con-
ditions (i), (ii), and (iii) for the same point & as does
its iterate /. Then by Theorem 1 there is a metric p
and a A0, 1) such that f is a p-contraction with
contraction constant A. It follows that any iterate f*
is a p-contraction with contraction constant A < 1.

Since f"'(¢) =¢, we have

Famifi(€)) =fUM(E)) = f(£)

for all n=0. But by (ii) applied to f, with x=£(¢),

asn—>x

(") (f(€)) =frm(f(£)) —> &
and so f(&) =&, condition (i) for £ For 0<sk<m we

have, for any xeX,
Fr ) () > €

which implies that (ii) holds for /. And if U,, is an open
neighborhood of ¢ such that f"(U,)— {£&}, then

as n—> x,

U— mﬁlf-k(Um)

k=0

is an open neighborhood of ¢ such that, for 0 <k <m,
fum&l.‘(U) — (fm)u(fk(U)) C fnm(Um) - {g}

as n—> o, implying that (iii) holds for f. This completes
the derivation of Theorem 2.

3. Proof of Theorem 1

Throughout this section it is assumed that Ae(0, 1),
that f: X — X is a continuous map obeying the condi-
tions (i), (ii), and (iii), and that pyis a metric on X, giving
the correct topology for X and complete if X admits a
complete metric. Our aim is to construct a metric
pr, topologically equivalent to py and complete if py
is, such that for all x, yeX,

pr(f(x), f(¥)) < Apa(x, ¥).

For the construction, it will be convenient if the
neighborhood U of (iii) satisfies

(3.1)

fU) CU. (3.2)

We show first, therefore, that there exists an open
neigchborhood W of ¢ such that (W) C Wand W C U,
the latter implying /(W) — {&}. Then W can replace
U in the construction to follow.

Since f"(U)— {&}. there is some integer k such

that f*(U) C U. Let
k=1
W=n f(U)CU.

j=0

Then for xeW we have, for 1 <j<k—1, xef7(U)
and thus f(x)ef~U=9(U): moreover xeU, so that
f(x)ef"(U) C U and thus f(x)ef "~V (U). Hence
xeW implies f(x)eW. which was to be shown.

We now proceed with the main line of the proof.
The construction has three steps. The first step yields
a metric py, topologically equivalent to po and com-
plete if py is, with respect to which fis nonexpanding
in the sense of satisfying the weak version

p”(.f(x)’f(y)) = Pu(x’ y) (33)

of (3.1). The second step yields a function d) which
has all the desired properties except perhaps for satis-

4



fying the triangle inequality. This is corrected in the
third step, in which p\(x, y) is introduced as what
might be called the “d\-geodesic” distance between
x and y.

For the first step, we set
:n =0},

pu(x, y) =max {po(f"(x), f"(¥)) (3.4)

That the maximum is finite and actually attained fol-
lows from (ii), and (3.3) is obvious. The positive de-
finiteness and symmetry of py, as well as py(x, x) =0,
follow at once from the corresponding properties of
po. The triangle inequality for py follows from the
observation that, for all n =0,

po(f"(x), f1 () < po(f(x), f7(2)) + po(f"(2), /" (¥))
< pu(x, z) +pu(z, y).

Thus py is indeed a metric, which must still be shown
to be topologically equivalent to py, and complete if
p() lb
From the inequality

Po = pu (3.4)
it follows that any py-convergent sequence is also
po-convergent (with the same limit point). To prove
the implication in the opposite direction, note that
(iii) implies the existence for each 8 >0 of an /N such
that

(po-diam ) [f"(U)] < & for n > N. (3.5)

For each xeX, it follows from (ii) that
v(x) =min {n =0: f"(x)eU}

is finite. Since f is continuous, there is an n >0 so
small that py(x, y) <m implies

SO (y)eU, po(f(x), f(y)) <8

for 0 <j<N+uw(x). (3.6
By (32% fn +.V+ v(.r)(x)efu | \(U) and fu + N+ ) (y)€fu o.\'(U)
for all n >0, so that (3.6) implies

po(fi(x), fi(y)) <8 forj>N+v(x).

Thus po(x, y) <m implies py(x, y) < 8. This shows
that a sequence which is py-convergent to x is also
pu-convergent to x, completing the proof of topological
equivalence.

Now suppose po is complete. By (3.4), any pu-
Cauchy sequence is also a pp-Cauchy sequence, hence
is po-convergent, and so (by the topological equiva-
lence of the two metrics) is py-convergent. Thus the
completeness of py follows from that of po.

For the second step in the construction, we begin
by defining K, to be the closure of f*(U) for n =0,
and K_»=f"(Ky), so that (iii) implies

K, —{&}

as n—> oo,

(320

For xeKy—{&}, set
n(x) =max {n: xeK,} =0;

finiteness is assured by (3.7). Let n(&) =cc, and for

xeX — K set
n(x)=—min {m: f"(x)eK,} =max {n:xeK,} <0,
which must exist by (ii). Then d, is defined in terms of

c(x, y) =min {n(x), n(y)}

by the formula

d)\(xa y) :KC(I’ y’pu(x, Y)»

which has the correct limiting form dy (¢, £) =0. Then
d) satisfies the metric requirements except perhaps
for the triangle inequality, and from (3.3) and the fact
that n(f(x)) = n(x) +1, we see that d, has the property

dr(f(x), fy)) = Mi(x, ¥) (3.8)

desired for p,. We turn now to the third and last step
of the construction.
Denote by 2., the set of chains o,,=[x=x, x1,
. . xm=7y] from x to vy, with associated lengths

m

Ly\(oyy) = ‘T‘dx (xR i)

and put

pr(x, y) =inf {Lx(0zy) : Ory€Zoy}. (3.9)
We shall show that p, is the desired metric.

That fis a py-contraction follows by applying (3.8)
to the links [x;-1, xi] of any chain o, Clearly p, is
symmetric and p(x, x)=0; the triangle law holds
since following a o, with a . yields a o,..

It remains to show that p, is positive definite.
Consider any x # ¢ and any y # x: assume n(x) <
n(y) without loss of generality. If y# & any chain
oy either lies in X — Kyy+1, or has a last link which
leaves Kyy+1 (and possibly is followed by other
links), so that

pr(x, ¥) = N@min {pu(x, ¥), pu(y, Kuyp+1)} >0.

(3.10)
The remaining case, y=¢, is covered by
pr(x, &) = NDpy (x, Kyzy+1) > 0; (3.11)

thus py is positive definite and indeed a metric, which
must still be proved equivalent to py.

Let B,=X—f-*U) for v=0, so that the defini-
tion of v(x) implies py (%, By(p) > 0and n(x) =—v(x).
For any x # &, if y obeys

pu(x, ¥) <8(x)=min {py(x, Knz+1),pu(x, Bun)},
(i 1E2)
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then n(x) =—vr(x), so that (3.9) and (3.10) . . . the
latter with x and y interchanged . . . imply

NOpy(x, ¥) < palx, y) <di(x, y) S A "Dpyl(x, y).
(3.13)

Choose k(x) >max {0, n(x)} such that zeK(, im-
plies pu(§, 2) < pAx, €)/2. Then pi(x, Kix) = pix, §)/2,
so that if y obeys

pr(x, y) < pa(x, €)/2 (3.14)

then only chains disjoint from Ky need enter (3.9),
implying

palx, y) = N@py(x, y). (3.15)
In particular, if

pr(x, ¥) <min {pi(x, £)/2, \2§(x)}
then with (3.14) and (3.15) this implies (3.12) and hence
(3.13) applies. Thus px(xn, x) = 0 iff py(xn, x) = 0.

hAs for x=¢, note first that if py (&, y) < pu (€, Bo),
then

pr(é,y) <d (& y) <pu(é, y).

Second, for any m >0, (iii) guarantees an N(n) >0
such that py (¢, z) < n/2 for all zeKy). Then

(3.16)

pu(é, y) >m (3.17)
implies that pyu(y, Knm) = n/2 and thus that
pr(é, ¥) = pa(Knmy, y) = NNIy/2. (3.18)

Hence p)\(f, xn) —0 iff PM(f’ xu) =20}

To show that py-completeness is preserved, assume
that {x,} is a p),-Cauchy sequence and that (X, py)
is complete. If {x,} does not converge to £ then since
px and py are equivalent, for some NV and all sufficiently
large n,

n(x,) <N.

Now exactly as above choose k({x,})=P > max
{0, N} such that zeKuqry implies pu(é, z) <inf
{pr(x, &)/2, xe{xn}}=R/2. Then since {x.} is a
pr-Cauchy sequence there is an i >0 such that

P)\(xm xp+j) < R/2
for all p >, and using (3.15) with k(x) =P, we have
N"pa(xp, xp+j) = pu(xp, xp+j)

so that {x,} is a py-Cauchy sequence and the proof
is complete.

The author thanks A. J. Goldman for his advice and
encouragement.
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