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Simple proofs are given of the following classical theorems: (1) An arbitrary set of commuting
matrices may be simultaneously brought to triangular form by a unitary similarity. (2) An arbitrary
set of commuting normal matrices may be simultaneously brought to diagonal form by a unitary

similarity.
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1. Introduction

The purpose of this note, which is expository, is
to present proofs of two fundamental theorems on
sets of commuting matrices. The theorems are classi-
cal, but existing proofs tend to be unnecessarily com-
plicated and furthermore are difficult to find in the
literature. For these reasons the following simple
proofs (along the lines set down by Frobenius and
Schur in their original memoirs on group representa-
tions) are of interest. In fact the basic tools are the
concept of irreducibility and a simplified form of
Schur’s lemma, both from the theory of group repre-
sentations. In addition some special information con-
cerning normal matrices will be required, which we
summarize briefly below. (Complete proofs may be
found in MacDuffee’s book.)! For simplicity, all the
matrices considered below are over the complex field.

A matrix 4 is normal if it commutes with 4*, the
conjugate transpose of 4. A matrix U is unitary if
U*=U-1. Unitary matrices are themselves normal
matrices, the unitary matrices form a group, and
U*AU is normal if and only if 4 is normal. It is known
that 4 is normal if and only if 4= U*DU, where U is
unitary and D diagonal.

We also need

LEMMA 1. Let A be an arbitrary n X n complex matrix.
Then there is a unitary matrix U and an upper tri-
angular matrix T such that A= UT.

PROOF. Let A, be the first column of A and suppose
that A; # 0. Put V,=A4,/N(A4,) (N(4,) is the euclidean
norm of A4;) and complete V; by the Gram-Schmidt
process to an orthonomal basis Vi, Vs, . . ., Vy
Then the matrix V=1, Vs, . . ., V,) is unitary, and
the first column of V'*4 is

1 C. C. MacDuffee, The Theory of Matrices, New York, 1946.
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VA, 0
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Define

I A|:0
W=/

V Ay # 0.

Then W is unitary, and the first column of W*A4 has
all elements below the diagonal element 0. The proc-
ess may now be repeated with the matrix W*A
using unitary transformations of the form (1)+V,
etc. We ultimately find that there is a unitary matrix
U such that U*4=T is upper triangular. Hence
A=UT, and the proof of the lemma is concluded.

We also require the fact that if 4 is any matrix such
that A4* has zero trace? then 4 must be the zero
matrix. For if 4= (a;) then

tr(AA*)=E laij|>*=N(A4)?2,
i,j
and so tr(AA*) =0 implies 4 =0.

2. The Theorems and Their Proofs

A set (finite or infinite) of n X n matrices U ={A}
is said to be reducible if fixed positive integers p, g,
2 The trace of a matrix A is thc sum of its diagonal elements, and is a similarity invariant;

i.e., remains unchanged under transformations of the form S-'4S, where S is any nonsingu-
lar matrix.
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and a fixed nonsingular matrix S exist such that for
each A€l ,

An
S-14S=

AIZ
(1)

’

0 Ax

where A, is a p X p matrix, 4;» a p X ¢ matrix and
Az a g X g matrix. Otherwise U is said to be irreduc-
ible. If the form (1) can be achieved with 4,,=0 as
well for all A€, then ¥ is said to be fully reducible.

Since any matrix is the product of a unitary by an
upper triangular matrix (lemma 1) and a similarity
transformation by an upper triangular matrix retains
the block form of (1), the matrix S may be chosen
unitary. From this remark it follows that 2 is re-
ducible if and only if it it unitarily reducible, so that
these are equivalent concepts.

The basic lemma is the following:
Lemma 2 (Schur’s lemma, specialized). Let A ={A} be
an irreducible set of nXn matrices, and let M be a
fixed matrix such that for each A\, there is a matrix
A satisfying

AM = MA.

Then either M=0 or M is nonsingular. Furthermore if

A=A (so that M commutes with each element of )
then M is scalar.?
PROOF. Suppose that the rank of M is r, and write

I 0
M=P Q
0 0

where P, Q are nonsingular and /, is the r X ridentity
matrix. Then for each A€,

I 0 I, 0

2  (P4P) = (QAQ).
0 0 0
Put
AII AI!
pP-4P= :
A'.’I A-.u
- A~11 /‘Ilz
QAQ'=| _ i
A21 A-_':

where A,,, A~”~are rXr matrices, A;», Air X (n—r)
matrices, A»y, A»; (n —r) X rmatrices and As», Ass(n—r)
X (n—r) matrices. Then (2) implies that

All

A, 0 A

A 0 0 0

#That is. a multiple of the identity matrix.

Thus 4., =0, an impossibility since ¥ is irreducible.
Hence r must be 0 or n, and so either M=0 or M is
nonsingular. This proves the first part of the lemma.

Now suppose that M commutes with each element of
. and choose X\ as any eigenvalue of M. Then M —\I
is singular and also commutes with each element of
. Hence M—N =0, M=\, and the second part of
the lemma is proved.

We note that the lemma remains true if 9 is
assumed unitarily irreducible. This remark will
find application later.

Now suppose that A= {4} is any set of n X n mat-
rices. It is clear that after a suitable similarity has
been performed, the matrices 4 may be taken so that
with respect to some fixed partitioning,

A= (4y)

where A4;;=0 for i >j, and for each i the set ;
={A;;} is irreducible. If we assume in addition that
A is a set of commuting matrices, then it follows that
for each i U; is also a set of commuting matrices, and
hence by lemma 2 that 2[; consists entirely of scalar
matrices. Hence we have proved the first of the two
theorems:
THEOREM 1. Let A={A} be any set of commuting
matrices. Then there is a fixed nonsingular matrix
S (which may be chosen unitary) such that S='AS is
upper triangular for each Ael.

Now let = {A4} be any set of n X n normal matrices.
We first prove
LEMMA 3. If 9 is unitarily reducible then it is uni-
tarily fully reducible.
PROOF. Suppose that U is unitarily reducible and let
U be a unitary matrix such that with respect to some
fixed partitioning,

All
U-'4U=

for each A€
Since normality is preserved under unitary similari-
ties, the matrices U-1AU are normal. Hence

A A A;k, 0

0 A

At %
® 0
o AR \O A
and it follows that
ApAf,=AFAn—Andf.

Thus
tr(A,: dg) :0.

since AiA1; and A,,4}, have the same trace. By the
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remarks made in the introduction, it follows that

A1»=0. This completes the proof of the lemma.
From lemma 3 we obtain

LEMMA 4. There is a unitary matrix U such that for

each A€,

(3) U_IAU:A11+A22+ 5 A +Arr

where the set W= {A;;} is a unitarily irreducible set

of normal matrices, | <i<r.

Combining these lemmas, we obtain the second of the

two theorems:

THEOREM 2. Let A= {A} be a set of commuting normal

matrices. Then there is a fixed unitary matrix U such

that U-1AU is diagonal for each Ae?l.

PRrooF. Choose U so that the form (3) is achieved.

Then the sets W;={A4;}, 1 <i<r are unitarily ir-

reducible sets of commuting normal matrices. Lemma

2 now implies that A;; is scalar for each 4;;€;, 1 <i<r

from which the theorem follows.

3. Consequences of the Theorems and a
Problem

These theorems have many important consequences,
of which we mention two:
(4) Let A4;, 1<j=<p be commuting n X n matrices
and let f=f(x1, x2,. . ., xp) be an arbitrary poly-
nomial in x1, %2, . . ., xp. Then there is a fixed order-
ing of the eigenvalues of A4;, say \;j(1), Nj(2), . . .,
ANi(n), 1<j< p (which does not depend on f) such
that the eigenvalues of f(4, As, . . ., A,) are pre-
cisely f(Ni(2), Ao(i), . . o Ap(0)), 1 <i=<n.
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(5) The irreducible representations of an abelian
group are all of degree 1.

There are also important applications in quantum
mechanics, in the theory of the Hecke operators, and
of course in group representations.

The following problem has some interest: Give
conditions for the simultaneous diagonalizability of
a given set Y of commuting n X n matrices. One such
criterion is furnished by Theorem 2. Another suffi-
cient condition is that 2 contain a diagonalizable non-
derogatory matrix (one whose characteristic and min-
imal polynomials coincide); for example, one with
distinct eigenvalues. An inductive solution is as fol-
lows: If 9 consists entirely of scalar matrices, we are
through. If not. 2 must contain a diagonalizable non-
scalar matrix B, and after a suitable similarity has
been performed we may assume that
(6) IB=INIEE NSRS L ar ]
where r > 1 and A\;= A; if and only if i =. Next (6) and
the fact that the elements of 2 commute imply that
if Ais any element of 2l then

A:A||+Agz+. .+A,-,»

where the partitioning is that imposed by the form B.
The problem is now reduced to the study of the r com-
muting sets W;={A4;}, 1 =i =<r, each of smaller di-
mension than n, to which the procedure described
above may be applied again, etc. The difhculty of
course lies in recognizing when a given set of matrices
contains a nonscalar diagonalizable element.

(Paper 71B2 & 3-201)
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