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Polar Factorization of a Matrix*

John Z. Hearon**

(April 24, 1967)

It is known that if 4 is a bounded linear operator with closed range on a Hilbert space then 4 can
be factored as 4 =UH, with U a partial isometry and H nonnegative and self adjoint. For the finite-
dimensional case a strictly matrix-theoretic derivation is given based on the concept of a general-
ized inverse. Certain properties of the factors are given as well as conditions under which H or both
U and H are uniquely determined by 4. A pivotal item in the derivation is the representation of a square
partial isometry as the product of a unitary matrix and an orthogonal projection. This representation
is new, of some interest in itself and greatly simplifies the derivations.
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1. Introduction

It is well known but not well discussed in the
matrix literature' that a square matrix, 4, can be fac-
tored as A=UH where U is a partial isometry and
H is positive semidefinite. The primary purpose of
this paper is to give a fairly direct demonstration of
this factorization, and the main result is thus not
new (see footnote 1). The demonstration, as well as
the deduction of certain properties of the factors, is
based on a characterization of partial isometries which
is new and of some interest per se. While not strictly
necessary it is possible and illuminating to cast part
of the development in terms of generalized inverses
of singular matrices.

2. Notation and Preliminaries

In what follows all matrices are considered to have
complex entries. We denote by p(4), R(A), MA) and
A* rank, range, null space and conjugate transpose,
respectively, of any given matrix. When A4 is non-
singular, 4=!' denotes the inverse. For generalized
inverses a special terminology is used. This termi-
nology, previously introduced and related to others
[5, 6]* is as follows: For a given matrix A denote by
Ci(A) the set of all matrices B such that ABA=A.
Then Cx(A) is defined as the set of all matrices B such
that BeC\(4) and AeC\(B); CyA) is the set of all mat-
rices B such that BeCx(A) and AB is hermitian; finally
C4A) is the set of all matrices B such that BeCs(A)
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! The factorization, with condition for both factors to be unique, cf. Theorem 2 to follow,
is given as a problem in [4, p. 171]. The factorization is well known as a result for bounded
operators with closed range on a Hilbert space [1, 8]. Desoer and Whalen [1] give the fac-
torization where U has the property that U* is the pseudo-inverse (which on a finite-dimen-
sional inner-product space is the Moore-Penrose inverse) of U. This is equivalent to U being
a partial isometry.

2 Figures in brackets indicate the literature references at the end of this paper.
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and BA is hermitian. We note that the set Cy(A4) con-
tains a single uniquely determined matrix which is
the Moore-Penrose generalized inverse [7]. We call
a matrix BeC(A) a Ciinverse of A. The relation be-
tween a Ciinverse, as here defined, and the “weak
generalized inverse” of Goldman and Zelen [3] has
been noted elsewhere [5]. Repeated use will be made
of the following fact: If BeC,(A) then p(B) = p(A)
=p(AB)=p(BA), with strict equality if and only if
BeCy(A) [5, 9].

We call a matrix A a partial isometry if there exists
a subspace, S, such that x*4*Ax=x*x, when xeS,
and Ax=0, when xeS*, where S* is the orthogonal
complement of S. This definition is equivalent to the
requirement that A*4 be an orthogonal projection [2],

[4, p. 150].

3. The Polar Factorization

We begin with the following two lemmas

LEMMA 1. The square matrix, A, is a partial isom-
etry if and only if A=QE where Q is an isometry and
E is an orthogonal projection.

Proor. If A=QE, with Q*Q=1 and E=FE?*=E*,
we have A*A=F and A is a partial isometry. Let 4
=(QH be the usual polar factorization of 4, where Q
is unitary and H is positive semidefinite. If 4 is a partial
isometry then 4*A4= H? is hermitian and idempotent.
If so then H, the positive semidefinite square root of
H?, is also hermitian idempotent.

REMARK. It is an obvious consequence of Lemma 1
that A4 is a partial isometry if and only if A= FQ where
F is an orthogonal projection and Q is unitary. For,
from A=QF we have A=QEQ*Q, and we identify
F with the orthogonal projection QEQ*. Conversely
A=FQ=QQ*FQ=(E.

LEMMA 2. Let A be normal and BeC,(4). Then if
E=AB is normal, E is uniquely determined by 4,
and EA=AE=A.



Proor. From ABA=A=FA it follows that Ax= Ax,
implies Ex=x, provided A #0. Let p(A4)=r. Then
there are linearly independent x; such that Ex;=x;,
Il <i=r, and since p(E) =p(A) we have R(E) =R (A).
Since £ is a normal projection, it is an orthogonal pro-
jection and thus uniquely determined by its range and
hence by 4. Further, since E and A4 are normal, EA= A
shows that N(E) =N(A4). Hence E and 4 have a com-
plete set of eigenvectors in common and must commute.

THEOREM 1. Let A be any n-square matrix. Then
there exists a partial isometry U and a positive semi-
definite matrix H, such that

(i) A=UH,

(i) U*A=H,

@iii) N(U)=NH)=NA),

(iv) U maps all of n-space onto R(A)

(v) UH=HU if and only if A is normal, and in this
case U is normal.

ProoF. Let A=QH be the usual polar factorization
of A, where Q is unitary and H is positive semidefi-
nite. Let P be any Ci-inverse of H such that E=HP
is an orthogonal projection. Then HPH=FEH=H
and we have A=QH=QFH=UH, where U=QF is,
by Lemma 1, a partial isometry. Thus (i) is proved.
Now U*U=FE and hence, from (i), U"'A=FH=H
which is (ii). It is clear that N(U)=N(E) and that
N(A)= N(H): and since p(E)= p(H), EH= H shows that
NE)=N(H). Thus NU)=NE)=NH)=N(A), which
gives (iii). Given 4, the projection E=HP is, by Lemma
2, uniquely determined. If P is chosen to be non-
singular, as is plainly possible (see after (2) below),
then A=UH=UEP-'=UP-', and (iv) is evident.
Suppose 4 to be normal. Then A=QH=H(Q and
from this and FH=HE=H, which we have from
Lemma 2 (but which in this case is obvious from
FH=H since E and H are hermitian), it follows that
EA=AFE=A. But then AE=A=HQE=HU=UH. Con-
versely, suppose UH=HU. We have at once that
AE =FEA= A, which shows that N(4*)=N(E)=N(A).
Given this, and N(H) =N(E), we have from A*=HQ*
that QyeN(E) whenever yeN(E). We can now assert
that HQy= QHy=0, when yeN(E). Finally, HU= HQE
=UH=(QH implies that HQx= (QHx, when xeR(E).
We have proved that HQ=(QH and hence that 4 is
normal. Given this, from A=QH=QFH=HQ=EHQ
=FEQH, we have QEx=EQx when xeR(H), and we
have seen that QyeN(E)= N(H) when yeN(E). Thus

QFE=EQ and U is normal.

THEOREM 2. Let A=UH, where U is a partial isom-
etry and H is positive semidefinite. Consider the con-
ditions: (i) U*A=H, (ii) p(U)=p(H), (iii) N(U)=N(H).
Then, if (i) holds, H is uniquely determined; (iii) holds
if and only if (i) and (ii) hold, and in that case both U
and H are uniquely determined.

ProoF. By Lemma 1, we may replace U by QF with
Q unitary and E an orthogonal projection. Then, if (i)
holds, U¥*A=FEH = H. This being so, we have A=UH
=QFH=(QH, and H?=A*A. Thus H is the unique
positive semidefinite square root of 4*4. We next
show that (iii) is equivalent to (i) and (ii) together.
Let (i) and (ii) hold. Then, with U= QE, (i) gives U*A
=FEH=H, which with (ii) implies (iii). Let (iii) hold.

We obviously then have (ii). Further, with U=QE,
(iii) states N(E)=N(H). Let x;1, x2, . . ., x be any
orthonormal basis of N(E)=N(H). Then from E=1
—2xix;, we have EH=HE=H. This being the case,
U*A=FEH=H which is (i). Now let A=UH,=UH,
be any two factorizations of 4 and assume (iii). Since
(iii) implies (i), H;=H,=H and we have U H=U.H
which implies U;x=U,x, when xeR(H). But (iii) now
also requires N(U,)=N(U,)=N(H) and hence U,y
= U,y for yeN(H). Thus U, = U..

If H is hermitian, then H=T diag (A, 0)T*, where
T is unitary, A is real, diagonal and nonsingular. In
the following discussion let this unitary similarity via
T be denoted by H ~diag (A, 0). Then for arbitrary
K, L, and D of appropriate sizes and shapes any P

such that
A-! K
P~ (1)
i D
is a Ci-inverse of H. For, from
1 AK
E=HP ~ 2)
0 0

we have that HP is idempotent and has the rank of H
and this is known [5] to be necessary and sufficient
for PeC.(H). Now E. in (2), is hermitian if and only if
K=0. Thus given K=0, any P as in (1) will serve in
the proof of (i), (ii), (iii) and (v) of Theorem 1, and any
P as in (1) with D nonsingular will serve in the proof
of (iv) of Theorem 1. Now we could, in the proof of
Theorem 1 except for (iv), forthwith have taken PeC4(H)
or PeCyH), for in both cases £ =HP is hermitian. For
the proof of (iv), we could have then noted that for
PeC,(H), P+ E, is nonsingular when E, is the princi-
pal idempotent matrix of H (and of P) associated with
the zero root,” and H(P+E,) =HP=E. Of course
the Theorem 1 could be proved, without reference to
generalized inverses, by simply producing P as in
in (1) with K=0, noting that E as in (2) is then hermi-
tian idempotent, and that, subject to K=0, E is in-
variant under choices of P. The pivotal idea of the
proof is the observation that given A=QH, we have
(i) of Theorem 1 at once, in view of Lemma 1, if we
can produce an orthogonal projection, E, such that
EH=H. This possibility is suggested by considering
generalized inverses and that it is indeed possible is
perceived at once by considering the Moore-Penrose
generalized inverse, but as we have seen, other “in-
verses” will serve as well.

In the proof of (iv) of Theorem 1 and in ihe above
discussion we have encountered an observation which
may be set out as a corollary.

COROLLARY. If A is any square matrix, there exist
matrices P such that AP is a partial isometry. Further
there exist such matrices P which are normal, in par-
ticular positive definite.

3 E, is the orthogonal projection upon N(H) =N(P).
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PROOF. As we have seen any P as in (1) with K= 0
has the required property. Any P as in (1) with K=0,
L=0, D normal and nonsingular is normal and non-
singular and has the required property. In particular,
if K=0, ..=0, and D is positive definite, we have a
positive definite P from (1).

From Theorem 1, the corollary and the usual polar
factorization 4 = (QH, we have the following statement:
If A is any square matrix, there exists an isometry Q
and a partial isometry U such that Q*4A=U*4A=H,
where H is positive semidefinite. If 4 is nonsingular
there exists a positive definite matrix, C, such that
AC = () is an isometry, but there always exists a posi-
tive definite P such that AP="U is a partial isometry.
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