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A Generalized Matrix Version of Rennie/s Inequality'" 
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The matrix version of Rennie's inequality and the finite-dimensional version of Kantorovich's 
inequality are obtained by considering a positive definite matrix and its inverse_ Generalizations of 
these inequalities are obtained in which the inverse matrix is replaced by a generalized inverse with 
certain prescribed properties_ From the generalization of the Kantorovich inequality follows a (finite­
dimensional) generalization of an inequality due to Strang_ 
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1. Introduction 

l It is the main purpose of this paper to derive an 
inequality which may be characterized as a general­
ization of Mond's matrix version [5]1 of Rennie's in­
equality [7] and from which a generalization of the 
inequality of Kantorovich [4] follows_ The inequality 
of Mond and some versions of the inequality of Kantor­
ovich are derived by considering a positive definite 
matrix and its inverse. The derivation given here con­
siders a positive semidefinite matrix and a general­
ized inverse of that matrix_ The generalized inverse is 
required to have certain prescribed properties_ 

We begin with some preliminary considerations 
of generalized inverses of various classes_ The main 
theorem is proved under the assumption that the 
generalized inverse, B, is in the weakest class and 
it is shown how the particular required properties 
of B may be weakened when B is in a stronger class_ 

Thus far there seems to be no treatment of the case 
of strict equality for Mond's matrix inequality. In the 
case of the Kantorovich inequality the existing dis­
cussions of strict equality are rather involved (e.g. , 
see [3] and references therein). In any event the dis­
cussion of equality is more involved than the de­
rivation of the inequality itself. One feature of the 
derivations given here is that they enable a rela­
tively straightforward discussion of the case of strict 
equality for both Mond's and Kantorovich's inequalities. 

2. Notation and Preliminaries 

We consider matrices with complex entries and for 
any matrix M denote by p(M), N(M), R(M) and M* 
the rank, null space, range and conjugate transpose, 
respectively, of M. As before [2] we define C1(A) to 
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be the set of all matrices B such that ABA = A, where 
A is a given, arbitrary matrix, C2(A) to be the set of all 
matrices B such that BEC1(A) and BAB = B. We further 
define CiA) to be the set of all matrices B such that 
BEC2(A) and AB is a hermitian matrix, and C~(A) as 
the set of all matrices B such that BEC3(A) and BA is 
hermitian. We call a matrix BEC;(A) a Cj-inverse of A_ 
Other terminology has been used (see [9] and refer­
ences therein and [8] and referee's suggestion and 
references therein). Note that a C3-inverse is essen­
tially 2 th e weak-generalized-inverse of Goldman and 
Zelen [1] and that the C4- inverse is the Moore-Penrose 
generalized inverse [6]. We make repeated use of the 
following facts : If BEC1 (A), then p(B) ~ p(A) = p(AB) 
= p(BA) and AB and BA are idempotent matrices [9]. 
Moreover if BECM), then BEC2(A) if and only if p(A) 
= p(B)[2, 9]. 

For i = 1 or 2, a Cj-inverse of a hermitian matrix is 
not necessarily hermitian, but for every hermitian A 
there exists a hermitian Cj-inverse , i = 1, 2. In fact 
given A=A* and any B1EC1(A) the matrix H = (B*I 
+ B 1)/2 is in C 1 (A) and is hermitian [9], and the matrix 
HAH is in C2(A) and is hermitian [2]. 

In what follows we need to consider the situation 
BEC1(A) and AB=BA. Although we consider only the 
case A = A* and B = B*, which is rather transparent, 
we prove the following lemma for completeness_ 

LEMMA L If N(A) = N(A *), BEe I(A) and E = AB 
= BA, then E is an orthogonal projection and x*Ex 
= x*x if and only if xER(A). 

PROOF. Let BECM), then p(A) = p(AB) = p(BA) 
and if E = AB = BA it follows that N(B) ~ N(A) = N(E). 
From ABA=A, we have R(E) = R(A). If N(A)=N(A*) 
then N(A) is orthogonal to R(A) and E is a hermitian, 
idempotent matrix. Any x can be expressed as 

2 Goldman and Zelen [1] define a weak generalized inverse B such that BEC2(4) and BA 
is hermitian. We follow Rohde [9J in defining BEC3(A) as in the text. Actually any statement 
in this paper with respect to a BeC:1!A ) as defined here is true for the Goldman-Zelcn weak 
generalized inverse. 



X=u+v, with uER(A ) and vEN(A ). Then x*£x= u*u. 
But u*u=x*x if and only if xER(A). 

3. The Inequalities of Rennie, Kantorovich, 
and Strang 

We now prove the following theore m, which is 
the main result of this paper. 

THEOREM 1: Let A be a hermitian positive semi­
definite matrix of order n and rank r. Let those roots 
of A which are strictly positive be ordered as AI ~ A2 
~ ... ~ Ar > 0 and define s = AI + Ar, p = AlAr' 
If B is any hermitian C-inverse of A which commutes 
with A and has v = n - r nonpositive roots , then for 
any x such that x*x = 1 we have 

x*Ax + px*Bx~ s (i) 

and 

(x* Ax) (x*Bx) ~ s2/4p. (ii) 

If At = Ar = A, there is strict equality in (i) if and only 
if there is strict equality in (ii), and if and only if 
Ax = Ax. If AI > Ar. there is strict equality in (i) if 
and only if X=UI+Ur. where AUI = AtUI and AuI' 
= Aru r ; and there is strict equality in (ii) if and only 
if X=UI+Ur and uI *uI = u/ u r = 1/2. 

PROOF: Since A and B are hermitian and commute 
they have in common a complete orthonormal set of 
eigenvectors which we denote by Xi, indexed so that 
AXi= AiXi, 1 ~ i ~ n. We also have BXi= x;/ Ai, 1 ~ i ~ r. 
Let the v remaining roots of B be - d i , n ~ i > r, d i ~ O. 
It is then clear that the matrix P = (A - Ad) (A - Arl)B 
is hermitian negative semidefinite. For the vectors Xi 
are eigenvectors of P with corresponding (non positive) 
eigenvalues /-ti = (Ai - AI)(Ai - Ar)1 Ai , 1 ~ i ~ r , and /-ti 
=- pdi, r < i ~ n. From BECI (A) and AB=BA = £ we 
have A=A2B=BA2 and P may be written P =A-sE 
+ pB. For any x, x*Px ~ 0 and if x*x= 1, then 

x* Ax + p(x* Bx) ~ s(x* Ex) ~ s. (1) 

Thus (i) is proved. Define l/J = x* Ax and p(x*Bx) = cpo 
Then, from (1), l/J+cp ~ s and since l/J ~ 0, we have 

(2) 

which gives (ii). 
Let el denote the condition: strict equality obtains 

in (i); and let e2 denote the condition: strict equality 
obtains in (ii). 

If AI=Ar = A we have to prove el~e2~Ax=Ax. We 
show AX=Ax implies both el and e2; then e l~ Ax= Ax; 
then e2 ~ et. If Ax = Ax, then it is easily verified that 
l/J=cp=A=sI2, and we have el and ez. Now assume 
el, then from (1), x*£x = 1 which, by Lemma 1, implies 
xER(A) and x #- O. But every 0 #- XER(A) obeys Ax = Ax. 
Thus et ~Ax = Ax. Now assume ez, then from (2) we 
have l/J= cp=sl2 which gives el. Thus eZ~el ' This com· 
pletes the cases of stri ct equality when AI = A,.. 

If At > Ar we have to show e t~x =ut + ur. where 
UI and Ur are any eigenvectors of A associated with 
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the eigenvalues At and Ar respectively. We also must 
show e2~ x = Ut + u,. , where UI and u,. are, in particu­
lar, normalized so that Ut*Ut = u,.*u,. = 1/2. Suppose 
x= Ut + Ur and Ut*Ut = kl' u,*u,. = k,.. Then 

l/J=ktAI+krAr 
cp=ktAr+krAI 

x*Ex=kl +k,.= 1 

(3) 
(4) 
(5) 

and the sum of (3) and (4) give, in view of (5), l/J+cp=s 
which is el. Conversely assume el, then from (1) we 
have x*Px=O, which requires XEN(P) , and x*Ex=l, 
which requires xER(A). One basis for N(P) consists of 
the following subset of the eigenvectors Xi of A: those 
Xi with i such that Ai = AI ; those Xle with k such that 
Ale = A,.; and those Xj (if any) withj such that Aj = dj = O. 
Thus xEN(P) can be written x = UI + u,. + v with 
v€N(A). But also xER(A), which means v*x = 0 and 
therefore (since v* UI = v* u,. = 0), v= O. Thus el#x = Ut 
+ u,. is proved. Now assume x = Ut + Ur and k t = k2 
= 1/2. Then (3) and (4) read $ = sl2 and cp = s12, res pec­
tively, which gives ez. Conversely, assume e2, then 
from (2), l/J=cp=s/2, which gives et. We have just 
seen that et implies x = UI + U r which in turn implies 
(3), (4), and (5)_ But when ~J = cp = sl2 any two of (3), (4), 
and (5) give k t = k,. = 1/2. This completes the proof of 
the theorem. 

In case r = n, clearly B = A - I and from (i) of the 
theore m we recover Mond's matrix version [5] of Re n­
nie' s inequality [7]; from (ii) of the theorem we have 
the inequality of Kantorovich [4]. In this case we also 
have, from Cauchy's inequality , (x*Ax) (x*A - tx ) ~ 1. 
In case r < n, we have 3 f(x) = (x* Ax)(x* Bx) ~ 1 when­
ever xER(A), but this inequality is in general fal sy. 
We may infringe it with the choice x = (XI + x ll)/V2 
which gives f(x) = (1 - Atd,,)/4 ~ 1/4. In fact f(x) ~ 1 
if and only if r= n. For if r= n we have just seen that 
(x) ~ 1. If f(x) ~ 1 for all x*x = 1 then x* Ax #- 0 for all 
x*x = 1, in particular Xi* AXi #- 0 for all i, and A is 
strictly positive definite. 

Preparatory to the discussion of alternative speci­
fi cations of the matrix B in Theorem 1, we prove the 
following theorem. 

THEOREM 2. Let A be a g iven matrix. (i) If B is a 
C I-inverse of A and commutes with A, then E = AB is 
uniquely determined. (ii) If B is a Cz-inverse of A and 
commutes with A, then B is unique and is a polynomial 
in A. If A is normal (in particular hermitian) then B 
is normal (in particular hermitian). 

PROOF. (i) From ABA =A and AB=BA, we have 
BA2=A, which shows that p(A) = p(A Z) . We further 
have Ex=ABx=x when xER(A), and that Ey=ABy 
= BAy= 0 whe n y€N(A). Since peA) = p(A2) requires 
that R(A) and N(A) be di sjoint subs paces, E is uniquely 
determined by A. (ii) Let BI and B2 be C2-inverses which 
commute with A. From (i), E=BtA=B2A and hence 

l lf XER(A) , then x=2: (XiX,. Thu s 

, J(x)~ ( t I a,I'A,) (t H'/A')" I 
fo llows from Cauchy's ine(luality. 



B,x = B2x when xER(A). Since [9, 2], peA) = p(AB ,) 
= p(AB2) = P(B ,) = P(B2), it follow s from E = AB, 
= AB2 = B ,A that N(B ,) = N(B2) = N(A) and hence that 
B,y = B2y=0 when YEN(A). Thu s B, = B2 • From P(A) 
= peA 2) we know that A = Q- ' diag (A" (J)Q , where 
peA ,) = peA) and A, is nonsingular and (J is a square 
zero matrix. Let p(t) be the polynomial s uch that peA ,) 
= A-r'. Then P(A)=Q- ' diag (A T' , K)Q = G, where 
K= p«(J), is a C,-inverse of A. For, GA is ide mpotent 
and p(GA) = peA) and this is known [2] to be necessary 
and sufficient for GEC,(A) . Moreover, GAG=B is a 
polynomial in A, and [2] further BEC2(A). If A is normal 
clearly B is normal. If A = A* then the coefficients of 
orA) are real and B is hermitian_4 

In the proof of Theorem 2, we have seen that 
BEC M) and AB = BA together imply peA) = p(A2). 
Given this rank condition on A, we have seen how to 
construct a polynomial in A which is a C I-inverse of 
A and, from this, a polynomial in A which is a C2-inverse 
and uniquely determined among those BEC,(A) which 
commute with A. We set this forth as the following 

COROLLARY: There exists matrices BECI(A) which 
commute with A if and only if peA) = p(N)_ J n this 
case, there exists a unique BECz(A) which is a polyno­
mial in A. 

The condition in Theorem 1 that v roots of 8 are 
non positive cannot be omitted if p(8) > peA). For if 
x = (x, + x n)/V2 we have x*Bx = (1 - A,dn)/2A,. If 
dn < 0, B has a strictly positive root and both (i) 
and (ii) are violated when - dn > (S2 - p)/A,p. 

If in Theorem 1 we specify that BEC2(A), then the 
condition that B be hermitian and the condition on 
the roots may be dropped. For, by Theorem 2, if 
BEC2(A) and commutes with A then 8 is a polynomial 
in A. Further since A is hermitian, that polynomial is 
hermitian. But then we have 8EC4(A) , since A and 
8 are hermitian and commute and AB = 8A is hermi­
tian. If we specify BEC4(A) then the theorem holds 
true with no further conditions on B. For, if BEC4(A) 
and A = A* it is known [6] that 8 = B* and A8 = BA . 
If we require BEC:l (A ) and B = B*, then no further 
conditions on B are required for the validity of the 
theorem. For, if BEC3(A) , A = A* and B = 8 * then in 
fact BEC4(A), since (AB)* = AB implies BA is hermitian. 

If we consider the conditions of Theore m 1: (a) 8 
is hermitian, (b) B commutes with A, and (c) B has 
v = n-r non positive roots, then we have the following 
s ummary statement: Theorem 1 remains valid when 
the s tate ments there regarding B are re placed by 
BECzeA) and (b); and whe n they are re placed by 
BEC3 (A) and (a); and when they are replaced by 
BEeM). 

It is of interest to note that ifin Theore m 1 the con­
dition s on 8 are re placed by the condition s that B is 
normal and BEC3(A) , then th e theore m is valid. This 
follows from 

LEMMA 2. If A is normal and BECl(A) , then A and B 
commute if and only ifB is normal and if and only if 
BEC 4(A). 

41t is al so clear that we have B = Q- I diag (A - 1 8)Q. For this matrix is clearly a C:!-inverse 
w hic h commutes with A and we have Just shown that there IS only one such matrix. trom 
th is it fo llows that A normal (in pa rti c ular hermitian) implies B normal (in particular her­
mitian) s ince in these cases Q is unitary and A . is normal (in particular hermitian). 
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PROOF' . Let A be norm al, peA) = rand AXi = AiXi , 
Ai oF 0, 1 ~ i ~ r. The n BEC:M) =9 ABA =A =9ABxi 
= Xi . But BEC:l(A) =9AB = (AB)* and thu s we have Xi* AB 
= x;* or X;* B =Xi*/A i, for 1 ~ i ~ r. If we write E=A8 
= E* th e n s ince peE) = p(A) = p(B) we have N(E) 
= N(A) = N(B) . If B is norm al the n N(B) = N(B*) and 
we have thus proved thal A and B have a complete 
set of orthonormal eigenvectors in co mmon and he nce 
they commute. Now let AB = BA. Th e n si nce AB is 
hermitian by hypothesis, BA is hermitian and BEC4(A) , 
further by a known theorem [6] B is normal. 

It is clear from Lemma 2 that if A is hermiti an and 
BEC3(A) is normal, then B is hermitian, for as we have 
seen BECiA) and this implies [6] that 8=8*. Thus if 
BEC3(A) and is normal no other conditions on Bare 
necessary for the validity of Theorem 1. 

Finally, by use of (i) of Theore m 1 we can generalize 
the finite -dimensional version of a result of Strang [10] 
(this possibility was pointed out to the author by John 
W. Evan s). 

THEOREM 3. Let T be an arbitrary square matrix 
of rank 1'. Let those singular values of T which are 
strictly positive be ordered as A, ;3 A2 ;3 . .. ;3 A,. > ° 
and define s = A, + Ar , p = A, Ar . If L is the C 4 -inverse 
ofT, then, for aLL x, y 

l(y *Tx) (y *L *x)1 ~ ~ (x *x) (y*y)- (6) 
4p 

PROOF. Let T = QA be the polar fac torization of T, 
where Q is unitary and A is positive se mid efinite . If 
8 is the C4-inverse of A th e n L = BQ* is the C4-inve rse 
of T. More , 8 is positive se mid efinit e and commutes 
with A. For it is known [6] that 8 is hermitian and co m­
mutes with A and hence [9], as see n in the proof of 
Le mma 1, that the nonzero roots of B a re rec iproca ls 
of the nonzero roots of A. Thus A and 8 meet the con­
ditions of Th eore m 1. Le t X a nd y be any vec tors and 
define z = Q*y_ Thenoy the Schwartz inequality, 

I(y* Tx) (y* L *x) 1 = I(z* Ax) (z* Bx) 1 

~ [(x* Ax) (z* Az) (x* Bx) (z*Bz)] 1/2. (7) 

The singular values of T are the roots of A and (ii) of 
Theorem 1 can be written, for any x, as (x* Ax) (x* Bx) 
~ (s2/4p) (x*x)2. From this, (7) and z*z= y*y we obtain 
(6). 

REMARK: We cannot in Theorem 3, specify that L 
be a generalized inverse of T weaker than C4(T). It 
is a fact that if T= QA, Q is unitary, and L = BQ*, then 
LECi(T) if and only if BECi(A) , 1 ~ i ~ 4. But it is not 
enough to have B meet the conditions of Theore m 1. 
For in using the Schwartz inequality to obtain (7) we 
additionally require that B be positive semidefinit e. 
This requires that at least BEC2(A) and , as we have 
seen, this results in BEC4(A). For if B meets the con­
ditions of Theorem 1 and is positive semidefinite, then 
the v non positive roots are in fact zero, so that P(A) 
= p(B) and BECiA). 

Addendum: The author's attention has been directed 
(by k S. Householder) to the theorem of Diaz and 



Metcalf [Bull. Am. Math. Soc. 69, 415--418 (1963), 
theorem 3, p. 417] which includes as a special case a 
Hilbert space version of Rennie's inequality [7]. They 
give a succinct statement of the condition for strict 
equality which, in the terminology of the proof of 
Theorem 1 of this paper, is: We have el if and only 
if xEN(P). 
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