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A Generalized Matrix Version of Rennie/s Inequality'" 
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The matrix version of Rennie's inequality and the finite-dimensional version of Kantorovich's 
inequality are obtained by considering a positive definite matrix and its inverse_ Generalizations of 
these inequalities are obtained in which the inverse matrix is replaced by a generalized inverse with 
certain prescribed properties_ From the generalization of the Kantorovich inequality follows a (finite
dimensional) generalization of an inequality due to Strang_ 
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1. Introduction 

l It is the main purpose of this paper to derive an 
inequality which may be characterized as a general
ization of Mond's matrix version [5]1 of Rennie's in
equality [7] and from which a generalization of the 
inequality of Kantorovich [4] follows_ The inequality 
of Mond and some versions of the inequality of Kantor
ovich are derived by considering a positive definite 
matrix and its inverse. The derivation given here con
siders a positive semidefinite matrix and a general
ized inverse of that matrix_ The generalized inverse is 
required to have certain prescribed properties_ 

We begin with some preliminary considerations 
of generalized inverses of various classes_ The main 
theorem is proved under the assumption that the 
generalized inverse, B, is in the weakest class and 
it is shown how the particular required properties 
of B may be weakened when B is in a stronger class_ 

Thus far there seems to be no treatment of the case 
of strict equality for Mond's matrix inequality. In the 
case of the Kantorovich inequality the existing dis
cussions of strict equality are rather involved (e.g. , 
see [3] and references therein). In any event the dis
cussion of equality is more involved than the de
rivation of the inequality itself. One feature of the 
derivations given here is that they enable a rela
tively straightforward discussion of the case of strict 
equality for both Mond's and Kantorovich's inequalities. 

2. Notation and Preliminaries 

We consider matrices with complex entries and for 
any matrix M denote by p(M), N(M), R(M) and M* 
the rank, null space, range and conjugate transpose, 
respectively, of M. As before [2] we define C1(A) to 
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be the set of all matrices B such that ABA = A, where 
A is a given, arbitrary matrix, C2(A) to be the set of all 
matrices B such that BEC1(A) and BAB = B. We further 
define CiA) to be the set of all matrices B such that 
BEC2(A) and AB is a hermitian matrix, and C~(A) as 
the set of all matrices B such that BEC3(A) and BA is 
hermitian. We call a matrix BEC;(A) a Cj-inverse of A_ 
Other terminology has been used (see [9] and refer
ences therein and [8] and referee's suggestion and 
references therein). Note that a C3-inverse is essen
tially 2 th e weak-generalized-inverse of Goldman and 
Zelen [1] and that the C4- inverse is the Moore-Penrose 
generalized inverse [6]. We make repeated use of the 
following facts : If BEC1 (A), then p(B) ~ p(A) = p(AB) 
= p(BA) and AB and BA are idempotent matrices [9]. 
Moreover if BECM), then BEC2(A) if and only if p(A) 
= p(B)[2, 9]. 

For i = 1 or 2, a Cj-inverse of a hermitian matrix is 
not necessarily hermitian, but for every hermitian A 
there exists a hermitian Cj-inverse , i = 1, 2. In fact 
given A=A* and any B1EC1(A) the matrix H = (B*I 
+ B 1)/2 is in C 1 (A) and is hermitian [9], and the matrix 
HAH is in C2(A) and is hermitian [2]. 

In what follows we need to consider the situation 
BEC1(A) and AB=BA. Although we consider only the 
case A = A* and B = B*, which is rather transparent, 
we prove the following lemma for completeness_ 

LEMMA L If N(A) = N(A *), BEe I(A) and E = AB 
= BA, then E is an orthogonal projection and x*Ex 
= x*x if and only if xER(A). 

PROOF. Let BECM), then p(A) = p(AB) = p(BA) 
and if E = AB = BA it follows that N(B) ~ N(A) = N(E). 
From ABA=A, we have R(E) = R(A). If N(A)=N(A*) 
then N(A) is orthogonal to R(A) and E is a hermitian, 
idempotent matrix. Any x can be expressed as 

2 Goldman and Zelen [1] define a weak generalized inverse B such that BEC2(4) and BA 
is hermitian. We follow Rohde [9J in defining BEC3(A) as in the text. Actually any statement 
in this paper with respect to a BeC:1!A ) as defined here is true for the Goldman-Zelcn weak 
generalized inverse. 



X=u+v, with uER(A ) and vEN(A ). Then x*£x= u*u. 
But u*u=x*x if and only if xER(A). 

3. The Inequalities of Rennie, Kantorovich, 
and Strang 

We now prove the following theore m, which is 
the main result of this paper. 

THEOREM 1: Let A be a hermitian positive semi
definite matrix of order n and rank r. Let those roots 
of A which are strictly positive be ordered as AI ~ A2 
~ ... ~ Ar > 0 and define s = AI + Ar, p = AlAr' 
If B is any hermitian C-inverse of A which commutes 
with A and has v = n - r nonpositive roots , then for 
any x such that x*x = 1 we have 

x*Ax + px*Bx~ s (i) 

and 

(x* Ax) (x*Bx) ~ s2/4p. (ii) 

If At = Ar = A, there is strict equality in (i) if and only 
if there is strict equality in (ii), and if and only if 
Ax = Ax. If AI > Ar. there is strict equality in (i) if 
and only if X=UI+Ur. where AUI = AtUI and AuI' 
= Aru r ; and there is strict equality in (ii) if and only 
if X=UI+Ur and uI *uI = u/ u r = 1/2. 

PROOF: Since A and B are hermitian and commute 
they have in common a complete orthonormal set of 
eigenvectors which we denote by Xi, indexed so that 
AXi= AiXi, 1 ~ i ~ n. We also have BXi= x;/ Ai, 1 ~ i ~ r. 
Let the v remaining roots of B be - d i , n ~ i > r, d i ~ O. 
It is then clear that the matrix P = (A - Ad) (A - Arl)B 
is hermitian negative semidefinite. For the vectors Xi 
are eigenvectors of P with corresponding (non positive) 
eigenvalues /-ti = (Ai - AI)(Ai - Ar)1 Ai , 1 ~ i ~ r , and /-ti 
=- pdi, r < i ~ n. From BECI (A) and AB=BA = £ we 
have A=A2B=BA2 and P may be written P =A-sE 
+ pB. For any x, x*Px ~ 0 and if x*x= 1, then 

x* Ax + p(x* Bx) ~ s(x* Ex) ~ s. (1) 

Thus (i) is proved. Define l/J = x* Ax and p(x*Bx) = cpo 
Then, from (1), l/J+cp ~ s and since l/J ~ 0, we have 

(2) 

which gives (ii). 
Let el denote the condition: strict equality obtains 

in (i); and let e2 denote the condition: strict equality 
obtains in (ii). 

If AI=Ar = A we have to prove el~e2~Ax=Ax. We 
show AX=Ax implies both el and e2; then e l~ Ax= Ax; 
then e2 ~ et. If Ax = Ax, then it is easily verified that 
l/J=cp=A=sI2, and we have el and ez. Now assume 
el, then from (1), x*£x = 1 which, by Lemma 1, implies 
xER(A) and x #- O. But every 0 #- XER(A) obeys Ax = Ax. 
Thus et ~Ax = Ax. Now assume ez, then from (2) we 
have l/J= cp=sl2 which gives el. Thus eZ~el ' This com· 
pletes the cases of stri ct equality when AI = A,.. 

If At > Ar we have to show e t~x =ut + ur. where 
UI and Ur are any eigenvectors of A associated with 
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the eigenvalues At and Ar respectively. We also must 
show e2~ x = Ut + u,. , where UI and u,. are, in particu
lar, normalized so that Ut*Ut = u,.*u,. = 1/2. Suppose 
x= Ut + Ur and Ut*Ut = kl' u,*u,. = k,.. Then 

l/J=ktAI+krAr 
cp=ktAr+krAI 

x*Ex=kl +k,.= 1 

(3) 
(4) 
(5) 

and the sum of (3) and (4) give, in view of (5), l/J+cp=s 
which is el. Conversely assume el, then from (1) we 
have x*Px=O, which requires XEN(P) , and x*Ex=l, 
which requires xER(A). One basis for N(P) consists of 
the following subset of the eigenvectors Xi of A: those 
Xi with i such that Ai = AI ; those Xle with k such that 
Ale = A,.; and those Xj (if any) withj such that Aj = dj = O. 
Thus xEN(P) can be written x = UI + u,. + v with 
v€N(A). But also xER(A), which means v*x = 0 and 
therefore (since v* UI = v* u,. = 0), v= O. Thus el#x = Ut 
+ u,. is proved. Now assume x = Ut + Ur and k t = k2 
= 1/2. Then (3) and (4) read $ = sl2 and cp = s12, res pec
tively, which gives ez. Conversely, assume e2, then 
from (2), l/J=cp=s/2, which gives et. We have just 
seen that et implies x = UI + U r which in turn implies 
(3), (4), and (5)_ But when ~J = cp = sl2 any two of (3), (4), 
and (5) give k t = k,. = 1/2. This completes the proof of 
the theorem. 

In case r = n, clearly B = A - I and from (i) of the 
theore m we recover Mond's matrix version [5] of Re n
nie' s inequality [7]; from (ii) of the theorem we have 
the inequality of Kantorovich [4]. In this case we also 
have, from Cauchy's inequality , (x*Ax) (x*A - tx ) ~ 1. 
In case r < n, we have 3 f(x) = (x* Ax)(x* Bx) ~ 1 when
ever xER(A), but this inequality is in general fal sy. 
We may infringe it with the choice x = (XI + x ll)/V2 
which gives f(x) = (1 - Atd,,)/4 ~ 1/4. In fact f(x) ~ 1 
if and only if r= n. For if r= n we have just seen that 
(x) ~ 1. If f(x) ~ 1 for all x*x = 1 then x* Ax #- 0 for all 
x*x = 1, in particular Xi* AXi #- 0 for all i, and A is 
strictly positive definite. 

Preparatory to the discussion of alternative speci
fi cations of the matrix B in Theorem 1, we prove the 
following theorem. 

THEOREM 2. Let A be a g iven matrix. (i) If B is a 
C I-inverse of A and commutes with A, then E = AB is 
uniquely determined. (ii) If B is a Cz-inverse of A and 
commutes with A, then B is unique and is a polynomial 
in A. If A is normal (in particular hermitian) then B 
is normal (in particular hermitian). 

PROOF. (i) From ABA =A and AB=BA, we have 
BA2=A, which shows that p(A) = p(A Z) . We further 
have Ex=ABx=x when xER(A), and that Ey=ABy 
= BAy= 0 whe n y€N(A). Since peA) = p(A2) requires 
that R(A) and N(A) be di sjoint subs paces, E is uniquely 
determined by A. (ii) Let BI and B2 be C2-inverses which 
commute with A. From (i), E=BtA=B2A and hence 

l lf XER(A) , then x=2: (XiX,. Thu s 

, J(x)~ ( t I a,I'A,) (t H'/A')" I 
fo llows from Cauchy's ine(luality. 



B,x = B2x when xER(A). Since [9, 2], peA) = p(AB ,) 
= p(AB2) = P(B ,) = P(B2), it follow s from E = AB, 
= AB2 = B ,A that N(B ,) = N(B2) = N(A) and hence that 
B,y = B2y=0 when YEN(A). Thu s B, = B2 • From P(A) 
= peA 2) we know that A = Q- ' diag (A" (J)Q , where 
peA ,) = peA) and A, is nonsingular and (J is a square 
zero matrix. Let p(t) be the polynomial s uch that peA ,) 
= A-r'. Then P(A)=Q- ' diag (A T' , K)Q = G, where 
K= p«(J), is a C,-inverse of A. For, GA is ide mpotent 
and p(GA) = peA) and this is known [2] to be necessary 
and sufficient for GEC,(A) . Moreover, GAG=B is a 
polynomial in A, and [2] further BEC2(A). If A is normal 
clearly B is normal. If A = A* then the coefficients of 
orA) are real and B is hermitian_4 

In the proof of Theorem 2, we have seen that 
BEC M) and AB = BA together imply peA) = p(A2). 
Given this rank condition on A, we have seen how to 
construct a polynomial in A which is a C I-inverse of 
A and, from this, a polynomial in A which is a C2-inverse 
and uniquely determined among those BEC,(A) which 
commute with A. We set this forth as the following 

COROLLARY: There exists matrices BECI(A) which 
commute with A if and only if peA) = p(N)_ J n this 
case, there exists a unique BECz(A) which is a polyno
mial in A. 

The condition in Theorem 1 that v roots of 8 are 
non positive cannot be omitted if p(8) > peA). For if 
x = (x, + x n)/V2 we have x*Bx = (1 - A,dn)/2A,. If 
dn < 0, B has a strictly positive root and both (i) 
and (ii) are violated when - dn > (S2 - p)/A,p. 

If in Theorem 1 we specify that BEC2(A), then the 
condition that B be hermitian and the condition on 
the roots may be dropped. For, by Theorem 2, if 
BEC2(A) and commutes with A then 8 is a polynomial 
in A. Further since A is hermitian, that polynomial is 
hermitian. But then we have 8EC4(A) , since A and 
8 are hermitian and commute and AB = 8A is hermi
tian. If we specify BEC4(A) then the theorem holds 
true with no further conditions on B. For, if BEC4(A) 
and A = A* it is known [6] that 8 = B* and A8 = BA . 
If we require BEC:l (A ) and B = B*, then no further 
conditions on B are required for the validity of the 
theorem. For, if BEC3(A) , A = A* and B = 8 * then in 
fact BEC4(A), since (AB)* = AB implies BA is hermitian. 

If we consider the conditions of Theore m 1: (a) 8 
is hermitian, (b) B commutes with A, and (c) B has 
v = n-r non positive roots, then we have the following 
s ummary statement: Theorem 1 remains valid when 
the s tate ments there regarding B are re placed by 
BECzeA) and (b); and whe n they are re placed by 
BEC3 (A) and (a); and when they are replaced by 
BEeM). 

It is of interest to note that ifin Theore m 1 the con
dition s on 8 are re placed by the condition s that B is 
normal and BEC3(A) , then th e theore m is valid. This 
follows from 

LEMMA 2. If A is normal and BECl(A) , then A and B 
commute if and only ifB is normal and if and only if 
BEC 4(A). 

41t is al so clear that we have B = Q- I diag (A - 1 8)Q. For this matrix is clearly a C:!-inverse 
w hic h commutes with A and we have Just shown that there IS only one such matrix. trom 
th is it fo llows that A normal (in pa rti c ular hermitian) implies B normal (in particular her
mitian) s ince in these cases Q is unitary and A . is normal (in particular hermitian). 
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PROOF' . Let A be norm al, peA) = rand AXi = AiXi , 
Ai oF 0, 1 ~ i ~ r. The n BEC:M) =9 ABA =A =9ABxi 
= Xi . But BEC:l(A) =9AB = (AB)* and thu s we have Xi* AB 
= x;* or X;* B =Xi*/A i, for 1 ~ i ~ r. If we write E=A8 
= E* th e n s ince peE) = p(A) = p(B) we have N(E) 
= N(A) = N(B) . If B is norm al the n N(B) = N(B*) and 
we have thus proved thal A and B have a complete 
set of orthonormal eigenvectors in co mmon and he nce 
they commute. Now let AB = BA. Th e n si nce AB is 
hermitian by hypothesis, BA is hermitian and BEC4(A) , 
further by a known theorem [6] B is normal. 

It is clear from Lemma 2 that if A is hermiti an and 
BEC3(A) is normal, then B is hermitian, for as we have 
seen BECiA) and this implies [6] that 8=8*. Thus if 
BEC3(A) and is normal no other conditions on Bare 
necessary for the validity of Theorem 1. 

Finally, by use of (i) of Theore m 1 we can generalize 
the finite -dimensional version of a result of Strang [10] 
(this possibility was pointed out to the author by John 
W. Evan s). 

THEOREM 3. Let T be an arbitrary square matrix 
of rank 1'. Let those singular values of T which are 
strictly positive be ordered as A, ;3 A2 ;3 . .. ;3 A,. > ° 
and define s = A, + Ar , p = A, Ar . If L is the C 4 -inverse 
ofT, then, for aLL x, y 

l(y *Tx) (y *L *x)1 ~ ~ (x *x) (y*y)- (6) 
4p 

PROOF. Let T = QA be the polar fac torization of T, 
where Q is unitary and A is positive se mid efinite . If 
8 is the C4-inverse of A th e n L = BQ* is the C4-inve rse 
of T. More , 8 is positive se mid efinit e and commutes 
with A. For it is known [6] that 8 is hermitian and co m
mutes with A and hence [9], as see n in the proof of 
Le mma 1, that the nonzero roots of B a re rec iproca ls 
of the nonzero roots of A. Thus A and 8 meet the con
ditions of Th eore m 1. Le t X a nd y be any vec tors and 
define z = Q*y_ Thenoy the Schwartz inequality, 

I(y* Tx) (y* L *x) 1 = I(z* Ax) (z* Bx) 1 

~ [(x* Ax) (z* Az) (x* Bx) (z*Bz)] 1/2. (7) 

The singular values of T are the roots of A and (ii) of 
Theorem 1 can be written, for any x, as (x* Ax) (x* Bx) 
~ (s2/4p) (x*x)2. From this, (7) and z*z= y*y we obtain 
(6). 

REMARK: We cannot in Theorem 3, specify that L 
be a generalized inverse of T weaker than C4(T). It 
is a fact that if T= QA, Q is unitary, and L = BQ*, then 
LECi(T) if and only if BECi(A) , 1 ~ i ~ 4. But it is not 
enough to have B meet the conditions of Theore m 1. 
For in using the Schwartz inequality to obtain (7) we 
additionally require that B be positive semidefinit e. 
This requires that at least BEC2(A) and , as we have 
seen, this results in BEC4(A). For if B meets the con
ditions of Theorem 1 and is positive semidefinite, then 
the v non positive roots are in fact zero, so that P(A) 
= p(B) and BECiA). 

Addendum: The author's attention has been directed 
(by k S. Householder) to the theorem of Diaz and 



Metcalf [Bull. Am. Math. Soc. 69, 415--418 (1963), 
theorem 3, p. 417] which includes as a special case a 
Hilbert space version of Rennie's inequality [7]. They 
give a succinct statement of the condition for strict 
equality which, in the terminology of the proof of 
Theorem 1 of this paper, is: We have el if and only 
if xEN(P). 
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