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A Generalized Matrix Version of Rennie’s Inequality*
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The matrix version of Rennie’s inequality and

1967)

the finite-dimensional version of Kantorovich’s

inequality are obtained by considering a positive definite matrix and its inverse. Generalizations of

these inequalities are obtained in which the inverse

matrix is replaced by a generalized inverse with

certain prescribed properties. From the generalization of the Kantorovich inequality follows a (finite-
dimensional) generalization of an inequality due to Strang.
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1. Introduction

It is the main purpose of this paper to derive an
inequality which may be characterized as a general-
ization of Mond’s matrix version [5]' of Rennie’s in-
equality [7] and from which a generalization of the
inequality of Kantorovich [4] follows. The inequality
of Mond and some versions of the inequality of Kantor-
ovich are derived by considering a positive definite
matrix and its inverse. The derivation given here con-
siders a positive semidefinite matrix and a general-
ized inverse of that matrix. The generalized inverse is
required to have certain prescribed properties.

We begin with some preliminary considerations
of generalized inverses of various classes. The main
theorem is proved under the assumption that the
generalized inverse, B, is in the weakest class and
it is shown how the particular required properties
of B may be weakened when B is in a stronger class.

Thus far there seems to be no treatment of the case
of strict equality for Mond’s matrix inequality. In the
case of the Kantorovich inequality the existing dis-
cussions of strict equality are rather involved (e.g.,
see [3] and references therein). In any event the dis-
cussion of equality is more involved than the de-
rivation of the inequality itself. One feature of the
derivations given here is that they enable a rela-
tively straightforward discussion of the case of strict
equality for both Mond’s and Kantorovich’s inequalities.

2. Notation and Preliminaries

We consider matrices with complex entries and for
any matrix M denote by p(M), N(M), R(M) and M*
the rank, null space, range and conjugate transpose,
respectively, of M. As before [2] we define Ci(4) to
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be the set of all matrices B such that ABA= A, where
A is a given, arbitrary matrix, C»(4) to be the set of all
matrices B such that BeC(4) and BAB = B. We further
define C3(4) to be the set of all matrices B such that
BeCxA) and AB is a hermitian matrix, and C4(A4) as
the set of all matrices B such that BeCs(4) and BA is
hermitian. We call a matrix BeCi(A4) a Ci-inverse of A.
Other terminology has been used (see [9] and refer-
ences therein and [8] and referee’s suggestion and
references therein). Note that a Cs-inverse is essen-
tially * the weak-generalized-inverse of Goldman and
Zelen [1] and that the Cjinverse is the Moore-Penrose
generalized inverse [6]. We make repeated use of the
following facts: If BeCi(4), then p(B) = p(A)=p(AB)
=p(BA) and AB and BA are idempotent matrices [9].
Moreover if BeC(4), then BeCy(A) if and only if p(A4)
=p(B)[2, 9]

For i=1 or 2, a Ci-inverse of a hermitian matrix is
not necessarily hermitian, but for every hermitian A
there exists a hermitian Ci-inverse, =1, 2. In fact
given A=A* and any B,eCi(A) the matrix H=(B%
+B4)/2 is in C(4) and is hermitian [9], and the matrix
HAH is in Cx(A) and is hermitian [2].

In what follows we need to consider the situation
BeCy(A) and AB=BA. Although we consider only the
case A=A* and B=B*, which is rather transparent,
we prove the following lemma for completeness.

LEmMmA 1. If N(A)=N(A*), BeCi(A) and E=AB
=BA, then E is an orthogonal projection and x*Ex
=x*x if and only if xeR(A).

PrRoOOF. Let BeCi(4), then p(A)=p(AB)=p(BA)
and if £=AB = BA it follows that N(B) < N(4)= N(E).
From ABA=A, we have R(E)=R(A). If N(A)=N(A*)
then N(A) is orthogonal to R(4) and E is a hermitian,
idempotent matrix. Any x can be expressed as

2 Goldman and Zelen [1] define a weak generalized inverse B such that BeC,(4) and BA
is hermitian. We follow Rohde [9] in defining BeCj(A4) as in the text. Actually any statement
in this paper with respect to a BeCy(4) as defined here is true for the Goldman-Zelen weak
generalized inverse.



x=u~+v, with ueR(A) and veN(A). Then x*Ex=u*u.
But u*u=x*x if and only if xeR(A).

3. The Inequalities of Rennie, Kantorovich,

and Strang

We now prove the following theorem, which is
the main result of this paper.

THEOREM 1: Let A be a hermitian positive semi-
definite matrix of order n and rank r. Let those roots
of A which are strictly positive be ordered as Ay = \s
= . ..=2A>0 and define s=A+tA\, p=A\.
If B is any hermitian Ci-inverse of A which commutes
with A and has v=n—r nonpositive roots, then for
any x such that x*x=1 we have

x*Ax +px*Bx =< s (i)
and
(x*Ax) (x*Bx) < s2/4p. (i)
If X\y=\,=\, there is strict equalLty in (i) if and only
if there is strict equality in (ii), and if and only if
Ax=Ax. If N1 >\, there is strict equality in (1) if
and only if x=u +u,, where Aui=MAu; and Au,
=\u,: and there is strict equality in (ii) if and only
if x=u,+u, and u;*u;=u,*u,=1/2.

PRroOOF: Since A4 and B are hermitian and commute
they have in common a complete orthonormal set of
eigenvectors which we denote by x;, indexed so that
Axi=Aixi, 1 <i<n. We also have Bxij=xi/\j, 1< i<r.
Let the v remaining roots of Bbe —di,n=i>r,d; = 0.
It is then clear that the matrix P= (A4 — \,[) (4 -—)\,-I)B
is hermitian negative semidefinite. For the vectors x;
are eigenvectors of P with corresponding (nonpositive)
eigenvalues wi=(A\;—A)Ni— AN, L <i<r, and u;
=—pd;, r<i<n. From BeC(4) and AB=BA=FE we
have 4= A?B=BA?* and P may be written P=A4 —sE
+ pB. For any x, x*Px <0 and if x*x=1, then

x*Ax + p(x*Bx) < s(x*Ex) <. 1)

Thus (i) is proved. Define yy=x*A4x and p(x*Bx)=¢
Then, from (1), y+¢ < s and since =0, we have

Yo < sP— P < s*/4 (2)

which gives (ii).

Let e, denote the condition: strict equality obtains
in (i); and let e; denote the condition: strict equality
obtains in (ii).

If A\y=\-=\ we have to prove ¢;8 es& Ax=x. We
show Ax=MAx implies both ¢, and e.: then e;=) Ax = Ax:
then e;=e;. If Ax=\x, then it is easily verified that
y=¢p=A=s/2, and we have e, and e,. Now assume
e, then from (1), x*Ex =1 which, by Lemma 1, implies
x€R(A) and x # 0. But every 0 # xeR(A) obeys Ax= \x
Thus e; yAx=Ax. Now assume e», then from (2) we
have yy= ¢ =s/2 which gives e,. Thus e = e,. This com-
pletes the cases of strict equality when A=A\,

If A\, >\, we have to show e;©x=u,+u,, where
w; and u, are any eigenvectors of A associated with

the eigenvalues A; and \, respectively. We also must
show e:6x=u;+u,, where u; and u, are, in particu-
lar, normalized so that u;*u;= u,*u,=1/2. Suppose

x=ui+u, and w*u;=k,, w*u,=k, Then
U=rki\+ kN 3)
o=k Ntk (4)
x*Ex=k+k=1 (5)

and the sum of (3) and (4) give, in view of (5), y+¢=s
which is e;. Conversely assume e;, then from (1) we
have x*Px=0, which requires xeN(P), and x*Ex=1,
which requires xeR(A). One basis for N(P) consists of
the following subset of the eigenvectors x; of A: those
x; with ¢ such that \;=\;; those x; with % such that
Ax=A,; and those x; (if any) with j such that \;=d;=0.
Thus xeN(P) can be written x=u;+ ur—H) with
veN(A). But also xeR(A), which means v*x=0 and
therefore (since v*u; =v*u,=0), v=0. Thus e,&x=u,
+u, is proved. Now assume x=u;+u, and k =k,
=1/2. Then (3) and (4) read y=s/2 and ¢ = s/2, respec-
tively, which gives e,. Conversely, assume e, then
from (2), y=¢=s/2, which gives e;. We have just
seen that e, implies x= u, + u, which in turn implies

(3), (4), and (5). But when §i= ¢ =s/2 any two of (3), (4),
and (5) give ky =k,=1/2. ThlS completes the proof of
the theorem.

In case r=n, clearly B=A4" and from (i) of the
theorem we recover Mond’s matrix version [5] of Ren-
nie’s inequality [7]; from (ii) of the theorem we have
the inequality of Kantorovich [4]. In this case we also
have, from Cauchy’s inequality, (x*Ax)(x*A4A-'x) = 1.
In case r < n, we have? f(x) = (x*Ax)(x*Bx) = 1 when-
ever xeR(A), but this inequality is in general false.
We may infringe it with the choice x=(x;+x.)/V?2
which gives f(x)=(1— Aidy)/4 <1/4. In fact f(x) =
if and only if r=n. For if r=n we have just seen that
flx) = 1. If f(x) =1 for all x*x=1 then x*A4x # 0 for all
x*x=1, in particular x;*4x; #0 for all i, and 4 is
strictly positive definite.

Preparatory to the discussion of alternative speci-
fications of the matrix B in Theorem 1, we prove the
following theorem.

THEOREM 2. Let A be a given matrix. (1) If B is a
Ci-inverse of A and commutes with A, then E=AB is
uniquely determined. (i) If B is a Cs-inverse of A and
commutes with A, then B is unique and is a polynomial
in A. If A is normal (in particular hermitian) then B
is normal (in particular hermitian).

ProoOF. (i) From ABA=A and AB=BA, we have
BA?=A, which shows that p(4)=p(4?). We further
have Ex ABx=x when xeR(A4), and that Ey=ABy
=BAy=0 when yeN(A4). Since p(4)=p(A?) requires
that R(A) and NV(A4) be disjoint subspaces, E is uniquely
determined by A. (ii) Let B; and B> be Cs-inverses which
commute with A. From (i), E=B;A=B>A and hence

31f xeR(4), then ,r:i aixi. Thus
T . o
fm:( o) ‘ a,’%) (2 o ) =1
1 1

follows from Cauchy’s inequality.
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Bix=Bs;x when xeR(A). Since [9, 2], p(4)=p(AB,)
=p(AB,)=p(B)) =p(B,), it follows from E=A4B,
=AB, = BA that N(B,)=N(B:) =N(A) and hence that
Biy=B,y=0 when yeN(A4). Thus B,=B,. From p(A4)
—p(AZ) we know that 4 =0 diag (4,, H)() where

(A)=p(A) and A, is nonsingular and 6 is a square
Zero matrix. Let p(z) be the polynomial such that p(4,)
=A71'. Then p(A)=Q "' diag (41!, K)Q=0G, where
K=p(0), is a Ci-inverse of A. For, GA is idempotent
and p(GA) = p(A) and this is known [2] to be necessary
and sufficient for GeCi(4). Moreover, GAG=RB is a
polynomial in A4, and [2] further BeC,(A). If A is normal
clearly B is normal. If 4 =A% then the coefficients of
p(A) are real and B is hermitian.*

In the proof of Theorem 2, we have seen that
BeC(A) and AB=BA together imply p(4)=p(42).
Given this rank condition on 4, we have seen how to
construct a polynomial in 4 which is a Ci-inverse of
A and, from this, a polynomial in 4 which is a C»-inverse
and uniquely determined among those BeC(4) which
commute with 4. We set this forth as the following

COROLLARY: There exists matrices BeC(A) which
commute with A if and only if p(A)=p(A2?). In this
case, there exists a unique BeCs(A) which is a polyno-
mial in A.

The condition in Theorem 1 that v roots of B are
nonpositive cannot be omitted if p(B) > p(4). For if
x=(x1+x,l)/\/2_ we have x*Bx=(1—\dy)/2\,. If
dy <0, B has a strictly positive root and both (i)
and (ii) are violated when —d, > (s2— p)/\ip.

If in Theorem 1 we specify that BeCy(A4), then the
condition that B be hermitian and the condition on
the roots may be dropped. For, by Theorem 2, if
BeCyA) and commutes with 4 then B is a polynomial
in A. Further since A4 is hermitian, that polynomial is
hermitian. But then we have BeCyA), since A and
B are hermitian and commute and AB= BA is hermi-
tian. If we specify BeC4(A4) then the theorem holds
true with no further conditions on B. For, if BeC4(A)
and A=A* it is known [6] that B=B* and AB= BA.
If we require BeC3;(A) and B=B*, then no further
conditions on B are required for the validity of the
theorem. For, if BeCs(4), A=A* and B= B* then in
fact BeCy(A), since (AB)* = AB implies BA is hermitian.

If we consider the conditions of Theorem 1: (a) B
is hermitian, (b) B commutes with 4, and (¢) B has
v=n—r nonpositive roots, then we have the following
summary statement: Theorem 1 remains valid when
the statements there regarding B are replaced by
BeCsA) and (b);: and when they are replaced by
BeC3(A) and (a); and when they are replaced by
BeC(A).

It is of interest to note that if in Theorem 1 the con-
ditions on B are replaced by the conditions that B is
normal and BeCs(A), then the theorem is valid. This
follows from

LEMMA 2. If A is normal and BeCy(A), then A and B
commute if and only if B is normal and if and only if

BeC4(A).

1t is also clear that we have B= Q' diag (4~ 6)(Q. For this matrix is clearly a C.-inverse
which commutes with 4 and we have just shown that there 1s only one such matrix. krom
this it follows that 4 normal (in particular hermitian) implies B normal (in particular her-
mitian) since in these cases () is unitary and A, is normal (in particular hermitian).
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Proor. Let 4 be normal, p(A)=r and Ax;= \ix;,
Ni#0, Ilsisr. Then BeCyA)=ABA=A= ABx;
=2x;. But BeCy(A) 5 AB = (AB)* and thus we have x;*AB
= x* or x*B=x;*/\;, for 1 =i <r. If we write E=AB
=FE* then since pE)=p(A)=p(B) we have ME)
=NA)=N(B). If B is normal then N(B)=NB*) and
we have thus proved that 4 and B have a complete
set of orthonormal eigenvectors in common and hence
they commute. Now let AB=BA. Then since AB is
hermitian by hypothesis, BA is hermitian and BeC(A),
further by a known theorem [6] B is normal.

It is clear from Lemma 2 that if 4 is hermitian and
BeC3(A) is normal, then B is hermitian, for as we have
seen BeCy(A) and this implies [6] that B= B*. Thus if
BeC;3(A) and is normal no other conditions on B are
necessary for the validity of Theorem 1.

Finally, by use of (i) of Theorem 1 we can generalize
the finite-dimensional version of a result of Strang [10]
(this possibility was pointed out to the author by John
W. Evans).

THEOREM 3. Let T be an arbitrary square matrix
of rank r. Let those singular values of T which are
strictly positive be ordered as \y =\, =. . .=\, >0
and define s =\, + A\, p=MA. If L is the Cj-inverse
of T, then, for all x,y

.2
[(y*Tx) (y*L*x)| = ;—p (x*x) (y*y). (6)

Proor. Let T=QA be the polar factorization of T,
where Q is unitary and A4 is positive semidefinite. If
B is the Cyinverse of A then L= BQ* is the Cy-inverse
of T. More, B is positive semidefinite and commutes
with 4. For it is known [6] that B is hermitian and com-
mutes with 4 and hence [9], as seen in the proof of
Lemma 1, that the nonzero roots of B are reciprocals
of the nonzero roots of A. Thus 4 and B meet the con-
ditions of Theorem 1. Let x and y be any vectors and
define z= Q*y. Then by the Schwartz inequality,
|(y*Tx) (v

*L*x)| = |(z*Ax) (z*Bx)|

< [(x*Ax) (z¥Az) (x* Bx) (z*Bz)]'/2. (7)
The singular values of 7" are the roots of 4 and (ii) of
Theorem 1 can be written, for any x, as (x*A4x) (x*Bx)
< (s%/4p) (x*x)%. From this, (7) and z*¥z=y*y we obtain
(6).
REMARK: We cannot in Theorem 3, specify that L
be a generalized inverse of T weaker than CyT). It
is a fact that if T=(QA4, Q is unitary, and L= BQ¥*, then
LeC{(T) if and only if BeCi(A), 1 <i=<4. But it is not
enough to have B meet the conditions of Theorem 1.
For in using the Schwartz inequality to obtain (7) we
additionally require that B be positive semidefinite.
This requires that at least BeCy(A) and, as we have
seen, this results in BeCs(A). For if B meets the con-
ditions of Theorem 1 and is positive semidefinite, then
the v nonpositive roots are in fact zero, so that p(A)

= p(B) and BeCy(A).

Addendum: The author’s attention has been directed
(by A. S. Householder) to the theorem of Diaz and



Metcalf [Bull. Am. Math. Soc. 69, 415-418 (1963),
theorem 3, p. 417] which includes as a special case a
Hilbert space version of Rennie’s inequality [7]. They
give a succinct statement of the condition for strict
equality which, in the terminology of the proof of
Theorem 1 of this paper, is: We have e; if and only
if xeN(P).
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