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Discrete Complex Functions With Prescribed Boundary
Values and Residues™

Elmor L. Peterson **
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R. Isaacs, J. Ferrand, R. J. Duffin, and several others have developed a function theory for “discrete
analytic functions™ defined on “‘discrete regions™ in the “discrete complex plane.” In this paper we
bring to light some combinatorial-topological properties of “simple discrete regions,” and we study
some basic properties of discrete analytic functions that are defined on simple discrete regions. These
combinatorial-topological properties and basic properties are then used to establish an existence and
uniqueness theorem for discrete complex functions with prescribed “boundary values™ and “residues”

on an arbitrary simple discrete region.
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1. Introduction

This paper is concerned with complex functions
defined at the nodes of a square mesh . that lies
in the complex plane and is depicted in figure 1.1. The
theory of these functions was initiated by R. Isaacs
[1]* and J. Ferrand [2] and has been extensively de-
veloped by R. J. Duffin [3] and several of his students
[4,5,6,7]. The functions investigated are said to be
“discrete analytic”” and are discrete analogs of analytic
functions of a continuous complex variable. A com-
plex function f is discrete analytic at a square S be-
longing to ) if the difference quotient of f across
one diagonal of S is equal to the difference quotient
of facross the other diagonal of S.

The results obtained in [1, 2, and 3] include discrete
analogs of the Cauchy Riemann equations, Laplace’s
equation, the maximum principle, conjugate harmonic
functions, differentiation, integration, the residue
theorem, Cauchy’s theorem, Morera’s theorem,
Cauchy’s integral formula, and polynomials. Some
of the concepts studied have no direct analogy in
the classical continuous theory. These include the
notions of duality and bipolynomials.

In [3] it is shown that for each real function u that
is “discrete harmonic” on a “simple discrete region
R’ there is a real ‘“‘conjugate function v’ that is
discrete harmonic on Z such that u+iv is discrete
analytic on %. This theorem becomes a corollary to
the main theorem of this paper, which is stated and
proved in section 3 as Theorem 3.5. The main theorem
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FIGURE 1.1. The discrete complex plane.

discusses both the existence and the uniqueness of
a function u-+iv that has prescribed “‘residue” and
“boundary values” on a simple discrete region %.
The proof of the main theorem depends on some
properties of simple discrete regions and on some
basic properties of discrete functions. The required
properties of simple discrete regions are stated and
proved in section 2, and the required basic properties
of discrete functions are stated and proved in the first
part of section 3. With the possible exception of Euler’s
formula [8] this paper is completely self-contained.

2. The Discrete Complex Plane and
Simple Discrete Regions

The mesh ./, as shown in figure 1.1, consists of a
union of nonoverlapping squares, each of whose sides
has length h. The lattice ) (or discrete complex
plane) is composed of the points that fall on a vertex
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of a member of ./#,. Each member z of /') can be rep-
resented as z=xh -+ iyh where x and y are appropriate
integers. The even lattice &), consists of those lattice
points for which x + v is even, and the odd lattice 0
consists of those lattice points for which x+ y is odd.

A chain is an oriented set of lattice points zo,

Zi. . . .. zy with the property that the straight line
joining z; — to z; lies along an edge of a square belong-
ing to . A chain zy, z1, . . ., z, for which zo=2z, is

called a simple closed chain when its elements, ex-
clusive of zy and z,, are distinct. An even chain (odd
chain) is an oriented set of even (odd) lattice points
Z0, Zi» . . .. zn with the property that the straight line
joining z;—; to z; lies along a diagonal of a square
belonging to /.

A set of lattice points is said to be connected if each
pair of points belonging to the set can be connected
by a chain so that each point of the chain lies in the
set. A set of lattice points is said to be evenly con-
nected (oddly connected), if each pair of even (odd)
lattice points belonging to the set can be connected
by an even (odd) chain so that each point of the even
(odd) chain lies in the set.

A discrete region in the discrete complex plane %,
consists of the nodes of a union of squares from ..
The discrete region is said to be constructed from
these squares, and the union of the closed planar sets
bounded by these squares is called the associated
region. The boundary of a discrete region con-
sists of those lattice points that belong to the discrete
region and lie on the boundary of its associated region.
The union of all lattice points that belong to the dis-
crete region but do not belong to its boundary is called
the interior of the discrete region. Lemma 2.1
is an obvious consequence of these definitions.

LEMMA 2.1: A lattice point z is an interior point of
a discrete region % if, and only if, each of the four

squares h(wmg z as a vertex belongs to the family of

squares used in the construction of /’.

A discrete region is said to be finite if it consists of
a finite number of lattice points. A simple discrete
region is a finite discrete region whose boundary can
be represented by a simple closed chain.

We shall now deduce some useful properties of
simple discrete regions. It does not seem worthwhile
to detail the combinatorial-topological machinery
required for full formal rigor in the demonstration of
these intuitively evident properties: instead, we aim
at leaving the reader with a clear picture of just
what “‘sub-lemmas” would have to be verified when
using such machinery in a fully detailed treatment.

Most of the proofs rely on induction. The following
lemma provides the key to these proofs.

LEMMA 2.2: If % is a simple discrete region con-
structed from s squares and s =2, then %, is the union
of a simple discrete region -, constructed from
s— 1 squares and a simple discrete region % con-
structed from one square.

Proor: Let C: z, zi, . , zn be the simple closed
chain that represents the boundary of %, and suppose
that C is oriented so that Z; lies to the left as C is
traversed from zy to z,=z. Since C is finite and
closed, there exists a lattice point z€C: zo, . . ., z,

- ., 2y at which C makes a left turn. The lattice can
clearly be rotated so that z ., z, and z,, have the
positions shown in figure 2.1. According to our choice
of C the square S, is contained in the associated
region R, of Z,. Since s =2, at least one of the squares
S», S3, and S; must be contained in R;, We must
distinguish seven cases.

a zZ Z
t+l t
S S
2 1
b Z Z
t t-1
S S
3 4
c d e
FIGURE 2.1. A left turn in a simple closed chain.

Caske I: S, S;, and Ss are contained in R;. Then

consider the closed chamn C: z, . . ., z_y, 2, 2i41,

. Since Z is an interior point of %, C is simple

dnd hence encloses a simple discrete region %s_,
C A, In this case R;=S,.

Cask II: S, and S; are contained in R but S, is not.
This means that z; precedes z,— in C (i.e.,C: 2, . . .,
Zts Zt—1, 2ty Bt+1, - . Zn) Now let C O oy 2ty
Zt+1,- - -»_2zn be obtained from C by deleting z_; and
z. Then C is clearly simple and encloses a simple
discrete region %;_ C %,. In this case R, =S,.

Cask III: S, and S, are contained in R but S; is not.
This means that the sequence b, z, d appears in C
and hence C makes a right turn at z;. Since there must
be four more left turns than right turns in C, we could
have initially chosen z; so as to eliminate this case.

CASE IV: S; and S, are contained in R but S; is
not. This case is handled in a manner similar to
CaseIl.

CASE V: S, is contained in R, but S3 and S, are not.
This means that the sequence b, Z, z—1, 2z, z:+1 be-
longs to C (i.e., C: z, . , b, Ze, Ze-1, Zty Zt+1o . . ., Zn)-
Now let C: zo, . . ., b, Zt, 2141, . , zn be obtamed
from C by deleting z—, and z. Then C is clearly
simple and encloses a simple discrete region %
C . In this case R, = 8S,.

CASE VI: S; is contained in R, but S, and S, are not.
This case cannot occur, since z would have to appear
twice in C, which would mean that C is not simple.

CAste VII: S, is contained in Ry, but S, and S; are
not. This case is handled in a manner similar to Case V.

All possibilities have been exhausted, so the proof
of Lemma 2.2 is complete.

We can now derive some useful properties of simple
discrete regions.

LEMMA 2.3: If % is a simple discrete region con-
structed from s squares and s =1, then % is con-
nected and both evenly and oddly connected.
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PrOOF: The theorem is obviously true for s=1.
If s>1, then Lemma 2.2. shows that #Z,=%,_, U %,.
Using induction, we assume that both %, and %,
have the desired properties. Since % is simple,
Rs-1 and %, must have at least one even lattice point
in common and at least one odd lattice point in com-
mon. The rest of the proof is trivial.

LEMMA 2.4: If % is a simple discrete region con-
structed from s squares and S; is one of the squares
used in constructing X, then S, is the first member
of a sequence {S;};_, of squares belonging to My
such that -

(1) %, is constructed from U S;, and

=l
(2) For each j such that 1 <j <s, there is an integer
k such that 1 <k <j and such that S; has a side
in common with Sy.

ProoOF: The proof, being trivial for s=1 and s=2,
is accomplished through induction on s. If s=2,
then Lemma 2.2 shows that Z=%;_1 U Z,. Two
cases must be treated.

CASE I: S, is used in the construction of %;_,. Then
there exists a sequence {S;}5= [ that satisfies condition
(2) and is used for the construction of %;_,. Letting
Ss be the square used in constructing %, and re-
membering that the boundary of Z%; is simple, we see
that S; must have a side in common with a member of
{S;}s=!, which means that {S;}i_, satisfies both
condition (1) and condition (2).

CASE II: S, is used in the construction of %,. Since
the boundary of %, is simple, we can choose a square
S, that is used in the construction of %;_, and has a
side in common with S;. Then there is a sequence
{Sj+1}5=1 that satisfies condition (2) and is used for
the construction of Z%;_,. It is now easily seen that the
sequence {S;}i_, satisfies conditions (1) and (2).
This completes the proof of Lemma 2.4.

LEMMA 2.5: Let p be the number of lattice points
in a simple discrete region % that is constructed
from s squares and has b boundary points. Then
2p—b —2=2s.

PrRooOF: The proof of this lemma can be accom-
plished through induction on s. A shorter proof can
be based on Euler’s formula from the theory of planar
graphs [8]. If a planar graph is connected, the Euler
formula states that

v—e+f=2, 2.1)
where v is the number of vertices in the graph, e is
the number of edges in the graph, and fis the number
of regions into which the plane is divided by the
graph. In order to apply this formula we must con-
sider the connected planar graph G that results from
taking the union of the squares used in the construc-
tion of #;. The number of vertices in G is simply the
number of lattice points in %, that is,

v=p. 2.2)

Since s squares are used in constructing &, the number
of regions into which the plane is divided is s+1;
thus
f=s+1. (2.3)
There are b edges connecting the boundary points of
Rs, because the boundary of % is a simple closed
chain. Each of these edges borders only one of the
squares used in the construction of Z;. All other edges
belonging to G border two of the squares used in the
construction of %;. Since each square is bordered by
4 edges, it follows quite easily that
2e = 4s + b. (2.4)
Multiplying eq (2.1) by 2 and substituting eqs (2.2),
(2.3), and (2.4) into the result proves Lemma 2.5.
Figure 2.2 shows the union of ten squares to form
a simple discrete region %, Odd lattice points are
denoted by crosses, and even lattice points are rep-
resented by dots. The square labeled with S; occupies
the jth position in the ordered sequence {S;}}%of
squares used to construct %;o. The points zi, z», 23,
and z; form a chain. An even chain z{, z§, z§, z§ is
shown along with an odd chain 29, 29, zJ. The boundary
of R, denoted by 9%, is depicted by the simple
closed chain zi, 2, . . .,Zie. The node z; is an example
of an interior point of %,.
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FIGURE 2.2.  Chains and a simple discrete region.

3. The Main Theorem

We begin by defining a finite difference operator
L whose definition is taken from [3].

DEF. 3.1: Let f be a complex lattice function and
suppose that S is a square belonging to M. Then the
residue L(f,S) of { at the square S is defined by

L(f, S) = f(zo) + if(z1) + i*f(z2) + i*f(z3).
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where 17y, 21, 23, and z3 have the orientation depicted
in figure 3.1 andi=V—1.

AV
23 ZZ
S
z zy
» &
FIGURE 3.1.  Orientation of the square S.

The quantity L(f,S) is termed the residue of f at S,
because in ““discrete contour integration” it plays a
role [3] analogous to the role played by the residue of
a complex function of a continuous complex variable
in the classical theory of contour integration.

DEF. 3.2: A lattice function f is discrete analytic
at a square S belonging to ./ if its residue
L(,S) at S is zero. A lattice function f{ is discrete
analytic in a discrete region 7 if it is discrete
analytic at each square used in the construction of %.
The reader should have no trouble showing that this
definition of discrete analyticity is equivalent to the
one given in the first paragraph of section 1.

To find analogues of the Cauchy Riemann equations,
one need only set the real and imaginary parts of
L(f,S) equal to zero. This gives the following theorem,
which is taken from [3].

THEOREM 3.1: Let f=u-+iv where u and v are real
lattice functions. Then f is discrete analytic at Se.
if and only if

(i) u(z2) — u(zo) = v(z3) — v(z1)

and

(i) v(z2) — v(z0) = — [u(z3) — ulzy)],
where zo, 71, 22, and z3 have the orientation shown by
square S of figure 3.1.

Following the example of the theory of functions of
a continuous complex variable, we give a definition
of discrete harmonicity. This definition, which is
taken from [3], is justified by Lemma 2.1.

DEF. 3.3: Suppose { is a complex lattice function
defined on a discrete region % of the discrete complex
plane £\. Let a function H(f, ), which maps the in-
terior points of X into the field of complex numbers,

be defined by
H(f, z;)) = {(z)) + {(z2) + {(z3) + f(z4) — 41(z;)

where z;, 7\, 72, 23, and z4 have the positions shown in
figure 3.2. Then { is said to be discrete harmonic
at an interior point z; of % if H(f, z;) = 0.

A simple consequence of this definition is the ““max-
imum principle” given by Theorem 3.2.

Al Zo

FIGURE 3.2.

An interior point.

THEOREM 3.2: If f is a complex lattice function that
is discrete harmonic at each interior point of a simple
discrete region %, then |f| assumes its absolute max-
imum on the boundary of .

PROOF: Since Z is finite, |f| assumes an absolute
maximum M at a point z; of Z. If z; is on the boundary
of %, the theorem is proved.

Suppose then that z; is in the interior of %. If z is
even (odd) then Lemma 2.3 enables us to construct
an even (odd) chain C: z;, 2, . . ., z;, from z; to an
even (odd) boundary point z, of # with the property
that z, =1, 2, . . ., n—1 is an interior point of %.
Let j be the smallest positive integer less than or
equal to n for which |f(z;)| < M. Since j must be greater
than one, we know that zj_; exists and is an interior
point of % with the property that |f(z;_1)| =M. The
lattice %, can clearly be rotated so that zj_; and z;
have the orientation shown in figure 3.3.

[
w

J=1

Zl 22

FIGURE 3.3. An interior point on an even (odd) chain.

Definition 3.3 shows that

fiz_) :f(zj)+f(z1)1-f(z2)+f(z3)_
Hence
ey = LER T L]+ )]+ flan)]
Since

fz))] < [fizi-0| =M,
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we see that

<M+M+M+M

b 4

=M’

which is a contradiction. Hence |f(z)|=M for j=1,
. . ., n and thus [f(z,)|=M. This completes the proof
of Theorem 3.2.

We can use the preceding theorem to discuss the
“Dirichlet problem” for the lattice .%;.

THEOREM 3.3: Suppose % is a simple discrete region
containing i interior points along with b boundary
points. If {By, Bs, . . ., By} is a set of b complex num-
bers, then there is a unique lattice function f that is
discrete harmonic in % and assumes the values By,
B., . . ., B, on the boundary of %.

PRrRoOF: Definition 3.3 provides us with a system of
i linear equations in ¢ unknowns, which must be
satisfied by a discrete harmonic function defined on %.
The corresponding homogeneous system is obtained
by setting each boundary value of f equal to zero.
Theorem 3.2 shows that the homogeneous system has
only the trivial solution. Hence, the inhomogeneous
system has a unique solution, which proves the
theorem.

The next theorem, which is taken from [3], relates
the concept of discrete harmonicity to the concept
of discrete analyticity.

THEOREM 3.4: If f is a lattice function that is dis-
crete analytic at each square making up a discrete
region X, then f along with its real and imaginary
parts is discrete harmonic at each interior point of .

PROOF: Suppose z; is an interior point of %. Then,
according to Lemma 2.1, the squares S, S., S3, and
Ss shown in figure 3.4 belong to the family of squares
used in the construction of #%. Hence

fz1) +if(z) +i*(z) +f(25) =0

f(zg) +if(z) +i%f(24) +3%(z) =0

f(z) +if(z4) +%f(25) +i%f(2z6) =0

fzs) +if(z) +i%f(26) +i%(27) =0.
Multiplying the first equation by + 1, the second equa-

tion by —i, the third equation by —1, and the fourth
equation by + i, and then adding the results shows that

z7 Zg z5
Sh 83

zg zJ Z),
Sl 82

zq Z, z3

FIGURE 3.4. An interior point of a discrete region.

f(@1) +f(z3) +f(z5) +f(z1) —4f(z) =0. q.e.d.

The preceding theory can be used to discuss the
existence and uniqueness of a lattice function f that
is defined on a simple discrete region % and has pre-
scribed residue at each square making up %. The
following existence and uniqueness theorem is the
main result of this paper.

THEOREM 3.5: Let R be a simple discrete region
constructed from s squares, and suppose that % has
p lattice points and b boundary points. If

(i) z° and z® are odd and even lattice points respec-
tively belonging to the discrete region 7,
(ii) {v°, v¢} is a set of two real numbers,

(iii) {u'}}, is @ set of b real numbers, and

(iv) {a’+ib'};_, is a set of s complex numbers,
then there is a unique complex function f=u+iv that.
is defined on % and has the following properties:

(I) v assumes the values v° and v¢ at z° and z°,
respectively. ‘ .

(I1) u assumes the value ' at the jth boundary point
of . .

M) L{f, Sh=al+ib! for j=1,. . ., s where {S'}}_,

is the set of squares used in the construction

of A.

Proor: Equating the real and imaginary parts of
the equation L(f, $)=a/+ib shows that f=u+iv
has residue @/ + b/ at S7 if, and only if,

u(z2) - lt(Zo) :U(Z:;) - U(Z|) —
and
v(22) —v(z0) =— [U(Z:x) —u(z) +bi].

where z, z1, z2, and z3 have the orientation shown in
figure 3.1. Since Z is constructed from s squares, we
obtain a system of 2s linear equations that must be
satisfied by the real and imaginary parts of the func-
tion f whose prescribed residues are {a/+ibi}y,.
There are 2p —b—2 unknowns because u is given at
b boundary points and v is specified at z° and z¢.
Lemma 2.5 shows that the number of unknowns is
equal to the number of equations in the system. The
corresponding homogeneous system is obtained by
setting u!, u?, . . ., u®, v, e, a', . . ., a%, b, . . .,
b1, and b* equal to zero.

Suppose u and v represent a solution of the homo-
geneous system. Then f=u-+iv is discrete analytic
on %, and Theorem 3.4 shows that u is discrete har-
monic at interior points of Z. We conclude from The-
orem 3.3 that u is identically zero. Now suppose that
2% is a vertex of a square S, and that {S;}5_, is the cor-
responding sequence of squares given by Lemma 2.4.
Since u is identically zero and v(z°) =0, the “Cauchy
Riemann equations” of Theorem 3.1 show that v is
zero at the other odd lattice point of S;. Using the
second conclusion of Lemma 2.4, we observe that
.v is, a fortiori, zero at one of the odd vertices of S, and
hence zero at the other odd vertex of S,.. Repeating
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this argument an additional (s —2) times, we conclude

that v is zero at all odd lattice points of %. The same
argument with z° replaced by z¢ and the word odd re-

placed by the word even shows that v is zero at all

even lattice points of %. Hence, both u and v are
identically zero on % and thus the homogeneous sys-
tem has only the trivial solution. This means the inho-
mogeneous system has a unique solution, which
proves the theorem.

COROLLARY 3.1: If u is a real discrete harmonic
function that is defined on a simple discrete region %,
then u is the real part of a lattice function u+iv that
is discrete analytic on %.

ProoF: Theorem 3.5 shows the existence of a dis-
crete analytic function u+iv with u assuming the
boundary values taken on by u. Then Theorem 3.3

shows that u=u.

The real function v of Corollary 3.1 is called a dis-
crete harmonic conjugate of u. In the theory of
functions of a continuous complex variable a particu-
lar harmonic conjugate of a real harmonic function is
uniquely determined by its value at a given point of
its domain. An inspection of Theorem 3.5 shows that
a particular discrete harmonic conjugate v of a dis-
crete harmonic function u is uniquely determined by
its values at two different points z° and z¢ of its domain.

The difference between the two theories is due to the
fact that the discrete harmonic operator H does not
relate a discrete function restricted to the odd lattice
to the discrete function restricted to the even lattice.
In solving the Dirichlet problem for .#), we must, in
a sense, solve two Dirichlet problems, one for the
even lattice and one for the odd lattice.
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