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R. Isaacs . .I . Fe rra nd , R. J. Duffin . a nd se ve ral othe rs have deve loped a fun cti un theor y for " di sc re te 
anal yti c fun c ti ons" de fi ned u n " di sc rete regiuns" in th e " di sc re te complex pl a ne." In thi s pa per we 
bring to light some cu mbin a tori al· topologica l prope rti es of "sim ple d isc re te regiuns," a nd we stud y 
som e bas ic prupe rti es of disc rete a nal ytic fun c ti ons tha t a re de fi ned on s im ple di sc rete regions _ These 
com b in a tor ial-topologica l p ro perti es a nd bas ic prope rti es a re th e n used to es ta bli sh a n ex iste nce a nd 
uni q ue ness theo re m for d isc re te co mplex fun c tions with presc ribed " bounda ry va lues" a nd " residues" 
0 11 a n a rb itrary s im ple d isc re te regiun. 

Key Wo rd s : Ana lyti c fu nc ti uns, compl ex a na lysis , Diri c hlet proble m , d isc re te a na lyti c funct ions . 

1. Introduction 

This paper is co ncerned with co mplex fun ctions 
defined at the nodes of a square mesh vlth that lies 
in the complex plane and is de picted in fi gure 1.1. The 
theory of these functions was initiated by R. Isaacs 
[1] 1 and J. Ferrand [2] and has been extensively de­
veloped by R . .J. Duffin [3J and several of hi s s tude nts 
[4,5,6,71. Th e functions in ves tigated are said to be 
" disc re te a nalyti c" and a re di scre te analogs of a na lyti c 
fun cti ons of a continuous complex vari able . A co m­
plex function f is discrete analytic at a square S be­
longing to vitI! if the difference quotient of f across 
one diagonal of S is eq ual to th e differe nce quotient 
of f across the othe r di ago nal of S. 

T he res ults obtained in [1 , 2, a nd 31 inc lude di screte 
analogs of th e Cauchy Rie ma nn eq uations, Lap lace's 
equation, the maxi mum principle, conjugate harmonic 
fun ctions, differe ntia tion, integration, the res idue 
theore m, Cauchy's theorem, Morera's theore m, 
Cauchy's integral formula, and polynomials. Some 
of the concepts s tudied have no direct analogy in 
the classical continuous theor y. These include the 
notions of dualit y and bi polynomials. 

In [3] it is show n th at for each real fun ction u that 
is " di screte harmoni c" on a "simple di scre te region 
!!It" there is a real "conjugate function v' that is 
discrete harmonic on !!It such that u + iv is discrete 
analytic on !!It. This theorem becomes a corollary to 
the main theorem of thi s pa per , whic h is s tated and 
proved in secti on 3 as Theore m 3.5. The main theore m 
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FI GURE 1.1. The discrete complex plane. 

di sc usses bo th th e exi s te nce a nd the uniqu e ness of 
a fun c tion u + iv th at has prescribed " residu e" a nd 
" boundary values" on a simple discrete region !!It. 

The proof of the main theorem depends on some 
properti es of simple di screte regions and on so me 
basic properti es of di scre te fun c tions. The required 
properties of simple di screte regions are sta ted and 
proved in section 2, and the required basic properti es 
of discrete functions are stated and proved in the first 
part of section 3. With the possible exception of Euler 's 
formula [8] this paper is completely self-contained. 

2. The Discrete Complex Plane and 
Simple Discrete Regions 

The mesh vIt", as shown in figure 1.1, consists of a 
union of nonoverlapping squares, each of whose sides 
has length h . The lattice 2'" (or discrete complex 
plane) IS composed of the points that fall on a vertex 
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of a member of ~". Each member Z of 2"" can be rep­
rese nted as Z = xh + iyh where x and yare appropriate 
integers. The even lattice ?til consists of those lattice 
points for which x + y is even, and the odd lattice Oil 
consists of those lattice points for which x + y is odd. 

A chain is an oriented set of lattice points Zo, 

ZI _ ... , ZII with the property that th e strai ght lin e 
joining Zi - I to Zi li es along an edge of a square be long­
ing to ~/I' A c hain Zo, ZI, ... , ZII for which ZO = ZII is 
called a simple closed chain when its elements, ex­
clusive of Zo and Zit, are distinct. An even chain (odd 
chain) is an oriented set of even (odd) lattice points 
Zo, Z I , •• . , ZII with the prope rty that the straight line 
joining Zi - I to Zi li es along a diagonal of a square 
be longin g to ~" , 

A set oflattice points is said to be connected if each 
pair of points be longing to the set can be connected 
by a c hai n so that each point of the chain lies in the 
set. A set of lattice points is said to be evenly con­
nected (oddly connected), if each pair of even (odd) 
latti ce points belonging to the set can be connec ted 
by an even (odd) c hain so that each point of the e ve n 
(odd) chain lies in the set. 

A discrete region in the discrete complex plane 2"" 
consists of the nodes of a union of squares from ~", 
The discrete region is said to be constructed from 
these squares, and the union of the closed planar sets 
bounded by these squares is called the associated 
region. The boundary of a discrete region con­
sists of those lattice points that belong to the discrete 
region and lie on the boundary of its associated region. 
The union of all lattice points that belong to the dis­
crete region but do not belong to its boundary is called 
the interior of the discrete region. Lemma 2.1 
IS an obvious consequence of these definitions. 

LEMMA 2.1: A lattice point z is an interior point of 
a discrete region f!ll if; and only if, each of the four 
squares having z as a vertex belongs to the family of 
squares used in the construction of f!ll . 

A discre te region is said to be finite if it consists of 
a finite number of lattice points. A simple discrete 
region is a finite discrete region whose boundary can 
be represented by a simple closed chain. 

We shall now deduce some useful properties of 
simple discrete regions. It does not seem worthwhile 
to detail the co mbinatorial-topologi cal machin ery 
req uired for full formal rigor in the demonstration of 
th ese intuitively evid en t properties: instead, we aim 
at leaving the reader with a clear picture of just 
what "sub-lemmas" would have to be ver ifi ed whe n 
us in g suc h mac hinery in a fully de tailed ti"eatme nt. 

Most of the proofs rely on induction. The following 
lemma provides th e key to these proofs. 

LEMMA 2.2: If f!ll s is a simple discrete region con­
structed from s squares and s ~ 2, then f!lls is the union 
of a simpLe discrete region f!lls - 1 constructed from 
s - 1 squares and a simple discrete region f!ll l con­
structed from one square. 

PROOF: Let C: zo, ZI, . •. , Zn be the simple closed 
chain that re presents the boundary of f!ll s, and suppose 
that C is oriented so th at f!ll s li es to the left as C is 
traversed from Zo to ZII = Zo. Since C is finit e and 
closed, there exists a lattice point Zt EC: Zo, . • ., Zt, 

. • .,. ZIt at which C makes a left turn . The lattice can 
clearly be rotated so that z,. I, z" and z/ + I have the 
positions shown in figure 2.1. According to our choice 
of C th e square 51 is contained in th e associated 
region R, of f!ll s. Since s ~ 2, at least one of the sq uares 
5~, 50' and 54 must be contained in R.,. We must 
di s tingui sh seven cases. 

a z z 

t+l t 

52 51 
-

b z z 

t t -1 

53 54 

c d e 

FIGURE 2.1. A left turn in a simple closed chain. 

CASE I: 5~, 53, and 54 are contained in R.,. Then 
consider the closed cham C: Zo, .. . ,Zt - I, z(, Zt+l, 

. . ., Zit. Since Zt is an interior point of f!lls , C is simple 
and hence encloses a simple discrete region f!lls- I 
C f!lls . In this case R 1 = 5 I. 

CASE II: 5~ and 5a are contained in Rs but 54 is not. 
This means that Zi precedes Zt - l in C (i.e., C: Zo, •.. , 
Z;, Zt - J, Zt, Zt+l, • •• , z,.). Now let C: Zo, • . . , Zt, 
Zt + I ,. . ., ZlI be obtained from C by deleting Zt - I and 
Zt. Then C is clearly simple and encloses a simple 
discrete region f!lls - I C f!llso In this case R, =51. 

CASE III: 52 and 54 are contained in R. but 53 is not. 
This means that the sequence b, Zt, d appears in C 
and hence C makes a right turn at Zi. Since there must 
be four more left turns than right turns in C, we could 
have initially chosen Zt so as to eliminate this case. 

CASE IV: 53 and 54 are contained in Rs but 5~ is 
not. This case is handled in a manner similar to 
Case II. 

CASE V: 5~ is contained in Rs, but 53 and 54 are not. 
This means that the sequence b, Zi, Zt - l, Zt, Zt + I be­
longs to C (i.e., C: zo. _ ., b, Zt, Z/-J, Zt, Zt+h ••• , Zn). 

Now let c: Zo , ... , b, Zt, Zt+l, . •• , z" be obtall1ed 
from C by deleting Zt - l and Zt. Then C is clearly 
si mple and encloses a simple discrete region f!lls ­
C f!lls . In this case R, = 51. 

CASE VI: 53 is contained in Rs but 52 and 54 are not. 
This case cannot occur, since Zi would have to appear 
twice in C, which would mean that C is not simple. 

CASE VII: 5 .1 is contained in Rs , but 52 and S:l are 
not. This case is handled in a manner similar to Case V. 

All possibilities have been exhausted, so the proof 
of Lemma 2.2 is complete. 

We can now derive some useful properties of simple 
di screte regions. 

LEMMA 2.3: If f!lls is a simple discrete region con­
structed from s squares and s ~ 1, then f!lls ~s con­
nected and both evenly and oddly connected. 
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PROOF: The theorem is obviously true for s = 1. 
If s > 1, then Lemma 2.2. shows that !!Its= !!Its- , u !!It ,. 
Using induction, we assume that both !!Its- ' and !!It , 
have the desired prope rti es . Since !!Its is s imple, 
!!Its- , and !!It , must have at leas t one e ve n latti ce point 
in common and at least on e odd lattice point in co m­
mon. The rest of the proof is trivial. 

LEMMA 2-4: If !!Its is a simple discrete region con­
structed from s squares and SI is one of the squares 
used in constructing !!Its, then SI is the first member 
of a sequence {Sj}~=l of squares belonging to .lth 
such that 

s 

(1) !?I2s is constructed from U Sj, and 
j= I 

(2) For each j such that 1 < j ~ s, there is an integer 
k such that 1 ~ k < j and such that Sj has a side 
in common with Sk' 

PROOF: The proof, being trivial for s = 1 and s = 2, 
is accomplished through induc tion on s. If s ~ 2, 
the n Le mma 2.2 shows that !!Its = !!Its- , U !!It l. Two 
cases mu st be treated. 

CASE I: 5 I is used in the construc tion of !!Its _ I. Then 
there exis ts a sequence {5 j }J,;;- ,1 that sati s fi es condition 
(2) and is used for the construction of !?I2s - ,. Le tting 
5s be the square used in cons tructin g !!It , and re ­
membering that th e boundary or !?I2s is s imple, we see 
that 5s must have a side in co mmon with a me mbe r of 
{5 j }J ,;;- l , whi ch means that {5JJ= I sati s fi es both 
condition (1) and condition (2). 

CASE II: 51 is used in th e construc tion of !!It l. Since 
the boundary of !!Its is simple, we can c hoose a square 
52 that is used in the construction of !!Its- I and has a 
s ide in common with 51. The n there is a seque nce 
{5j + I}J ,;;- l that satisfies condition (2) and is used for 
the construction of !?I2s _ I. It is now easily seen that the 
sequence {5j }J= I satisfies conditions (1) and (2). 
This completes the proof of Le mma 2.4. 

LEMMA 2.5: Let p be the number of lattice points 
in a simple discrete region !!Its that is constructed 
from s squares and has b boundary points. Then 
2p - b - 2 = 2s_ 

PROOF: The proof of this lemma can be accom­
plished through induction on s. A shorter proof can 
be based on Euler's formula from the theory of planar 
graphs [8]. If a planar graph is connected, the Euler 
formula states that 

v-e+f=2, (2.1) 

where v is the number of ve rti ces in the graph, e is 
the number of edges in the graph , andfis the number 
of regions into whic h the plan e is divided by the 
graph. In order to apply thi s formula we must con­
s ider the connected planar graph G that res ults from 
taking the union of the squares used in the construc­
tion of !?I2s. The number of vertices in G is simply the 
number of lattice points in !!Its, that is , 

v= p . (2.2) 

Since s squares are used in constructing G, the number 
of regions into which the plane is divided is s + 1; 
thus 

f = s + 1. (2.3) 

There are b edges connecting the boundary points of 
!!Its , because the boundary of !!Its is a simple closed 
chain. Each of these edges borders only one of the 
squares used in the construction of !!Its. All other edges 
belonging to G border two of the squares used in the 
construction of !!Its. Since each square is bordered by 
4 edges, it follows quite easily that 

2e = 4s + b. (2.4) 

Multiplying eq (2.1) by 2 and substituting eqs (2.2), 
(2.3), and (2-4) into the result proves Lemma 2.5. 

figure 2.2 shows the union of ten squares to form 
a simple discrete region !!It 1Q. Odd lattice points are 
denoted by crosses, and even latti ce points are rep­
resented by dots. The square labeled with 5 j occupies 
the lth position in th e ordered sequ ence {5JJ ~ lof 
squares used to construc t !!It ,o. The points Zl, Z2, Z3, 
a nd Z4 form a c hain. An e ve n c hain zf, z~, z!j , z~ is 
shown along with an odd c hain z?, z~, z8. The boundary 
of !!It I 0, denoted by a!!lt lO, is depic ted by the s imple 
closed chain ZI , Z2 , . .. , Z16- The node Zi is an example 
of an interior point of !!It ,o. 
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FIGURE 2.2. Chains and a simple discrete region. 

J. The Main Theorem 

We begin by defining a finite difference operator 
L whose definition is taken from [3]. 

DEF. 3.1: Let f be a complex lattice function and 
suppose that S is a square belonging to .lth. Then the 
residue L(f, S) of f at the square S is defined by 

L(f, S) = f(zo) + if(zl) + i2f(z2) + i3f(z a), 
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·where 1.0 , ZI, Z2, and Z3 ha1JP; the orientation depicted 
in figure 3.1 and i = V-I. 

y 

-----+------------------------------------~ x 

FIG URE 3.1. Orientation of the square S. 

The qua ntity L(j, S) is termed the residue of fat S, 
because in " discre te contour integration" it plays a 
role [3] analogous to the role played by the residue of 
a complex func tion of a continuous complex variable 
in the classical theory of con tour integration . 

DEF. 3.2: A lattice function f is discrete analytic 
at a square S belonging to At h if its residue 
L(f, S) at S is zero. A lattice function f is discrete 
analytic in a discrete region !!It if it is discrete 
analytic at each square used in the construction of !!It. 
The reader should have no trouble showing that this 
definition of discre te analyticity is equivalent to the 
one given in the first paragraph of sec tion l. 

To find analogues of the Cauchy Rie mann equations, 
one need only set the real and imaginary parts of 
L(j, S) equal to zero. This gives the following theore m, 
which is taken from [3]. 

THEOREM 3.1: Let f = u + iv where u and v are real 
lattice functions. Then f is discrete analytic at SEvlth 

if and only if 

(i) 

and 

where Zo, ZI, Z2, and Z3 have the orientation shown by 
square S of figure 3.1. 

Following the example of the theory of functions of 
a continuous co mplex variable, we give a definiti on 
of discrete harmonicity. Thi s definition, which is 
taken from [3], is justified by Lemma 2.l. 

DEF. 3.3: Suppose f is a complex lattice function 
defined on a discrete region !!It of the discrete complex 
plane 2'h' Let a function H(f, .) , which maps the in­
terior points of !!It into the field of complex numbers, 
be defined by 

H(f, Zi) == f(zl) + f(z2) + f(z3) + f(z4) - 4f(zi) 

where Zi> ZJ, Z2, Z:J, and Z4 have the positions shown in 
figure 3.2. Then f is said to be discrete harmonic 
at an interior point Zi of !!It if H(f, zJ = O. 

A si mple conseque nce of this definiti on is the " max­
imum principle" give n by Theore m 3.2. 

Z4 Z3 

z. 
1 

Z 
1 

Z 
2, 

FIGURE 3.2. An interior point. 

THEOREM 3.2: If f is a complex lattice function that 
is discrete harmonic at each interior point of a simple 
discrete region !!It , then I f I assumes its absolute max­
imum on the boundary of !!It. 

PROOF: Since !!It is finit e, If I assumes an absolute 
maximum M at a point ZI of !!It. If ZI is on the boundary 
of !!It, the theore m is proved. 

Suppose then that ZI is in the interior of !!It. If ZI is 
even (odd) the n Le mma 2.3 enables us to construct 
an even (odd) chain C: ZJ, Z2, ••• , Zn from Zl to an 
even (odd) boundary point z" of !!It with the property 
that Zi, i = 1, 2,. . ., n - 1 is an interior point of !!It. 
Let } be the s malles t positive integer less than or 
equal to n for which If(zj) I < M. Since} must be greater 
than one, we know that Zj _ I exists and is an interior 
point of !!It with the property that If(zj - I)I =M. The 
lattice 2'h can clearly be rotated so that Zj _ 1 and Zj 
have the orientation shown in fi gure 3.3. 

z. Z3 J 

z. 1 J-

Z 
1 

Z 
2 

FIGURE 3.3. An interior point on an even (odd) chain . 

Definition 3.3 shows th at 

Hence 

Si nce 
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we see that 

M < M+M+M+M=M 
4 ' 

which is a contradiction. H ence If(zj} I = M for j = 1, 
... , n and thus If(zll )I=M. This co mpletes the proof 
of Theorem 3.2. 

We can use the preceding theore m to disc uss the 
"Dirichlet problem" for the lattice 2!h. 

THEOREM 3.3: Suppose f!lt is a simple discrete region 
containing i interior points along with b boundary 
points. If {BI, B2, ••• , Bb } is a set ofb complex num­
bers , then there is a unique lattice function f that is 
discrete harmonic in f!lt and assumes the values BJ, 
~, ... , Bb on the boundary of 92. 

PROOF: Definition 3.3 provides us with a system of 
i lin ear equations in i unknowns, which must be 
satisfied by a discre te harmonic fun ction de fined on f!ll. 
The corres ponding homoge neo us system is obtained 
by setting each boundary value of f eq ual to zero. 
Theorem 3.2 shows that the homogeneous sys te m has 
only the trivial solution. H ence, the inhomogeneous 
sys te m has a unique solution, which proves the 
theorem. 

The next theore m , which is taken from [3], relates 
the concept of di screte harmonicity to the concept 
of discrete analytic ity. 

THEOREM 3.4: If f is a lattice function that is dis­
crete analytic at each square making up a discrete 
region f!ll , then f along with its real and imaginary 
parts is discrete harmonic at each interior point of f!ll. 

PROOF: Suppose Zj is an interior point of f!ll. The n, 
according to Lemma 2.1, the squares 51, 52, 53, and 
54 shown in figure 3.4 belong to the family of squares 
used in the construction of !!It. Hence 

f(zl) +if(z2) + i2f(zj) +i3j(zs) = 0 

f(Z2) + if(Z3) + i2f(z4) + i3f(zj) = 0 

f(zj) + if(z4) + i2f(z5) + i3j(z6) = 0 

f(zs) + if(zj) + i2f(zs) + i3f(z7) = o. 

Multiplying the first equation by + 1, the second equa­
tion by - i, the third equation by -1 , and the fourth 
equation by + i , and then adding the results shows that 

Z7 Z6 Z5 

co ...... 4 8 3 
z8 z. z4 J 

81 82 

Z 
1 

Z 
2 

Z 
3 

FIGURE 3.4. An interior point of a discrete region. 

The preceding theory can be used to discuss the 
existence and uniqueness of a lattice function f that 
is defined on a simple discrete region f!ll and has pre­
scribed r esidue at each square making up f!ll. The 
following existence and uniqu eness theorem is the 
main result of thi s paper. 

THEOREM 3.5: Let f!ll be a simple discrete region 
constructed from s squares, and suppose that f!ll has 
p lattice points and b boundary points. If 

(i) ZO and ze are odd and even lattice points respec· 
tively belonging to the discrete region f!ll , 

(ii) {VO, vel is a set of two real numbers, 
(iii) {uiH=1 is a set of b real numbers, and 
(iv) {ai+ibi}~= 1 is a set ofs complex numbers, 

then there is a unique complex function f = u + iv that . 
is defined on f!ll and has the following properties: 

(I) v assumes the values VO and ve at ZO and ze, 
respectively. 

(II) u assumes the value ui at the jth boundary point 
of f!lt. 

(III) L(f, Si) = ai+ibi for j = l, .. . , s where {Si}f=1 
is the set of squares used in the construction 
of f!ll. 

PROOF: Equating the real and imaginary parts of 
the equation L (I, Si) = a) + ibi s hows that f = u + iv 
has res idue a) + ibi at Si if, and only if, 

and 

where Zo , ZI , Z2, and Z3 have the orientation shown in 
figure 3.1. Since f!ll is constru cted from s squares, we 
obtain a system of 2s linear equations that must be 
satisfied by the real and imaginary parts of the func­
tion f whose prescribed residues are {oJ + ibi}J=I· 
There are 2p - b - 2 unknowns because u is given at 
b boundary points and v is specified at ZO and ze. 
Lemma 2.5 shows that the number of unknowns is 
equal to the number of equations in the system. The 
corresponding homogeneous system is obtained by 
setting ul , u2, ... , ub , vO, ve , ai, ... , as, bl, .. . , 
bS- I , and bs equal to zero. 

Suppose u and v repr~sent a solution of the homo-
geneous system. Then f == u + iv is discrete analytic 
on f!ll, and Theorem 3.4 shows that u is discr e te har­
monic at interior points of f!ll . We conclude from The-
orem 3.3 that u is ide ntically zero. Now suppose that 
ZO is a vertex of a square 51 and that {5j }J=1 is the cor­
responding sequence of squares given by Lemma 2.4. 
Since u is identically zero and v(ZO) = 0, the "Cauchy 
Riemann equations" of Theorem 3.1 show that v is 
zero at the other odd lattice point of 51. Using the 
second conclusion of Lemma 2.4, we observe that 
. v is, a fortiori, zero at one of the odd vertices of 52 and 
hence zero at the other odd vertex of 5 2 ._ Repeating 
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this argument an additional (s - 2) times, we conclude 
that v is zero at all odd lattice points of fYt. The same 
argument with ZO replaced by ze and the word odd re-
placed by the word even shows that v is zero at all 
even lattice points of fYt. Hence, both ii and v are 
identic ally zero on fYt and thus the homogeneous sys­
tem has only the trivial solution. This means the inho­
mogeneous system has a unique solution, which 
proves the theorem. 

COROLLARY 3.1: If u is a real ci;,crete harmonic 
(unction that is defined on a simple discrete region fYt, 
then u is the real part of a lattice function u + iv thal 
is discrete analytic on fYt . 

PROOF: Theore m 3.5 shows the existence of a dis-
crete analytic func tion u + iv with u assuming the 
boundary values take n on by u_ Then Theorem 3_3 
shows that u = u. 

The real function v of Corollary 3_1 is called a dis­
crete harmonic conjugate of u. In the theory of 
functions of a continuous complex variable a particu­
lar harmonic conjugate of a real harmonic fun ction is 
uniquely determined by its value at a given point of 
its domain. An inspection of Theorem 3.5 shows that 
a particular discrete harmonic conjugate v of a dis­
crete harmonic function u is uniquely determined by 
its values at two different points ZO and ze of its domain. 

The difference between the two theories is due to the 
fact that the discrete harmonic operator H does not 
relate a discrete function restricted to the odd lattice 
to the discrete function restricted to the even lattice_ 
In solving the Dirichlet problem for 2 ", we must, in 
a sense, solve two Dirichlet problems, one for the 
even lattice and one for the odd lattice. 
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