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Three Observations on Nonnegative Matrices”

A. J. Hoffman™*

(December 16, 1966)

Some results on nonnegative matrices are proved, of which the following is representative: Let
If A # 1 is an eigenvalue of 4. then

A= (a;;) be a nonnegative row stochastic matrix.

[A|< min <l -y m

J

in ;. max aj;— ])-
i J i
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1. Introduction

In this note, the following results are proved about
nonnegative matrices A= (a;;) of order n.
THEOREM A: If A is symmetric, and ¢;= E ajj, then
j

E(Am)i_jszcgn, m=1,2,.. .
i i

This proves a conjecture of London [3], who has already

proved Theorem A for small m and all n, and small n

and all m.

THEOREM B: If A is stochastic (1’.8., 2 aj;= 1). and

J

N # 1 is an eigenvalue of A, then
[A\|< min <1 — > min aj, > max a;;— 1).
j i j i
Goldberg ([1],' Theorem 1) has shown that

n-1
|A] <<]—ijn aij> :
j 1

Since |A] is the product of the eigenvalues of A, and 1is
an eigenvalue of A, Goldberg’s theorem is a conse-
quence of our inequality.

THEOREM C: If A is stochastic and nonsingular,
B=A"1, then
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max |yl

max |b;|= max ————:

i,j yiy*0 E Yi
1.\":\ =0 3

Goldberg ([1], Theorem 2) has shown that |det Al
is at most the reciprocal of the right-hand side of the
above equation, and Theorem C is an effort to amplify
Goldberg’s theorem by characterizing the right-hand
side in terms of elements of A=,

2. Proof of Theorem A

We denote by the cardinality of a set S by [S], and
the set {1, . . . , n} by N. For any S C N, ug is the
vector (uq, . . wy) with w;=1 if jeS, u;=0 if j¢S.
A nonnegative matrix A is substochastic if w4 =uy
and Auy<uy. A subpermutation matrix is a sub-

stochastic matrix in which every entry is 0 or 1. If
x and y are nonnegative vectors, then x <y means
(2.1) max (ug, x) < max (ug. y) k=1, . . n.

|S|=k |S|=k

The following are known (see [3]).

(2.2) If x and y are nonnegative vectors, x <y if and

only if there exists a substochastic matrix A4 such that

x=Ay.

(2.3) The convex hull of the subpermutation matrices

is the set of substochastic matrices.
If a=(a1, . , ) and b=(b;, .

negative vectors with

. b,) are non-

=
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(24) ay

vector (a;b;, .

=

=

=a, and b, = .

) (Iubn)~

b,, ab is the



Also, we define =, to be the set of nonnegative
matrices A such that

(2.5) Auy < a and (uyA)' < a.

Note that =, is the set of substochastic matrices.
LEMMA 2.1: If a and b satisfy (2.4), XeE,, YeE,, then
XY€E;I|,.

Proor: By (2.1) and (2.5), we need only show, for
S C N, that
(2.6)

ugXYuy < aibi+. . . +as b,

and wXYus < abi+. . .+as b .
We prove only (2.6), the other inequality following by
symmetry. Since X is nonnegative, (1.X)' <(u\X) <a.

It follows that

(2.7 max ufuX) =a;+. . .+,
|| =h
h=1, . |S].
Also, since Xuy < a. it follows that
(2.8) max upuiX) =a+. . .+tay,
7] = h
h=|S|, ... . n.
Therefore, if alSl denotes the wvector (a:, . . . , ajg|,
0, ...,0), we have from (2.7) and (2.8) that
(2.9) (uiX)' < alsl.

Using (2.2) and (2.3), we see that (#;X)" is in the convex
hull of all vectors formed by applying subpermutation
matrices to alSl. Since Y,,<b, Y, is in the convex
hull of all vectors formed by applying subpermutation
matrices to b. But the left side of (2.6) is the inner
product of vectors in these respective convex hulls,
and is at most the maximum inner product obtained
from a vertex of one hull and a vertex of the other hull.
From the well-known inequality ([2], p. 268), this is at

1S]
most E aib;, which is (2.6).

i=1
COROLLARY: If XeE,, X™eE m, T =R 7 S

Theorem A is obviously a special case of the
corollary.

3. Proof of Theorem B

If A#1, and M’ =0v'A, then (v, wy)=0, since
Auy=1luy. Let ¢;=min ;. Consider the matrix

(

40

A.=(ajj—cj). Since (v, uy)=0, v'A.=v'A. Hence,

(3.1) AN =v'A=v'A..

Taking absolute values in (3.1), we have

(3.2) Al < Jvil(ai— ¢

But A. is a nonnegative matrix, and it is well-known
(see [5]) that if a nonnegative nonzero vector x and a
nonnegative number u satisfy

pxj < 3 xibyj
i

for a nonnegative matrix B, then wis at most the largest
eigenvalue of B. Applying this to (3.2), and observing
that 1 —2¢; is the largest eigenvalue of 4., we get the
first inequality of Theorem B. The second is proved
in an analogous manner.

4. Proof of Theorem C

Let y be any real vector such that y'4 =0, and
z'=y'A. Then, with B=A4"1,

max |y;| max |(zB);|
4.1) mjz( . =mal>)( : > Bu
Uw',lzu 2}{; 5;0
J
where u=(1, . .., 1). But Au=u implies Bu=u,

and numerator and denominator of the right side of
(4.1) are homogeneous in z. Hence,

max |(z'B)j]
J

(4.2) max ; = max max |(z'B)j|.
220 z'Bu 2=0 j
2#0 D =1
Let iy, jo be such that [b ;|=max|b; ;. Then
) ij L

'BY| < lziby <3 2 byl < max |by| < |bi, ;. since
i i ¢
zi=0, E zz=1. Consequently, the right-hand side of

(4.2) is at most |b,‘“‘j”|. But this number is achieved

if z is the vector with 1 in position iy, and is 0 every-
where else. Consequently, the right-hand side of (4.2)
is |b,‘0,_,-” , which combines with (4.1) to prove Theorem

C. Noting that

1 = | cofactor of iy, jo in A|=|b;j |- |det A

)

one can deduce an alternative proof of [1], Theorem 2.
Incidentally, it is- manifest that essentially the same
arguments also prove:
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