JOURNAL OF RESEARCH of the National Bureau of Standards - B. Mathematics and Mathematical Physics Vol. 71B, No. 1, January-March 1967

Three Observations on Nonnegative Matrices*

A. J. Hoffman**

(December 16, 1966)

Some results on nonnegative matrices are proved, of which the following is representative: Let $A = (a_{ij})$ be a nonnegative row stochastic matrix. If $\lambda \neq 1$ is an eigenvalue of A, then

$$
|\lambda| \leq \min\left(1 - \sum_j \min_i a_{ij}, \sum_j \max_i a_{ij} - 1\right).
$$

Key Words: Bounds, eigenvalues, nonnegative matrices.

1. Introduction

In this note, the following results are proved about nonnegative matrices $A = (a_{ii})$ of order *n*.

THEOREM A: If A is symmetric, and $c_i = \sum a_{ij}$, then

$$
\sum_{i,j} (A_m)_{i,j} \leq \sum_i c_i^m, \qquad m = 1, 2, \ldots
$$

This proves a conjecture of London [3], who has already proved Theorem A for small m and all n , and small n and all m .

THEOREM B: If A is stochastic (i.e., $\sum_i a_{ij} = 1$), and

 $\lambda \neq 1$ is an eigenvalue of A, then

 $\mathbf{1}$

$$
\lambda \big| \leqslant \min \Big(1 - \sum_{j} \min_{i} a_{ij}, \sum_{j} \max_{i} a_{ij} - 1 \Big).
$$

Goldberg $(1]$,¹ Theorem 1) has shown that

$$
|\mathbf{A}| \ll \left(1 - \sum_{i} \min_{i} a_{ij}\right)^{n-1}
$$

Since $|A|$ is the product of the eigenvalues of A, and 1 is an eigenvalue of A, Goldberg's theorem is a consequence of our inequality.

THEOREM C: If A is stochastic and nonsingular, $B = A^{-1}$, then

$$
\max_{i,j} |b_{ij}| = \max_{\substack{y|y \neq 0 \\ y' \wedge z = 0}} \frac{\max |y_i|}{\sum_{i} y_i}.
$$

Goldberg ([1], Theorem 2) has shown that $|\det A|$ is at most the reciprocal of the right-hand side of the above equation, and Theorem C is an effort to amplify Goldberg's theorem by characterizing the right-hand side in terms of elements of A^{-1} .

2. Proof of Theorem A

We denote by the cardinality of a set S by $|S|$, and the set $\{1, \ldots, n\}$ by N. For any $S \subset N$, u_S is the vector (u_1, \ldots, u_n) with $u_j = 1$ if $j \in S$, $u_j = 0$ if $j \notin S$. A nonnegative matrix A is substochastic if $u'_xA = u'_x$ and $Au_x \leq u_x$. A subpermutation matrix is a substochastic matrix in which every entry is 0 or 1. If x and y are nonnegative vectors, then $x \ll y$ means

(2.1)
$$
\max_{|S|=k} (u_S, x) \le \max_{|S|=k} (u_S, y) \qquad k=1, \ldots, n.
$$

The following are known (see [3]).

(2.2) If x and y are nonnegative vectors, $x \ll y$ if and only if there exists a substochastic matrix A such that $x = Av$.

(2.3) The convex hull of the subpermutation matrices is the set of substochastic matrices.

If $a=(a_1, \ldots, a_n)$ and $b=(b_1, \ldots, b_n)$ are nonnegative vectors with

 (2.4) $a_1 \geq \ldots \geq a_n$ and $b_1 \geq \ldots \geq b_n$, ab is the vector (a_1b_1, \ldots, a_nb_n) .

^{*}This research was supported in part by the Office of Naval Research under Contract No. Nonr 3775(00).
**Present address: IBM Watson Research Center. York Town Heights. New York 10598.

¹ Figures in brackets indicate the literature references at the end of this paper.

Also, we define Ξ_q to be the set of nonnegative matrices A such that

(2.5) *Aus* ~ a and (a;A) I ~ a.

Note that Ξ_{uy} is the set of substochastic matrices. LEMMA 2.1: If a and b *satisfy* (2.4), $X \in \Xi_a$, $Y \in \Xi_b$, *then* $XY_{\epsilon}\Xi_{ab}$.

PROOF: By (2.1) and (2.5) , we need only show, for $S \subset N$, that

$$
(2.6) \t u'_s XY u_s \leq a_1 b_1 + \ldots + a_{|S|} b_{|S|},
$$

and
$$
u'_sXYu_s \leq a_1b_1 + \ldots + a_{|S|}b_{|S|}
$$

We prove only (2.6) , the other inequality following by symmetry. Since X is nonnegative, $(u_s'X)' \leq u_x'X' \leq a$. It follows that

(2.7)
$$
\max_{|T|=h} u'_T(u'_S X)' \le a_1 + \dots + a_h,
$$

$$
h=1,\ldots,|S|.
$$

Also, since $Xu_X \ll a$, it follows that

(2.8)
$$
\max_{|T|=h} u'_1(u'_s X)' \le a_1 + \ldots + a_{|S|},
$$

 $h = |S|, \ldots, n.$

Therefore, if a^{$|s|$} *denotes the vector* $(a_1, \ldots, a_{|s|},)$ 0, .. ,0), *we have from* (2.7) *and* (2.8) *that*

$$
(2.9) \qquad (u'_{\mathcal{S}}X)' \ll a^{|S|}.
$$

Using (2.2) and (2.3), we see that $(u_s'X)'$ is in the convex hull of all vectors formed by applying subpermutation matrices to $a^{|S|}$. Since $Y_{u_N} \leq b$, Y_{u_N} is in the convex hull of all vectors formed by applying subpermutation matrices to b . But the left side of (2.6) is the inner product of vectors in these respective convex hulls, and is at most the maximum inner product obtained from a vertex of one hull and a vertex of the other hull. From the well-known inequality ([2], p. 268), this is at

most
$$
\sum_{i=1}^{|S|} a_i b_i
$$
, which is (2.6).

COROLLARY: *If* $X \in \Xi_a$, $X^m \in \Xi_a$ ^m, m=1, 2, ... Theorem A is obviously a special case of the corollary.

3. **Proof of Theorem B**

If
$$
\lambda \neq 1
$$
, and $\lambda v' = v'A$, then $(v, u_x) = 0$, since $Au_x = 1u_x$. Let $c_j = \min a_{ij}$. Consider the matrix

$$
A_c = (a_{ij} - c_j)
$$
. Since $(v, u_N) = 0$, $v' A_c = v' A$. Hence,

$$
(3.1)\qquad \qquad \lambda v' = v' A = v' A_c.
$$

Taking absolute values in (3.1), we have

(3.2)
$$
|\lambda| |v_j| \leq \sum_i |v_i| (a_{ij} - c_j).
$$

But *Ac* is a nonnegative matrix, and it is well-known (see [5]) that if a nonnegative nonzero vector *x* and a nonnegative number μ satisfy

$$
\mu x_j \leqslant \sum_i x_i b_{ij}
$$

for a nonnegative matrix B , then μ is at most the largest eigenvalue of *B.* Applying this to (3.2), and observing that $1 - \Sigma c_j$ is the largest eigenvalue of A_c , we get the first inequality of Theorem B. The second is proved in an analogous manner.

4. Proof of Theorem C

Let *y* be any real vector such that $y' A \ge 0$, and $z' = y'A$. Then, with $B = A^{-1}$,

(4.1)
$$
\max_{\substack{y \mid y \neq 0 \\ y \mid y' \land z = 0}} \frac{\max |y_j|}{\sum_{j} y_j} = \max_{\substack{z \geq 0 \\ z \neq 0}} \frac{j}{z'Bu},
$$

where $u = (1, \ldots, 1)$. But $Au = u$ implies $Bu = u$, and numerator and denominator of the right side of (4.1) are homogeneous in *z.* Hence,

(4.2)
$$
\max_{\substack{z \ge 0 \\ z \ne 0}} \frac{\max |(z'B)_j|}{z'Bu} = \max_{\substack{z \ge 0 \\ \sum z_j = 1}} \max |(z'B)_j|.
$$

Let i_0 , j_0 be such that $|b_{i_0}, j_0| = \max_{i,j} |b_{i,j}|$. Then $|(z'B)_j| \leq \sum_i |z_ib_{ij}| \leq \sum_i z_i |b_{ij}| \leq \max_i |b_{ij}| \leq |b_{i_0,j_0}|,$ since $z_i \ge 0$, $\sum z_i = 1$. Consequently, the right-hand side of (4.2) is at most $|b_{i_n,j_n}|$. But this number is achieved if z is the vector with 1 in position i_0 , and is 0 everywhere else. Consequently, the right-hand side of (4.2) is $|b_{i_n,j_n}|$, which combines with (4.1) to prove Theorem C. Noting that

 $1 \geq |\operatorname{cofactor of} i_0, j_0 \text{ in } A| = |b_{i_0,j_0}| \cdot |\det A|,$

one can deduce an alternative proof of [1], Theorem 2. Incidentally, it is' manifest that essentially the same

arguments also prove:

$$
\max_{i,j} b_{ij} = \max_{\substack{y \ y' A \ge 0}} \frac{\max_{j} y_j}{\sum_{i} y_j}
$$

and

$$
\min_{i,j} b_{ij} = \min_{\substack{y \mid y'A \ge 0 \\ y \ne 0}} \frac{\min_j y_j}{\sum_j y_j}.
$$

We thank D. London for stimulating conversations about the contents of Theorem A.

5. References

- [1] K. Goldberg, Upper bounds for the determinent of a row sto· chastic matrix, 1. Res. NBS 708 (Math. and Math. Phys.), No. 2, 157-158 (1966).
- [2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities (Cambridge University Press, 1964).
- [3] D. London, Two inequalities in nonnegative symmetric matrices, Pac. Jour. Math. 16, 515-536 (1966).
- [4] L. Mirsky, On a Convex Set of Matrices, Arch. der Math. 10, $88 - 92(1959)$.
- [5] H. Wielandt, Uzerlegbare, nicht negative Matrizen, Math. Zeit. $\overline{52}$, 642-648 (1950).

(Paper 71B1-195)