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Given a set S of cardinality m, we determine the minimum cardinality f(m) for a family /' of subsets

of S such that each seS can be expressed as the intersection of some subfamily of /.

The problem is

solved in the following inverse form. For a given number n of subsets of S, find g(n): the maximum

number of elements of S which can be written as the intersection of some of these subsets.

We show

that g(n) is the largest binomial coefficient for combinations of n things.
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1. Introduction

Let S be a finite set of given cardinality [S|=m. An
element seS will be said to be distinguished by a family
F of subsets of S, if {s} is the intersection of some

“subfamily of &#. In this note we solve the following
combinatorial problem (conveyed by K. E. Kloss):
What is the minimum possible cardinality f(m) for a
family which distinguishes all elements of S? (Trivi-
ally f(m) < m, since

F={{s}:5€S}

distinguishes all elements.)

The question may sound like another one which
arises fairly naturally in a context of classification
design or information retrieval: How many “‘categories”
(subsets) must be established so that any item (ele-
ment) in a collection can be uniquely specified by
listing those categories under which it falls? The
categories which uniquely specify some item may be
a subcollection of those which specify another item,
while any family of subsets with a one element inter-
section cannot be part of a larger family with a dif-
ferent nonempty intersection.

It will be more convenient to work with the following
inverse form of the problem: to determine g(n), the
maximum cardinality of a set S of elements which are
distinguished by some family % ={F,, . o ol
The inversion is made precise by removing from each
Fi those elements of S which are not distinguished by

. (For this question n is fixed, but not #.) It will
be shown below that
n
etm=(1n12)) 1)
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where (¢) is the binomial coefficient and [n/2] is the

largest integer not greater than n/2. This yields an

implicit solution to the original problem, since
f(m)=min {n:g(n) = m}, (2)

follows when we observe that

m =< g(n) iff f(m) <n. (3)

2. Proof

Let A(n) be the binomial coefficient on the right-hand
side of (1). We first show that A(n) < g(n). For this
purpose, let 4 be a set with cardinality [4]|=n and let

ISE— {Sl. . 9 Sl:(n)} (4‘)
be the collection of all subsets of 4 which have cardi-
nality [n/2]. For 1 <i<n, let

H;={seS*:ies},

and put #={H,, . . . , H,}. The possibility

re N {HiseH;}, (reS* —{s}),

is ruled out because r cannot be a subset of s, so that
some (€A must satisfy ies —r and thus seH;, reS* — H,.
It follows that

{S}: N {H,‘ZSEH,'},

i.e., each element of S* is distinguished by #. This
implies A(n) < g(n).

The proof of (1) will be completed by showing that
gn) <h(n). Let F={F,, ... .F,} be a family of



finite sets with union S. For each seS, let
FO={F;seF;}, Fs= N {FiseF;}, T={seS:Fs={s}}.

Then T consists of those elements of S which are dis-
tinguished by % so that |T| < h(n) is what must be
proved.

A collection of sets will be called independent if no
set-inclusions hold between any pair of members.

For example, the collection {F¥:s€T'} is an independ-
ent collection of subfamilies of an n member family.
Since this collection has |T'| members, it suffices to
show that any independent family of subsets of an n
element set has at most h(n) members. This can be
shown using the well-known SDR theorem but we find
it as easy to employ an elementary argument.

For an n element set A, let S; denote the family of
subsets of 4 which have cardinality i, 0 <i=<n. Each
Si, and in particular Sp,=S5%, is an independent
family. If {n/2} is the smallest integer not less than
n/2, then

|S[n/2]| = |S(n/2) | =h(n).

We shall show that any other independent family P of
subsets of 4 can be mapped 1 —1 into Sy and thus
conclude that 7

IP<1Stu1] - )

Suppose some member of P has cardinality less than
{n/2}. Let P; be the family of members of P which
have smallest cardinality, say j. Let M be the family
of members of S;,; which contain a member of P;.
Since P is independent, P'=M U (P—Pj) is also
independent, and P N M=¢. We will show below
that

<€ {%} implies |Pj| <|M]| . (6)

and so |P|<|P’|.

Then by induction on the minimum cardinality of
any member of P, P’, etc., we obtain an independent

family Q such that [P|<|Q], Q N Si=¢ for 0si<{ﬂ},

2
and QN S;=P N S; for {n/2} <i<n.

The structure of the family of all subsets of A is the
same relative to the relationships “is a subset of”” and
“is a superset of.” Hence a “mirror-image” of the
preceding construction will produce from () an inde-
pendent family R such that |[Q|<|R|. RN Si=¢ for
n=1>[n/2], and such that

RNSi=QNSi=¢ for [n/2]>i= 0.

In this fashion we arrive at the result |P|<|R| and
R C Spu.
It only remains to show (6).
Let K be the number of distinct pairs (p, m) where
peP;j. meM ., and p C m. We have
K=(n—))|Pj| (7)
since any peP; can be extended in exactly (n—j) ways
to an meM. Also however,
K<(@G+1|M|, 8)
since any meM contains j+ 1 subsets of cardinality j

and thus contains at most j+ 1 members of P;.
Where 0 <j < {n/2},

G+Dln—p=<1

and therefore combining (7) and (8) we have (6), and
the proof is complete.
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