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A fram e of a cone C is a minimal se t of generators, and the lineaJity space L of C is the grea tes t 
linear s ubs pace contain ed in C. Algorithms are described for determining a fram e and the linea lit y 
space of a cone C(S) spanned by a finit e se t S . These a lgorit hm s can be used for determ ining the 
ve rti ces, ed ges, and othe r faces of low dime ns ion of the convex hull of a finit e set H (S) . All algo· 
rit hill s are based on the s implex me thod of linear programm ing. The problem of findin g the lin ea lity 
space ca n be success ive ly redu ced to proble ms in s paces of lower dime ns ions. 
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Introduction 

Let 

S= {A 1 , ••• , All} 

be a family of points in Rill. W e de note by L(S) its 
linear huLL, by H(S) its convex huLL, and by C(S) its 
conical or positive huLL, i.e., the convex polyhedral 
co ne expressible as the set of all nonnegative we ighted 
sums of eleme nts of S. We use the conventions 
L (cf» = C(cf» = {O}. 

A subfamily T \: S is called a frame [4]1 of C(S) 
if Cm = C(S) but C(T - {Aj }) ~ C(T) for each Aj E T . 
Th e greatest linear subspace contained in C(S) is 
called its lineality space [5]. Two main problems are, 
gi ven S, to find a frame of C(S) and to determine the 
Jin eality space of C(S). These two proble ms are 
closely related. 

Several important proble ms are equivalent to or in
cluded in these two main problems. Consider, for 
ins tance, the system of linear inequalities 

j = 1, . . . , n , 

for XE Ril l. Re moving redundant constraints amounts 
to finding a fram e r or the cone spanned by the vectors 

Aj = (~D' j = 1, . . ., 11 , and G)· Determining the 

*This paper was in part stimul ated by a nd profi led from discuss ion s wi th A. J. Goldman 
of the Na ti unal Bure au of Standards. Thanks for a ss is tance in coding some of the algo. 
rithms for au tomati c computers go to T . Bra y a nd M. Ge ier. 

**Malhe mal ics Researc h La boratory, Boeing Scie ntifi c Researc h La borator ies, Seatt le, 
Wash. 98 11 0. 

• Fi ~urcs in brackets indiea lc the lit e rature refere nces at the e nd of thi s paper. 

dimension of a polyhedron given by linear inequaliti es, 
ca n be redu ced to determining the dim ension of a 
polyhedral co ne C = { UIA"'U~ O} (see [10J). As to 
the latte r proble m, it s uffices to note that the linear 
hull L(C) is the orthogonal compleme nt of the lineality 
space of the polar cone 0) = C{A 1, ••• , A,,}, where 
AI, . . . , All are the columns of A. Thi s proble m 
also arises if the unique ness of an optimal solution to 
a linear program is to be es tabli s hed in the presence of 
degeneracy. 

Clearly , the proble m of findin g the vertices of a 
convex hull H(S) can be solved by findin g the fram e 
of a suitable cone. It should not be confu sed with the 
proble m of findin g the verti ces of a polyhedron de
fin ed by lin ear inequalities . The latter proble m cor
res ponds to finding the facets , that is, the proper faces 
of hi ghest dim ens ion , of so me H(S). Eve n a mod er
ate number of ineq ualities is apt to generate a huge 
number of vertices [6 ,9], and by the sa me tok en, th e 
number of face ts of H(S) may be ex tre mely large 
co mpared to the cardinality of S. Thus finding the 
face ts of H(S) is inherently more difficult than finding 
the vertices of H(S). 

The problem of finding the edges of H(S) , and other 
facets of low dimension, may still be expected to be 
essen tiall y easier than to find the facets of H(S) . In
deed, one is tempted to conjecture that an efficient 
determination of the facets requires prior determina
tion of the lower dimensional faces. 

Note that finding the edges of H (S) could be ac
complished , by finding the vertices of H(S2), where 

~ The symbol ":= " s tands for "is de fin ed by." 



However, this procedure is not recommended since 
the cardinality of 52 tends to become quite large. We 
shall prefer a more compact technique, which works. 
with 5 rather than 52 or its analogs for higher dimen
sional faces, and which is closely related to an algo
rithm for solving the second main problem of deter
mining the lineality space of a cone. The faces of 
H (5) will be characterized in terms of sign patterns 
of matrices re prese nting H (5). This aspect is ex
amined more closely in [13J. 

Charnes [2], Motzkin, Raiffa, Thompson, and Thrall 
[11] , and Farrell and Fieldhouse [14] have proposed 
methods for finding the facets and the vertices of a 
convex polyhedron P determined by a system of linear 
inequalities. On the other hand , Goldstein [7] suggests 
an algorithm for solving the same problem where P is 
given as the convex hun of a finite set of points. 
Recently , Thompson, Tonge, and Zionts [12] published 
a method for removing redundant cons traints. One 
of our algorithms for determining a frame of the cone 
C (5) essentially coincides with theirs. 

We shall give algorithms both for finding a frame 
for C(S), and for determining the lineality space of 
C (5) . As will be pointed out, the latter algorithm 
can be modified to dec ide whether a given s ubset of 
5 characterizes a face of C (5). Applied to single 
elements of 5, such an algorithm can also be used to 
find the frame of a pointed cone C(S) and, therefore, 
the vertices of a convex hull H (5). 

All algorithms in thi s paper are based on the simplex 
method for linear programming (see, for instance, [3 D. 
Not surprisingly, there are "primal" and "dual" 
algorithms in each case. We shall describe a primal 
algorithm for finding a fram e and a dual algorithm for 
determining the lineality space of C (5). The remain
ing two algorithms are readily constructed by the 
reader. 

It has been our experience with the above algorithms 
that in the presence of degeneracies round-off errors 
may cause cycling if zero tolerances are not chosen 
and handled correctly. This danger is diminished if 
degeneracy provisions are made, but we shall not 
include such provisions in the descriptions of our 
algorithms. 

1. General Remarks 

A set 5 may contain more than one frame for C (5), 
and the cardinalities of these frames may differ. For 
instance , if C (5) is a linear subspace of dimension I , 
then the cardinality of a frame T may range from 
1+ 1 to 2/. We shall only concern ourselves with 
finding some frame for C (5), and not, for instance, 
a frame of minimum cardinality. 

A point Ac E 5 is redundant in 5 if C(S - {A('}) 
= C(S); otherwise, Ac is necessary in S. The algo
rithms for finding a frame will consist of repeated 
applications of a subalgorithm which determines for 

some AcE 5 <:;: 5 whether it is redundant or necessary 
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in S. The subset 5 arises from 5 by deleting those col
umns that were already found to be redundant. 

Now let L be the lineality space of C(S). Clearly, 

L=C(S) nC (-S) . 

We partition the set 5 into two classes, its lineal part 
s,. :=SnL and its conical part 5(':=5-5, .. Then 

(Ll) L =C(Sd. 

PROOF. S,.<:;:L, hence L;)C(S,). To prove the 
other inclusion, suppose XEL. Then XE C(S) and \ 
XEC(-S). Hence X = 'i.Ailli, lli? 0, and X = 'i.(-Ai)Vi, 
Vi ? 0. It follows that 

'i.Ai(lli +Vi)= O, lti +Vi? O. 

If Ui+Vi >O, and in particular if lli>O, then clearly 
-Ai E C(S) and, therefore, Ai E SL. Thus X E C(SLl_3. < 

Let S be a subset of 5 such that S:2 5,.. Let r 
denote the lineality space of C(S). Then (Ll) gives 

L = C(SI.)n C(-S,.)<:;:C(S) n C(-S)<:;: C(S) n C(-S) = L. 

whence L = L. As a consequence 

We shall describe an algorithm for finding the lineal 
part SL of a given set S. Again, this algorithm will 
be based on a subalgorithm, which decides whether ~ 

a specified Ac E 5 <:;: 5 is in SL. The set 5 arises 
from 5 by deleting those points Ai which were already 
found to be in Sc. This deletion is justified by (1.2). "-

We proceed to show how the problem of finding 
faces of C(S) relates to the problem of determining 
lineality spaces. The faces of a cone C are extreme 
subsets, that is, if the sum of points in C lies on a face 
F of C, then so do all the summands. More precisely, 

(1.3) X E F, and X = 'i.Yilti with Y i E C and Ui ? 0, If 
imply lli = ° for Yi $ F. . 

This property characterizes faces. If F is a face of 
C(S), and if SF := F n 5, then 

(1.4) L(SF) is the lineality space of C(S U (-SF»' 

PROOF. C(S U (-SF)) <:;: C(SF U (-SF)) = L(SF). 
Now suppose 

X $ C(S U (-5",» n C«-S) U SF). 

Then there exist Ui, Wi, Vi, Zi ? ° such that 

x = 2: Aiui - 2: Aiwi =- 2: Aivi + 2: Aizi. 
;I , E S ;I, E S, A, E 5 A, E S, 

3 The symbol "-" marks the end of a proof. 
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Hence 

By (1.3), Ui + Vi = 0 if Ai $ 5" ,. In parti c ular , Ui = 0 
if Ai $ 5F • Henc e 

X = L Aiui - L Aiwi, 
Ai E Sf Ai E s~ 

which implies X E L(5,..).-
The points AI , .. . , A" (all in 5) are said to sub
determine a face F of C(5) if 

F = L{AI, ... ,Ad n C(5). 

We then have 

(1.5) The points AI, ... ,Ak in S subdetermine aface 
of C(S) if and only ~f L{AI, .. . , Ak } is the 
lineality space of qs u {- AI, . . . , - Ad ). 

PROOF. Suppose L{AI ' ... , Ad is the lineality 
space of C(5U { - AI' . .. , -A,J). In order to 
prove that F:= L{AI' ... , Ad n C(5) is a face , 
we have to show according to (1.3) that if X E F, 
X = 2:Ailli with lli ~ O , and u" > 0, then A" E F. S up· 
pose, therefore, that X and II" are as above. The n 

where 

1 
A,,= - (X + Z) , 

lI" 

Z :=- L Ailli E C((-5) U {AI, ... , Ad)· 
i ¢ 1l 

Now X is in L{A I • ..• , Ad, whic h is by hypothes is 
the lineality space of C(5 U {-A I' . . . , -Ad). 
Therefore, X E C((- 5) U {AI , .. . , Ad), whence 
A" E C((-5) U {AI , ... , Ad). It follows that Ali 
is in the lineality space of C(5 U {- A I , . . ., - Ad). 
Thus Ali E L{AI , ... , Ad n C(5)=F. 

On the other hand, if F:= L{A 1, ••. , Ad n C(5) 
is a face, then L(5,..) = L{A I , . . ., Ad is the lineality 
space of C(5 U (-51")) = C(5 U {-AI ' ... , - Ad) 
by virtue of (1.4). -

Note that if AI, ... , A" subdetermine F, then 
L(F) = L{A I , . • . , Ad. Hence 

dim (F) = k 

if AI, ... , A" are linearly independe nt. Thus any 
algorithm for determining lin eal parts can be used for 
deci ding whether a given set of points {A I , .. . ,Ad 
~ 5 subdetermines a k-face (= face of dimension k ) 
of C(5) . 
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2. Cones and Equivalent Matrices 

By definition , the point Ac is redundant in 5 if and 
only if C(5 - {A c}) = C(5) . This in turn is equivalent 
to Ac E C(5 - {A c}), or 

(2.1) Ac= L Ajuj , Uj ~ O. 
j#c 

The point Ac is in the lineal part 5" of 5, if and only 
if Ac E L = C(5) n C(- 5). This is equivale nt to 
-Ac E C(5-{Ac}), or 

(2.2) -Ac= L Ajvj, Vj ~ o. 
j#c 

The standard "phase I" simplex procedures of linear 
programming are available for deciding the solvability 
of (2. 1) or (2.2) (see, for in stance, [3]). All that re
mains is to integrate such a procedure with the overall 
algorithm in a way that minimizes th e rearrange me nt 
of data. 

The points AI , ... , All of 5 can be represented by 
an Tn X n matrix 

A :=(AI, .. . , All)' 

The matrix A is in canonical fo rm if it contains an 
In X In permutation matrix, called basis. Its colum ns 
are the basic columns; all olher columns are nonbasic. 
If A is in canonical form, and if the column Aj is non
basic, th e n I he ele me nts of Aj constitute the re prese n
tation of the poi nt Aj in term s of the basis of A. Cri
te ria for redundancy and lin eality will be therefore 
particularly s imple if the matrix A is in canonical form. 

Two matrices A an d A are called equivalent if th e re 
ex ist (poss ibly rec tangu la r) matrices T and T s uc h that 
TA =A and TA = A. If and onl y if A and A are eq uiva
le nt in thi s sense, the n for all X E R": 

(2.3) AX = 0 if and only iJAX = o. 

Both (2. 1) a nd (2 .2) express the existence of a suitable 
linear dependence 

AX = O, X¥O 

of the column s of A. By (2.3) equivale nt matri ces 
admit the same linear depende nces . If, therefore, 
A is replaced by any equivalent matrix A- preferably 
in canonical form - then the same co lu mn s (= colu mns 
with the same indi ces) will be red undanl in the re
spec tive column sets, and the sa me column s will be 
in the lineal parts. 

3. Determining a Frame of C(S) 

For matrices A in canonical form the following 
criteria are immediate : 



(3.1) If Aj is nonbosic andA j ?3! O, thenA j is redundant. 

(3.2) If A j is nonbasic and has exactly one positive 
entry arj , then the basic column A c for which 
arc = 1 is redundant . 

The following two criteria hold whether A is canonical 
or not: 

(3.3) If the ith row of A, henceforth denoted iA, con
tains exactly one negative entry ais, then As 
~s necessary . 

(3.4) If iA contains exactly one positive entry ais, 
th en As is necessary . 

As was pointed out before, any "phase I " simplex 
procedure can be used for deciding whether a given 
column is redundant. We prefer a variant (described 
in [8]) without artificial variables which works on each 
infeasible row separately, treating it to some extent 
as an obj ec ti ve function while conserving the feas· 
ibilities already achieved . While this variant may not 
be the most efficient one for finding a first feasible 
solution - using a positive combination of the infeasible 
rows is in general better - the terminal situations of 
this variant are precisely the ones to which criteria 
(3.1) and (3.3) apply; it is therefore particularly easy 
to impleme nt. 

The matrix A will be repeatedly transformed and 
some of its columns may be deleted. In the following 
description of the algorithm, the symbol "A" will 
always refer to the particular matrix at hand. It will 
also be convenient, not to change the indexing of 
columns which remain after others have been deleted. 

(3.5) Primal algorithm for determining a frame: 
(i) (Canonical form) Use Jordan elimination 

for bringing A into canonical form. 
Every column is labeled "undecided." 

(ii) (Constant column) Select a nonbasic 
undecided column Ae as "constant col
lumn." If there are no such columns, 
go to (viii); else proceed to (iii). 

(iii) (Pilot row) If Ae ?3! 0, delete Ae and re
turn to (ii). Else select vA such that 
ape < 0; call it the "pilot row." 

(iv) (Pivot column) If ape is the only negative 
entry in the pilot row, change the label 
of Ae from "undecided" to "necessary" 
and go to (ii). Else select a "pivot 
column AI such that avl < ° and I#- c. 

(v) (Pivot row) Select a "pivot row" ,A 
such that 

arc . {aie I o ~-~ mm - aic ?3! 0, 
art ail 

ail> O}. 
There exists always an index r of this kind, since either 
the minimum on the right-hand side is finite and as· 
sumed-we use the convention min (<1.»=+00 -,or 
r= p is a permissible choice. 
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(vi) (Pivoting) Execute a simplex step (= Jordan 
transformation) with a,·! as pivot. In the 
absence of degeneracies, this will increase 
the old entry ape while keeping nonnegative 
entries of Ae nonnegative. 

(vii) (Return) If the new entry ape is s till negative, 
keep the pth row as pilot row and go to (iv). 
Else go to (iii). 

(viii) (Termination) If all basic columns are de
cided, terminate the procedure . Else select 
an undecided basic column A e. 

(ix) (Clear basis) Suppose arc = 1. If this is the 
only positive entry in ,A, then change the 
label of the column Ae from "undecided" to 
"necessary" and go to (viii). Else pivot so 
as to remove the undecided column Ae from 
the basis. Go to (iii) with Ae as constant 
column. (End of the algorithm.) 

In the absence of degeneracies, this algorithm in
creases at every step the entry ape until it becomes 
nonnegative or remains the only negative entry in the 
pilot row. In the latter case, the column Ac has been 
decided. In the former case, ape stays nonnegative 
during all subsequent transformations, while some 
other negative element of Ae is being increased. 
Hence a decision on Ac will be reached after finitely 
many simplex steps. . 

The algorithm is sped up by checking after eac h 
iteration whether some of the columns or rows satisfy 
criteria (3.1), (3.2), (3.3), or (3.4). 

A dual algorithm results if the subalgorithm which 
decides whether Ae is redundant or necessary is re
placed by its dual. The primal decision algorithm 
tries to make a given column of A nonnegative (cri
terion (3.1)), and encounters criterion (3.3) if this is 
not possible. The dual decision algorithm aims at 
criterion (3.3), that is, it attempts to make all entries 
but one in some row of A nonnegative. If this attempt 
fails, then criterion (3.2) is encountered. This algo
rithm is a "phase [" procedure for the dual simplex 
method. 

4.' Determining the Lineality Space of C(S) 

The following criterion is immediate for matrices 
in canonical form: 

(4.1) 

For any matrix A one has 

(4.2) If;A ?3! 0, then aLL columns Aj with au > ° belong 
to Sc. 

An algorithm analogous to the algorithm (3.5) can 
be based on these criteria. The pivot rules arise 
from those of the algorithm (3 .5) by reversing the sign 
of the constant column. Whenever a nonnegative 
row iA is found , all columns Aj with aij > ° are deleted. 

l 
1, 

I 

! 
I 

;1 
1 
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Thu s, ith row of the remammg ma trix vanishes and 
is therefore deleted. Whenever a non positive column 
Ae is found , it is labeled " lineal," and thi s process is 
re peated until an empty matrix res ults or until all 
columns are labeled " lineal. " There are primal and 
dual s trategies available, the forme r aiming at non
positive columns , the latter at nonnegative rows. 

The algorithms are sped up if the following refine
ment of criterion (4.1) is used (for matri ces in canonical 
form). (See [131): . " 
(4 .3) Suppose Ac ~ 0, and let A be the matrix that 

arises from A if" aLL rows iA with aic < 0 are 
deleted. "Then Aj is in the lineal (conical) 
part of A if and only if Aj is in the lineal 
(conical) part of A. If Ac < 0, then Sc = 0. 

PROOF. Not only Ac but also all basic columns All 
such that aill = 1 for aie < 0 are in SL. These basic 
columns All span the linear subspace E:= {XIXi= O if 
a;e = O}, which is th erefore contain ed in the lineality 
space L of C(S). We de fineAj by putting 

[ _ . -lau if aie = 0 
au ·-

o if aie < 0_ 

Then Aj - Aj E E ~ L. Hence Aj E L if and only if 
Aj E L. _ _ 

Denote by S the set of all Aj . It clearly suffices to 
show tha t Aj E SL if and only if Aj E S /,. _ Suppose 
Aj E S/,. Then Aj ELand therefore - Aj = 'i,Aiui , 
U ; ~ O. Thi s relation remain s true_ if we replace Ai 
by /4;: - iij = '2.1;Ui, .yhence Aj E S/,_ In the other 
direc tion, if - Aj = '2.Aiui , Ui ~ 0, the n 

- Aj = Aj - Aj + '2.(A; - Ai)u; + '2.A;u; 

but Aj - Aj, A;-A; E L ~ C(S). Hence -A j E C(S) 
a nd, th erefore, Aj E S L' - , 

We proceed to describe a dual algorithm. The cor
res ponding primal algorithm is readily co nstructed by 
the reader. Again it will be convenie nt to denote by 
A the particular matrix at hand , and not to change the 
indi ces of rows and columns if other rows and columns 
are deleted. 

(4.4) Dual algorithm for determining the lineality 
space ofe(S): 

(i) (Canonical form) Use Jordan elimination for 
bringing A into canonical form. Label all 
zero columns of A " lin eal." 

(ii) (Termination) If A is empty or all columns 
of A are labeled " lineal," the n terminate the 
procedure_ Else proceed to (iii). 

(iii) (Objective row) Selec t any row eA as " objec
tive row." 

(iv) (Pilot coLumn) If ,A ~ 0, the n delete all 
columns Aj with aej > 0, delete ,A, and return 
to (ii). Else selec t a " pilot column" AfJ 
with aCJ) < O. 
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(v) (Pivot row) If A fJ ~ 0, delete all rows ;A with 
ail) < 0, label all zero column s ge nerated by 
this deletion (all columns, if A /) < 0) " lin eal ," 
and return to (ii). Else selec t a " pivot row" 
,A with al'/) > 0 and r ~ c. 

(vi) (Pivot column) Select a "pivot column" A, 
such that 

(compare algorithm (3.5) step (v» . 
(vii) (Pivoting) Pivot on arl. In the absence of 

degeneracies , this will increase the entry 
ael) while keeping nonnegative entries of (A 
nonnegative. 

(viii) (Return) If the new entry aCf) is still negative, 
keep the pth column as pilot column and go 
to (v) . Else re turn to (iv ). (End of 
algo rithm) 

In the absence of degenerac ies, thi s algorithm will 
terminate in a finite number of s te ps (co mpare (3.5». 
The algorithm is sped up by checkin g after each itera
ti on whether some of the rows or column s sati sfy cri
teria (4.1) or (4.2). 

5. Determining k-Faces of C (S ) 

For finding all k-faces of C(S) we e mploy a subalgo
rithm whic h decides for eac h se t of k linearly inde pe nd
e nt elements of S whethe r or not they subdetermine a 
face. We do not raise the question of the mos t effi
cient arrange ment of thi s s ubalgorithm within the 
overall search algorithm. In stead , we try to formu
late the decis ion algorithm in a manner that does not 
preclude its imple me nta tion as a s ubalgorithm. To 
be more precise, in order to dec ide whether A I , ... , A /, 
s ubd etermin e a k-face , it suffices by (1.5) to determine 
the lineality space of C(SU{- A I , ••• , - Ad). If, 
however , algorithm (4.4) is used for thi s purpose, 
after the columns - AI , . .. , - AI.' are adj oin ed to 
the matrix A, then a matrix results, whi c h is no longe r 
equivale nt to A, and eac h decision mu st thus s tart 
from scratc h. This procedure is therefore not suitable 
for implementation as a subalgorithm. 

We proceed to sketch an algorithm which does not 
require new columns to be adjoined, and which ter
minates with a matrix that is equivale nt to the original 
one. 

A column Aj is lexico-nonnegative if alj > 0, or 
O!j= 0 and atj > 0, or alj = atj = 0 and a:!j > 0, or . . . , 
alj=' . . = al/j= O. If Ajis lexico-nonnegative a nd 
does not vanish, then Aj is lexico-positive . We call 
a matrix lexico-nonnegative (lexico-positive) if this 
holds for each column. We the n have the following 
generalization of criterion (4.2): 

(5. 1) Suppose A arises from A by deLeting some rows. 
If A is Lexico-nonnegative and Aj ~ 0, then 
Aj ESc. 



PROOF. Let B b~ the row that results from com· 
bining the rows of A with weights E , E2, . . .. For 
suitable E > 0 we have B ~ ° with bj > 0 if and only if 

A~ op O. Then criterion (4.2) applies to the matrix (~) , 
which is equivalent to A. 

We proceed to formulate two criteria on which an 
algorithm for finding the k-faces of C(S) can be based. 
Suppose A I, . . . , Ale are basic columns. We call 
the submatrix A of A formed by all those rows in which 
A I, . . . , A" simultaneously vanish the complement 
of A!, ... , A I,. The complement of the entire basis 
of A is the e mpty matrix. Schematically, we have 

I IUd ° I 
A = [--- 0--+-- [(-'"-_-")-+-----1 }= complement 

Criterion (5.1) then leads to (see [13]): 

(5.2) If the complement of the basic columns 
A I, .. , Ak is lexico-nonnegative , then 
AI, . .. , Ak subdetermine a k-face. 

PROOF. It follows from (5.1) that AI, ... , A", 
- A I, . . . , - Ah· and those elements of S which are 
linear combinations of the former are the only elements 
in the lineal part of 5 U {- A I, ... , - Ad, and (1.5) 
applies. -

(5.3) The basic columns A!, ... , Ak do not subde
termine a fa ce if their complement contains 
a nonpositive nonzero column. 

PROOF. Assume for s implici ty that A"+I, ... , A 11/ 

are the remaining basic columns , and that aii = 1 for 
i .;;; m. The complement of AI, .. . , A" then con
sists of the rows iA with i > k. Let now Ac, c> m, be 
a column whose portion in the compleme nt is nonposi
tive and nonzero. The n 

k III 

Ac = 2: Aiui + 2: Aiwi, 
i = 1 i = lI + 1 

where Wi = aic .;;; 0, and , therefore, Ac E C(( - S) U 
{A 1, • • • , Ak }). Hence Ac belongs to the lineality 
space of C(S U { -A I' ... , -Ad). Now if 
AI, ... , Ak subdetermine a face, the n L{AI, ... , 
Ad is the lineality space of C(S U {- AI, ... , 
-Ak}) by (1.5). Thus Ac E L{AI, . . . ,Ad, which 
contradicts the fact that not all Wi vanish in the above 
unique representation of A c in terms of the basis. -

It is easy to see that algorithm (4.4) and its corre 
sponding primal algorithm can be modified to yield 
an algorithm whose terminal si tua tions are (5 .2) a nd 
(5 .3). No columns and no ' nonnegative rows are 
deleted. A hierarchy of nonegative rows leads even
tually to the nonnegative submatrix required by (5.2). 
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The pivot columns vanish in these rows. Hence 
pivoting does not spoil the nonnegativities already 
achieved . 

6. The l-Skeleton of H(5) 

The problem of finding the verti ces of a convex 

hull H (5) can be reduced (to~ )n~in€: the f~a~e of the 
coneC(5)w here5 := {A i = Ai IAiES}. Similarly, the 

. ~ 1 
edges of H (5) correspond to the 2-faces of C (S) . There 
are, however, special features of the problem of finding 

the vertices and edges of H(§). First, 

(6.1) If A is equivalent £0 A, .J:.hen Aj EC(S -{Aj}) 
if and only if Aj E H(S - {A j}). 

- -
PROOF. If Aj ="? AiUi, th en by (2.3) Aj =2: AiUi, 

• • ,.,0 J i # j 
whic h gIves lUi = 1 by considering the last compon ent. 

As a consequence of (6.1), a criterion for necessity 
can be based on the relative magnitudes rather than 
the signs of the elemen ts of A (Goldstein [7]): 

(6.2) If A is equivalent to A, and if aij is the unique 
maximum or minimum of the entries in a row 

iA of A, then Aj is a vertex of H(S). 

Ind~ed , Aj is a vertex of H(5), and by (6.1) necessary 
in 5. Criterion (6.2) is valuable in practice since it 
enables one in general to find some vertices right away 
as well as during the algorithm. It can be generalized 
to the case in which the maximum or minimum is not 
unique. Suppose the maximum of the firs t row is 
assumed for the subse t M C 5. Then a column 
Ai EM is necessary in S if it is n~cessary in M. Hence 
the examination can be temporarily res tric ted to M. 
In particular, c riterion (6.2) can be applied to M. 
For instance, if azs is the unique maximum or minimum 
of the e ntries aZj with Aj E M, then As is necessary 
;n 5. _ 

Suppose that A is in canonical form and equivalent 
t~ A. Then the same argument that es tabli shed (6.2) 
gIves 

11/ 

2: aij= 1 
i = 1 

for all j. Thus each column has at leas t one positive 
entry. This ' follows also from the fact that C(5) is 
pointed i.e., has lineality dimension = 0 (4.2) and that 
5 contains no zero columns. 

Suppose S is a frame. Then each nonbasic column 
has at least one negative and two positive entries by 
(3 .1) and (3.2). If a column has precisely two positive 
e ntries, then by (5.3) the corresponding basic columns 
do not determine an edge. 

J 
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