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Algorithms for Frames and Lineality Spaces of Cones*
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A frame of a cone C is a minimal set of generators, and the lineality space L of C is the greatest
linear subspace contained in C. Algorithms are described for determining a frame and the lineality
space of a cone C(S) spanned by a finite set S. These algorithms can be used for determining the

vertices, edges, and other faces of low dimension of the convex hull of a finite set H(S).

All algo-

rithms are based on the simplex method of linear programming. The problem of finding the lineality
space can be successively reduced to problems in spaces of lower dimensions.
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Introduction
Let

S:{Al. 5 o 5o A“}

be a family of points in R". We denote by L(S) its
linear hull, by H(S) its convex hull, and by C(S) its
conical or positive hull, i.e., the convex polyhedral
cone expressible as the set of all nonnegative weighted
sums of elements of S. We use the conventions
Lip)=C(p)={0}.

A subfamily T'C S is called a frame [4]' of C(S)
if C(1)=C(S) but C(T—{A;})# C(T) for each A;E T.
The greatest linear subspace contained in C(S) is
called its lineality space [5]. Two main problems are,
given S, to find a frame of C(S) and to determine the
lineality space of C(S). These two problems are
closely related.

Several important problems are equivalent to or in-
cluded in these two main problems. Consider, for
instance, the system of linear inequalities

ATX < b, j=1, .. . n
for X€ R". Removing redundant constraints amounts
to finding a frame for the cone spanned by the vectors

a (A )
AJ-:(bj‘), Jj=1,. ... n, and <(1) Determining the
j

*This paper was in part stimulated by and profited from discussions with A. J. Goldman
of the National Bureau of Standards. Thanks for assistance in coding some of the algo-
rithms for automatic computers go to T. Bray and M. Geier.

**Mathematics Research Laboratory, Boeing Scientific Research Laboratories. Seattle,
Wash. 98110.

!'Figures in brackets indicate the literature references at the end of this paper.

dimension of a polyhedron given by linear inequalities,
can be reduced to determining the dimension of a
polyhedral cone C={U|A"U < 0} (see [10]). As to
the latter problem, it suffices to note that the linear
hull L(C) is the orthogonal complement of the lineality
space of the polar cone C?"=C{A4,, , A}, where
Ay, . , A, are the columns of 4. This problem
also arises if the uniqueness of an optimal solution to
a linear program is to be established in the presence of
degeneracy.

Clearly, the problem of finding the vertices of a
convex hull H(S) can be solved by finding the frame
of a suitable cone. It should not be confused with the
problem of finding the vertices of a polyhedron de-
fined by linear inequalities. The latter problem cor-
responds to finding the facets, that is, the proper faces
of highest dimension, of some H(S). Even a moder-
ate number of inequalities is apt to generate a huge
number of vertices [6, 9], and by the same token, the
number of facets of H(S) may be extremely large
compared to the cardinality of S. Thus finding the
facets of H(S) is inherently more difficult than finding
the vertices of H(S).

The problem of finding the edges of H(S), and other
facets of low dimension, may still be expected to be
essentially easier than to find the facets of H(S). In-
deed, one is tempted to conjecture that an efficient
determination of the facets requires prior determina-
tion of the lower dimensional faces.

Note that finding the edges of H(S) could be ac-
complished by finding the vertices of H(S,), where

So:=={Aup=1% (Ai+4))|i <j}.2

2The symbol *“:=" stands for “is defined by.”



However, this procedure is not recommended since
the cardinality of S, tends to become quite large. We
shall prefer a more compact technique, which works,
with S rather than S; or its analogs for higher dimen-
sional faces, and which is closely related to an algo-
rithm for solving the second main problem of deter-
mining the lineality space of a cone. The faces of
H(S) will be characterized in terms of sign patterns
of matrices representing H(S). This aspect is ex-
amined more closely in [13].

Charnes [2], Motzkin, Raiffa, Thompson, and Thrall
[11], and Farrell and Fieldhouse [14] have proposed
methods for finding the facets and the vertices of a
convex polyhedron P determined by a system of linear
inequalities. On the other hand, Goldstein [7] suggests
an algorithm for solving the same problem where P is
given as the convex hull of a finite set of points.
Recently, Thompson, Tonge, and Zionts [12] published
a method for removing redundant constraints. One
of our algorithms for determining a frame of the cone
C(S) essentially coincides with theirs.

We shall give algorithms both for finding a frame
for C(S). and for determining the lineality space of
C(S). As will be pointed out, the latter algorithm
can be modified to decide whether a given subset of
S characterizes a face of C(S). Applied to single
elements of S, such an algorithm can also be used to
find the frame of a pointed cone C(S) and, therefore,
the vertices of a convex hull H(S).

All algorithms in this paper are based on the simplex
method for linear programming (see, for instance, [3].
Not surprisingly, there are “primal” and “dual”
algorithms in each case. We shall describe a primal
algorithm for finding a frame and a dual algorithm for
determining the lineality space of C(S). The remain-
ing two algorithms are readily constructed by the
reader.

It has been our experience with the above algorithms
that in the presence of degeneracies round-off errors
may cause cycling if zero tolerances are not chosen
and handled correctly. This danger is diminished if
degeneracy provisions are made, but we shall not
include such provisions in the descriptions of our
algorithms.

1. General Remarks

A set S may contain more than one frame for C(S).
and the cardinalities of these frames may differ. For
instance, if C(S) is a linear subspace of dimension /,
then the cardinality of a frame T may range from
[+1 to 2[. We shall only concern ourselves with
finding some frame for C(S), and not, for instance,
a frame of minimum cardinality.

A point A. € S is redundant in S if C(S—{A.})
=C(S): otherwise, A, is necessary in S. The algo-
rithms for finding a frame will consist of repeated

applications of a subalgorithm which determines for |

some A. € S C S whether it is redundant or necessary

inS. The subset S arises from S by deleting those col-
umns that were already found to be redundant.

Now let L be the lineality space of C(S). Clearly,
L=C(S)NC(=S).

We partition the set S into two classes, its lineal part

S.:=SNL and its conical part Sc:=S—S;. Then
(1.1) IL=CS5)x
Proor. S,CL, hence LDC(S;). To prove the

other inclusion, suppose X&€L. Then X& C(S) and

XEC(—S). Hence X=23Au;, u; =0, and X = 3(—A4))v;,

vi =0. It follows that

SAi(ui+0vi)=0, ui+uvi =0.

If u;+v;>0, and in particular if u;> 0, then clearly

—A4; € C(S) and therefore, 4; € S;. Thus X € C(S;)—3.
Let S be a subset of S such that $OS,. Let L

denote the lineality space of C(S). Then (1.1) gives

L=C(S)NC(=S)CCSNCS)CCSNC—S) =L,

whence L=L. As a consequence

(1.2) S.=S, for S, CSCS.

We shall describe an algorithm for finding the lineal
part S, of a given set S. Again, this algorithm will
be based on a subalgorithm, which decides whether
a specified 4. €S CS is in S;. The set S arises
from S by deleting those points A; which were already
found to be in S¢. This deletion is justified by (1.2).

We proceed to show how the problem of finding
faces of C(S) relates to the problem of determining
lineality spaces. The faces of a cone C are extreme
subsets, that is, if the sum of points in C lies on a face
F of C, then so do all the summands. More precisely,

(1.3) XEF, and X=2Yu; with Y; € C and u; =0
imply u;=0 for Y; € F.

This property characterizes faces. If F is a face of

C(S),andif Sy :=F N S, then
(1.4) L(Sp) is the lineality space of C(S U (—Sp)).

PROOF. C(S U (—Sr)) C C(Sr U (—Sr))=L(Sp).
Now suppose
X & CS U (=Sp) NC((—S) U Sk).

Then there exist u;, w;, vi, zi = 0 such that

X: 2 /4,'11,'— E A,-LL‘,':— E A;U,“F 2 A,'Z,'.

HED Ai € Sy THE S A € S,

3The symbol “—" marks the end of a proof.



Hence

2 A;{ui+vf)= E A,‘(IU,'+Z,‘).

AiES Ai € S

By (1.3), ui+vi=0 if A,-¢S,x. In particular, u;=0
if A; & Sp. Hence

X: E A,‘ll,‘* 2 A,-w;,

4; € S Ai € Si

which implies X € L(S¢). —
The points A;. .
determine a face F of C(S) if

F=IL{4,, . . . , A} N C(S).

We then have
(1.5) The points A4, . .

., A in S subdetermine a face

of C(S) if and only if L{A:, ..., A} is the
lineality space of C(SU {—A,, . . ., —A}).
PROOF. Suppose L{A4,, . . .. Ay} is the lineality

space of C(SU {—A4,, .. ., —A;}). In order to
prove that F:=L{4,, . . ., A,} N C(S) is a face,
we have to show according to (1.3) that if X € F,
X=3A;u; with u; =0, and u, >0, then 4, € F. Sup-
pose, therefore, that X and w, are as above. Then

1
,4/,:*(()(‘#2),

Up

where

i ::—EAﬂu € C(—S) U {4,, . .

i#h

., Ai}).

Now X is in L{A4,, . . ., Ay}, which is by hypothesis

the lineality space of C(S U {—A4:, .. ., —Ax}).
Therefore, X € C((—S) U {4,, . . ., Ar}), whence
A € C(—S)U {4y, . . ., Ax}). It follows that A,
is in the lineality space of C(S U {—A;, . . ., —Ai}).
Thus Ay € L{A4,, . . ., Ax} N C(S)=F.

On the other hand, if F:=L{A4,, . . ., Az} N C(S)
is a face, then L(Sp)=L{A:. . . .. Ay} is the lineality
space of CS U (—Sp)=CS U {—A,, . .. —A})

by virtue of (1.4). —
Note that. if A4;, . .
LIF)=L{A4,, . . ., Ax}.

dim (F)=#Fk

., Ar subdetermine F, then
Hence

if A,, . . ., Ay are linearly independent. Thus any
algorithm for determining lineal parts can be used for
deciding whether a given set of points {4, . . . ., Ay}
C S subdetermines a k-face (=face of dimension k)

of C(S).

. .. A (all in S) are said to sub-

2. Cones and Equivalent Matrices

By definition, the point 4. is redundant in S if and
only if C(S—{A4.})=C(S). This in turn is equivalent
to A. € C(S—{A.}), or
(2.1) ACZZAJ'LLJ', LLj?O.

Jj#c

The point A is in the lineal part S, of S, if and only

if A.€ L=C(S) N C(-S). This is equivalent to
—A. € CS—{A4.}), or
282 —‘A(‘=2Aﬂjj, vj = 0.

J#c

The standard ‘“‘phase I” simplex procedures of linear
programming are available for deciding the solvability
of (2.1) or (2.2) (see, for instance, [3]). All that re-
mains is to integrate such a procedure with the overall
algorithm in a way that minimizes the rearrangement
of data.

The points 4y, . . .,
an m X n matrix

Ay, of S can be represented by

AZZ(Ah i An).
The matrix 4 is in canonical form if it contains an
m X m permutation matrix, called basis. Its columns
are the basic columns: all other columns are nonbasic.
If 4 is in canonical form, and if the column A; is non-
basic, then the elements of 4; constitute the represen-
tation of the point 4; in terms of the basis of 4. Ciri-
teria for redundancy and lineality will be therefore
particularly simple if the matrix 4 is in canonical form.
Two matrices 4 and A are called equivalent if there
exist (possibly rectangular) matrices 7"and 7" such that
TA=Aand TA=A. 1If and only if 4 and A4 are equiva-
lent in this sense, then for all X € R":
(2.3) AX =0 if and only if AX =0.
Both (2.1) and (2.2) express the existence of a suitable
linear dependence
AX=0, X#0
of the columns of 4. By (2.3) equivalent matrices
admit the same linear dependences. If, therefore,
A is replaced by any equivalent matrix 4 —preferably
in canonical form —then the same columns (= columns
with the same indices) will be redundant in the re-

spective column sets, and the same columns will be
in the lineal parts.

3. Determining a Frame of ((S)

For matrices 4 in canonical form the following
criteria are immediate:



(3.1) IfAjisnonbasic and A;=0, then A;is redundant.

(3.2) If A; is nonbasic and has exactly one positive
entry a,, then the basic column A, for which
a..= 1 ts redundant.

The following two criteria hold whether A4 is canonical
or not:

(3.3) If the ith row of A, henceforth denoted ;A, con-
tains exactly one negative entry a;s, then A
is necessary.

(3.4) If A contains exactly one positive entry ajs,

then A, is necessary.

As was pointed out before, any “phase I simplex
procedure can be used for deciding whether a given
column is redundant. We prefer a variant (described
in [8)) without artificial variables which works on each
infeasible row separately, treating it to some extent
as an objective function while conserving the feas-
ibilities already achieved. While this variant may not
be the most efficient one for finding a first feasible
solution —using a positive combination of the infeasible
rows is in general better —the terminal situations of
this variant are precisely the ones to which criteria
(3.1) and (3.3) apply: it is therefore particularly easy
to implement.

The matrix 4 will be repeatedly transformed and
some of its columns may be deleted. In the following
description of the algorithm, the symbol “4” will
always refer to the particular matrix at hand. Tt will
also be convenient, not to change the indexing of
columns which remain after others have been deleted.

(3.5) Primal algorithm for determining a frame:

(i) (Canonical form) Use Jordan elimination
for bringing A4 into canonical form.
Every column is labeled “undecided.”

(ii) (Constant column) Select a nonbasic
undecided column A, as “constant col-
lumn.” If there are no such columns,
go to (viii); else proceed to (iii).

(1) (Pilot row) If A.=0, delete A, and re-
turn to (ii). Else select ,4 such that
ape < O0; call it the “pilot row.”

(iv) (Pivot column) If ayc is the only negative
entry in the pilot row, change the label
of Ac from “undecided” to “necessary”
and go to (ii). Else select a “pivot
column A4; such that ¢, < 0 and [ # c.

(v) (Pivot row) Select a “pivot row” ,A
such that

Aijc

Aye .
0= =< min {

aic= 0, ai,>0}-
air

There exists always an index r of this kind, since either

the minimum on the right-hand side is finite and as-

sumed—we use the convention min (p)=+% — or
= p is a permissible choice.

(vi) (Pivoting) Execute a simplex step (=Jordan
transformation) with a,; as pivot. In the
absence of degeneracies, this will increase
the old entry a,. while keeping nonnegative
entries of 4. nonnegative.

(vii) (Return) If the new entry a,. is still negative,
keep the pth row as pilot row and go to (iv).
Else go to (iii).

(viii) (Termination) If all basic columns are de-
cided, terminate the procedure. Else select
an undecided basic column A..

(ix) (Clear basis) Suppose ar.=1. If this is the
only positive entry in .4, then change the
label of the column A. from ‘‘undecided” to
“necessary’” and go to (viii). Else pivot so
as to remove the undecided column A, from
the basis. Go to (iii) with A. as constant
column. (End of the algorithm.)

In the absence of degeneracies, this algorithm in-
creases at every step the entry a,. until it becomes
nonnegative or remains the only negative entry in the
pilot row. In the latter case, the column A4, has been
decided. In the former case, ap. stays nonnegative
during all subsequent transformations, while some
other negative element of A. is being increased.
Hence a decision on A. will be reached after finitely
many simplex steps.

The algorithm is sped up by checking after each
iteration whether some of the columns or rows satisfy
criteria (3.1), (3.2), (3.3). or (3.4).

A dual algorithm results if the subalgorithm which
decides whether A, is redundant or necessary is re-
placed by its dual. The primal decision algorithm
tries to make a given column of 4 nonnegative (cri-
terion (3.1)), and encounters criterion (3.3) if this is
not possible. The dual decision algorithm aims at
criterion (3.3), that is, it attempts to make all entries
but one in some row of 4 nonnegative. If this attempt
fails, then criterion (3.2) is encountered. This algo-
rithm is a “phase I procedure for the dual simplex
method.

4. Determining the Llineality Space of ((S)

The following criterion is immediate for matrices
in canonical form:

(4-1) IfAJ <0, then Aj E Sl‘-

For any matrix A4 one has
(4.2) If A =0, then all columns Ajwith a;; > 0 belong
to S('.

An algorithm analogous to the algorithm (3.5) can
be based on these criteria. The pivot rules arise
from those of the algorithm (3.5) by reversing the sign
of the constant column. Whenever a nonnegative
row ;A is found, all columns A; with a;; >0 are deleted.



Thus, ith row of the remaining matrix vanishes and
is therefore deleted. Whenever a nonpositive column
A. is found, it is labeled “‘lineal,” and this process is
repeated until an empty matrix results or until all
columns are labeled “lineal.” There are primal and
dual strategies available, the former aiming at non-
positive columns, the latter at nonnegative rows.
The algorithms are sped up if the following refine-
ment of criterion (4.1) is used (for matrices in canonical

form). (See [13):

(4.3) Suppose A. <0, and let' A be the matrix that
arises from A if all rows ;A with a;. <0 are
deleted. . Then A; is in the lineal (conical)
part of A if and only if A is in the lineal
(conical) part of A. If A.<O0, then Sc=0.

ProoF. Not only 4. but also all basic columns A,
such that ai=1 for ai. <0 are in S;. These basic
columns A4, span the linear subspace E :={X|x;=0 if

aic=0}, which is therefore contained in the hnedllty
spdce L of C(S). We define 4; by putting

aij lf QAijc — 0
0 if ai. <O0.
Then A;—A; € E C L. Hence A; € L if and only if
A; € L.

Denote by S the set of all A It clearly suffices to
show that 4; € S, if and only if A € S;. _Suppose
Aj € S,. Then A; €L and therefore — Aj=3Aiu,
ui = 0. ThlS relation remains true_if we repldce A;

by A;: =3Aui, whence A; € S.. In the other
dlrectlon 1f —A;j=3Awui, ui=0, then

—Aj:/‘ij—Aj'f‘E(/’-,'—Aj)lti‘*'2/’,‘[1,,'

but A;—A4;, Ai—A; € L C C(S).
and, therefore ANESTI—
We proceed to describe a dual algorithm. The cor-
responding primal algorithm is readily constructed by
the reader. Again it will be convenient to denote by
A the particular matrix at hand, and not to change the
indices of rows and columns if other rows and columns
are deleted.

Hence —A4; € C(S)

(4.4)

Dual algorithm for determining the lineality
space of C(S)

(i) (Canonical form) Use Jordan elimination for
bringing A into canonical form. Label all
zero columns of A4 ““lineal.”

(i) (Termination) If A is empty or all columns
of A are labeled “‘lineal,”” then terminate the

procedure. Else proceed to (iii).
(iii) (Objective row) Select any row A4 as “objec-
tive row.’

(iv) (Pilot column) If .4 =0, then delete all
columns A4; with a.; >0, delete .4, and return
to (ii). Else select a “pilot column™ A4,
with aq, <0.

(v) (Pivot row) If A,=<0, delete all rows ;4 with
aip <0, label all zero columns generated by
this deletion (all columns, if 4, <0) “lineal,”
and return to (ii). Else select a ““pivot row”
+A with a,;, >0 and r # c.

(vi) (Pivot column) Select a “pivot column™ A,
such that
el Qcj
0 =— = max {ﬁ aj =0, @y <O}
Ay ayj

(compare algorithm (3.5) step (v)).

(vii) (Pivoting) Pivot on ay. In the absence of
degeneracies, this will increase the entry
acp while keeping nonnegative entries of .4
nonnegative.

(Return) If the new entry a, is still negative,
keep the pth column as pilot column and go
to (v). Else return to (iv). (End of
algorithm)

(viii)

In the absence of degeneracies, this algorithm will
terminate in a finite number of steps (compare (3.5)).
The algorithm is sped up by checking after each itera-
tion whether some of the rows or columns satisfy cri-
teria (4.1) or (4.2).

5. Determining /-Faces of C(S)

For finding all £faces of C(S) we employ a subalgo-
rithm which decides for each set of klinearly independ-
ent elements of S whether or not they subdetermine a
face. We do not raise the question of the most effi-
cient arrangement of this subalgorithm within the
overall search algorithm. Instead, we try to formu-
late the decision algorithm in a manner that does not
preclude its implementation as a subalgorithm. To
be more precise, in order to decide whether 4,, . . ., A,
subdetermine a k-face, it suffices by (1.5) to determine
the lineality space of C(SU{—A4,, . . ., —A;}). If,
however, algorithm (4.4) is used for this purpose,
after the columns —A4,, . . .. — A, are adjoined to
the matrix A, then a matrix results, which is no longer
equivalent to A, and each decision must thus start
from scratch. This procedure is therefore not suitable
for implementation as a subalgorithm.

We proceed to sketch an algorithm which does not
require new columns to be adjoined, and which ter-
minates with a matrix that is equivalent to the original
one.

A column A; is lexico-nonnegative if a;;> 0, or

;=0 and a»; >0, or a;;=a»;;=0 and a3; >0, or . . .,
ajj=-+-=a,j=0. If A; is lexico-nonnegative and

does not vanish, then A; is lexico-positive. We call
a matrix lexico-nonnegative (lexico-positive) if this
holds for each column. We then have the following
generalization of criterion (4.2):

(5.1) Suppose R arises Sfrom A by deleting some rows.
If A is lexzco -nonnegative and A;#0, then



Proor. Let B be the row that results from com-
bining the rows of A4 with weights €, €, . . . . For
suitable € >0 we have B =0 with b; > 0 if and only if

A A
A;#0. Then criterion (4.2) applies to the matrix <B>

which is equivalent to A.

We proceed to formulate two criteria on which an
algorithm for finding the k-faces of C(S) can be based.
Suppose A, , A are basic columns. We cail
the submatrix 4 of A4 formed by all those rows in which
Ay, . . .. Ay simultaneously vanish the complement
of Ay, . . ., Ay. The complement of the entire basis
of A is the empty matrix. Schematically, we have

Jk) 0

0 ]( m—~r)

}: complement

Criterion (5.1) then leads to (see [13]):

(5.2) If the complement of the basic columns
5 - - ., Ay is lexico-nonnegative, then

Ay, . . ., Ax subdetermine a k-face.
Proor. It follows from (5.1) that A4,, . . .. Ay,

—A,, . .., —Ar and those elements of S which are

linear combinations of the former are the only elements

in the lineal part of SU {—A4,, . . ., — A}, and (1.5)

applies. —

(5.3) The basic columns A;, , A do not subde-
termine a face if their complement contains
a nonpositive nonzero column.

PROOF. Assume for simplicity that Ay, . . ., Ay
are the remaining basic columns, and that ;=1 for
i<m. The complement of A;, , A then con-
sists of the rows ;4 with i > £. Let now A., ¢ >m. be
a column whose portion in the complement is nonposi-
tive and nonzero. Then

m

Ajw,

i=k+1

IS
3 durt

where w;=uai. <0, and, therefore, 4. € C((—S)U

{A4;, . . ., Ax}). Hence A. belongs to the lineality
space of CSU{—4,, ..., —Ag). Now if
Ay, . . ., Ay subdetermine a face, then L{A4,, . . . .

Ay} is the lineality space of C(SU {—A4,, . . .,
—Ai}) by (1.5). Thus 4. € L{A4:, . . . , Ax}, which
contradicts the fact that not all w; vanish in the above
unique representation of 4. in terms of the basis.—

It is easy to see that algorithm (4.4) and its corre-
sponding primal algorithm can be modified to yield
an algorithm whose terminal situations are (5.2) and
(5.3). No columns and no nonnegative rows are
deleted. A hierarchy of nonegative rows leads even-
tually to the nonnegative submatrix required by (5.2).

The pivot columns vanish in these rows. Hence
pivoting does not spoil the nonnegativities already
achieved.

6. The 1-Skeleton of H(S‘)

The problem of finding the vertices of a convex
hull H(S) can be reduced to finding the frame of the
cone C(S) where S :={A4; ~</il |4;€S}. Similarly, the

edges ()fH(S) correspond to the 2-faces of C(S). There
are, however, special features of the problem of finding

the vertices and edges of H(S’). First,

6.1) If A is equivalent to A, then A;eC(S—{A;})
if and only if A;e H(S —{A, })

ProoF. If A;= 2 A, then by (2.3) 4;= => A,
i j

which gives Ju;=1 by considering the last component.

As a consequence of (6.1), a criterion for necessity

can be based on the relative magnitudes rather than

the signs of the elements of 4 (Goldstein [7]):

(6.2) If A is equivalent to A, and if a;; is the unique
maximum or minimum of the entries in a row

iK of A, then Aj is a vertex of H(g)

Indeed, Zj is a vertex of H(S), and by (6.1) necessary

in S. Criterion (6.2) is valuable in practice since it
enables one in general to find some vertices right away
as well as during the algorithm. It can be generalized
to the case in which the maximum or minimum is not
unique. Suppose the maximum of the first row is
assumed for the subset M CS. Then a column
Ai € M is necessary in S if it is necessary in M. Hence
the examination can be temporarily restricted to M.
In particular, criterion (6.2) can be applied to M.
For instance, if asis the unique maximum or minimum
of the entries a»; with 4;e M, then A, is necessary
m S.

Suppose that A is in canonical form and equivalent
to A. Then the same argument that established (6.2)
gives

m _
$ =
i=1

Thus each column has at least one positive
entry. This' follows also from the fact that C(S) is
pointed i.e., has lineality dimension=10 (4.2) and that
S contains no zero columns.

Suppose S is a frame. Then each nonbasic column
has at least one negative and two positive entries by
(3.1) and (3.2). If a column has precisely two positive
entries, then by (5.3) the corresponding basic columns
do not determine an edge.

for all j.
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