JOURNAL OF RESEARCH of the National Bureau of Standards —B. Mathematics and Mathematical Physics
Vol. 71B, No. 1, January—March 1967

Stable Evaluation of Polynomials

C. Mesztenyi*™ and C. Witzgall**

(November 3, 1966)

A class of Newton forms

P(x)=ao+ a;(x —x0)+ .

are discussed which admit a stable evaluation algorithm in an interval [4, B].

.o tane—x0) . . . (x—Xn-1)

Stability is defined in

the paper. The estimate
AP M'(L)L
‘P|S2+6 ML)

where L:=B—A and M(x): = |ao| + |a1]|x+ . .
evaluation of P(x) in [4, B].

.+ |an|x, is shown to hold for the relative error of

Key Words: Evaluation, Newton form, polynomial, relative error, round-off.

There are algorithms for polynomial evaluation
which require fewer operations (Motzkin [4],' Belaga
[1], Pan [6], Cheney [2], Knuth [3]), but these algorithms
are prone to lose significance. The Horner scheme
itself leaves much to be desired in this respect, and this
fact has led to the study of methods which reduce the
loss of significance, but may require additional opera-
tions (Rice [7], Lawson [9]).

An evaluation algorithm depends on the form in
which the polynomial is given. Forms on which a
“stable’” evaluation algorithm can be based are called
“well-conditioned.” This note calls attention to a
class of well-conditioned Newton forms.? These forms
involve more parameters and require more operations
for evaluation than the normal form described above.
The number of operations is about the same as for
evaluating an expansion by Tchebychef polynomials,
but in general more parameters are required.

Loosely speaking, an algorithm is ‘“unstable” if
one observes for some arguments an excessive loss
of significance. A rigorous, but somewhat narrow,
definition of stability will be based on an idealized
floating point arithmetic and an error analysis similar
to the one carried out by v. Neumann and Goldstine
[5], however referring to the relative rather than the
absolute error. The arithmetic will be finite in that

“University of Maryland, College Park, Md. _ o
“*Mathematics Research Laboratory, Boeing Scientific Laboratories, Seattle, Washing:
ton 98110.

! Figures in brackets indicate the literature references at the end of this paper.

2 Qur study of these forms was stimulated by a discussion with J. Rice on polynomial
evaluation. It profited from discussions with A. J. Goldman, who also detected a major
mistake in the previous version of this paper.

11

it will restrict itself to numbers which are “represent-
able” with mantissae of a fixed finite length.? It will
be infinite in that it will permit arbitrarily large positive
and negative exponents. Thus there will be infinitely
many representable numbers. Some of the theoretical
results of this paper hinge on this idealization, and
might be considered artificial. Nevertheless, these
results point in the direction of desirable improve-
ments, and provide a reasonable classification of
algorithms from the view point of stability.

Our definition of condition and stability differs
from that given by Rice [7].

1. Minimal Newton forms. The evaluation algo-
rithms to be considered are based on the

Newton form

of polynomials:

P(x)=ao+ ai(x — x0) + as(x — x0) (x —x1) +.

+anx—x0) . . . (x—xn_1). (1.1)

Polynomials in this form are evaluated by the follow-
ing adaption of the Horner scheme:

D,:= an
Di:=ai+(x—xi)Di+1, i:n—l, . .. ,0,
P (x): = D,. (1.2)

30.531015 is representable in decimal arithmetic of mantissa length s=2; 0.1, is not
representable in any binary arithmetic.

Instability can arise when adding the coefficients a;
and when subtracting the “critical values” x;. There
are three reasons for being less concerned with the
effect of the subtractions:

First, if the values x and x; are both representable
in the given finite arithmetic, then forming the dif-
ferences x—ux; is a ‘“‘stable” operation. A similar
advantage does not obtain for the addition, even if
the coefficients a; are representable. Furthermore,
the effect of replacing x and x; by representable num-
bers close to them, in other words, the effect of
“rounding,” can be estimated by means of the dif-
ferential formula:

dP = [D;]d(x — xo) + [Da(x — x0)|d(x — x1)+ . . .

A [Dnlx —x0) . . . (x— 20— 2)]d(x — x0).

Here the D; are the intermediate results of (1.2).

Second, if the terms of the sum D;: = a; + (x — x;)D; 1 1
are of the same sign, then the effect of the relative
error of (x—x;)D;+: on the relative error of D; will
be weighed by the ratio |(x—x)Di;1/Di|. The rela-
tive error of x—x; tends to be large when |x—
becomes small. Thus the relative error caused by
forming the difference is toned down by the above
ratio precisely when it tends to be high. On the other
hand, if x and —x; have the same sign, then one does
not observe a similar toning down of the relative error
incurred by the preceding addition.

Third, we give a theoretical reason. We shall be
able to show that x—x; can be evaluated “stably”
if additional coefficients and operations are intro-
duced, provided x is representable, even if x; is not
representable.

Recognizing the additions as the main cause of
instability, the idea is to neutralize them by choosing
the critical values x; so as to ensure that a; has always
the same sign as (x —x;) D ;.

This is indeed possible in any given interval of
evaluation [4, B|. The first step of constructing such
a Newton form is to divide out all zeros of the poly-
nomial P(x) in [4, B]:

Plx)=:(x—x0) . . . (x—xm)P*(x).

One then defines ap=a;=. . . =a,=0, and the
problem is clearly reduced to finding a suitable Newton
form for P*(x).

Let us therefore assume that P(x) #0 in [4, B].
If P(x) is given in Newton form (1.1), and if @, has the
same sign as the sum of the remaining terms for all x
in [4, B], then sign (ay) =sign (P(x)), and |ao| < |P(x)]
in [4, B]. This suggests the following definition of

lao|:=min {|P(x)| | xe[4, B}

sign (ay) : = sign (P(x)).

12

Then P(x) — ay has zeroes

X0, X145 - o o 5 Xk—1

in [A, B]. Zeroes are represented as often as their
multiplicity indicates. If, for instance, y is a double
zero of P(x) in [4, B]| then y occurs twice among the

xi. We have
P(x) = Dy(x) = ao+(x—xor . . . (x—2xk-1)Di(x).

The polynomial Dy(x) does not vanish in [4, B], and
can therefore be treated in the same way as P(x).
The coefficient ay is defined by

lak|: =min {|Dy(x)| | xe[4, B}
sign (ay) : =sign (Dy(x)),
and

Xky « « « 49 X1—-1

are the zeroes of Dy(x) —ar. We have again

Di(x)=ar+(x—xk) . . . (x—x;_1)D(x),

and so on. We call the Newton form so constructed

the
minimal Newton form

of the polynomial P(x) in [4, B].

If all zeros of P(x) are in [4, B], then the minimal
Newton form of P(x) in [4, B] coincides with the “prod-
uct form” a, I1(x —x;) of the polynomial. If P(x) does
not vanish in [4, B], then all zeros of odd multiplicity
encountered in the construction of the minimal Newton
form are at the ends of the interval [4, B].

We shall show later that a minimal Newton form can
be evaluated in a ‘““stable’” manner if the argument x is
representable.

2. On transformations into stable forms. It is quite
clear that the process of determining the minimal
Newton form is, in itself, a very unstable process,
which has to be carried out in double or even triple
precision. This appears to be a principle: the con-
stants of a better conditioned form contain more
“information,” and if one wants this additional informa-
tion, then one has to work for it.

For this reason, we shall not concern ourselves with
the difficulties of finding the constants of algorithms.
These difficulties are bound to increase with the quality
of the end-product. Besides, minimal Newton forms
will be used only if a polynomial has to be evaluated
repeatedly, as for instance in function subroutines.

3. Evaluation of derivatives. The Horner scheme is
frequently extended to determine the value of the first
derivative of a polynomial, using the algorithm:

Ey:=D,

Ei::Dﬁ-xDiH, i:n—l, 5 ¢ o ,1,

3.1

[)"X) ::El,

where the D; denote the intermediate results of the
Horner scheme for=P(x). We shall use this fact in
section 11 for deriving an error estimate.

Similar algorithms exist for Newton forms. If the
D; are the intermediate results of algorithm (1.2)
applied for a given x, then:

P'(x)=D;+ Ds(x —x0) +
ST (06=="00) R (==)
which suggests the algorithm:
E,.:=D,
Ei:=Di+(x—xi—1)Ei+1, i=n—1,1
Pl(x):=E;.
This algorithm is in general not stable, even if the
original polynomial P is in minimal Newton form.

4. Numerical example.* Consider the ill-condi-
tioned polynomial ay+. . .+« with the coefhicients:

ap= 4. 10074 70239 8387
ay=—11. 29173 84073 737

a:= 8. 42475 03796 1924
az= 0. 92113 31318 58071
as= —3. 05937 81605 8204.

Its minimal Newton form in the interval [0, 1] has the
following coefficients and critical values:

by=10.00103 19917 44066 05
bi1=10.0

by =3.41269 84126 9841
b;=—1.87912 08791 2088
bs=0.60784 31372 54902

[),’,: 10

x0=0.83361 06489 18469
RGN0

X9 = X3 — 10

X4 — OO

To compare the loss of significance incurred in
evaluating the polynomial in normal form and minimal
Newton form, the interval [0, 1] was divided into 50
subintervals, in each of which 50 random arguments
were generated. The maximum number of significant
digits lost was plotted for each subinterval (fig~).

5. Representable numbers. This and the following
sections will contain some theoretical examinations.
An arithmetic will be specified, with respect to which
we shall define stability. Actual error estimates are
then derived for the evaluation of minimal Newton
forms.

* The computer time for this calculation was supported by the Computer Science Center
of the University of Maryland under Grant NsG 398 from the National Aeronautics and
Space Administration.

13

5.00—

—— NORMAL
NEWTON

4.00

3.00

200

LOSS OF SIGNIFICANT DIGITS

1.00

o] | | | |
(0] .20 40 .60 .80 1.00
AFGUMENT
F1Gure 1

Consider a floating point arithmetic with number
base B and mantissa length s, and assume that there
are no restrictions on the size of the exponents.
Denote by

2

the set of all numbers which are representable in this
arithmetic. To each real number x, we assign a num-
ber xe such that no other number in 2 is closer to x.
Thus

|x—x| < [x—y] for all ye3. (5.1)

In particular, x=x if xe2. We assume that (—x)

=—x, therefore —3,=3.
With the notation

0 if xe

1 otherwise

alx) : :{

one verifies that?

_ _ _ 1
|x — x| < |x|a(x)e < |x|€e where e::EB"”' (5.2)

(Scarborough’s Theorem 1 [8] p. 3). Note that (5.2)
holds only if the arithmetic does not restrict the size
of the exponents. Indeed, it follows from (5.2) that:

x=0 implies x=0.

(5.3)

?Actually a sharper estimate holds: |x—x| < eB’ where t:=[logs [x|] that is. ¢ is the
greatest integer smaller than logg [x|.

In other words, zero is the only number which gives
zero when rounded. This is clearly only true if
negative exponents of arbitrarily large modulus are
admitted.

6. Stable algorithms. We now assume that each
addition, subtraction, multiplication, and division of
two numbers in 2 is carried out exactly, and that the
result is rounded afterwards. Furihermore, each
given number which is not in 2 must be rounded before
it enters an operation. These rules appear to be a
reasonable idealization of a floating point arithmetic
which combines two registers to hold the result of
each operation, normalizing and rounding to single
precision subsequently.

An algorithm aims at computing a result r as a func-
tion of given parameters a, b, ¢, . . . , but in reality
computes a quantity 7. The error that is generated
in the course of the algorithm then is defined by

Ar:=[r—?|.

Consider, for instance, the algorithm which consists
of multiplying two given numbers « and v:

p:=uv

Then p: =uv, and (5.2) gives

lp—Dp|=|uw—uv+ uv—uv+uv —p|
<|uv|e+|uv|e+|ple.

In view of

lu| <|u|+|u—u] <1 +elul,

luv| < |p|+[uv—p|l<(1+elp

)

one has
Ap

: 6.1)
€|p|

_p=bl o5y 3es e
elp

The upper bound of the above error term does not
depend on u and v. Hence we say that the formation
of the product uv from given numbers u and v is
“stable.”

In general, we call an algorithm which computes r
from given parameters a, b, ¢, . . .

stable,

if there exists an error estimate of the form

where k does not depend on the values of the param-
eters a, b, c, . . .
We turn now to the addition of two given numbers

u and v:

s=u-+tv.

Then §=u+7, and one has after a similar calculation:

Bs 14 +@a<u). (6.2)
e[| Is Is|

The estimate (6.2) can be improved. For instance, the
first term in (6.2) can be deleted if |s| < min {|u|, |v]}.
However, no matter how refined the estimate, it will
always depend on u and v. Indeed, u+v#0 and
$=0 may both hold simultaneously, precluding any
finite bound. The addition of two numbers is therefore
not stable.

In the special case a(u)=a(v)=0, that is, if both
u and v are representable, then (6.2) proves the addition
to be stable. This is also true if u and vhave the same
sign.

7. Simplifying error estimates. Henceforth we shall
assume that € is very small. Thus we shall delete €
in expressions of the form k+ /e, if both k£ and [are
parameter independent:

k+le=k. (7.1)

This leads us, for instance, to equate |7| with |r|, since
Ir| = 7| = |r=7| = |7| — ke|r| = |7|(1 — ke)

and similarly |r| = |r|(1 —ke), provided the algorithm
producing 7 is stable.

We state without proof that, if an algorithm is shown
stable with the help of rule (7.1), then it could have
been shown stable without it.

8. Error propagation. Suppose that p, u, and v are
intermediate results of some algorithm, and that

p=uv

according to this algorithm. We want to estimate the
error of p in terms of Au and Av, and the error generated

by rounding and multiplying. Now p= 4, and analo-
gous to the derivation of (6.1) we have

Ap < |v|Au +'|2¢|Av+ |i)]€

If the intermediate results u and v were arrived at in a
stable manner, then this is also true for p. By (7.1)
we can therefore consider |u|and |z|, as well as |p| and
[p|, to be equal. Similar considerations hold for the
division of two intermediate results. We conclude:
If u and v are intermediate results of the algorithm
which are obtained in a stable manner, then

Auv*! _ Au Av

eluv 1]~ " eful " elol

The estimate (8.1) is usually postulated without
assumptions about the algorithm. It is argued that

Au Av

ﬂ and |] are comparable to € in magnitude,
u

claim that
the algorithm . . . |
Au Av
€elul elv]

The following estimate can be derived without
stability assumptions:

.a

comes close to assuming stability of
and that Ih(*r('f()re the term

| € may be neglected.

Au _v)

e|u+v!

lu| Au

uzo] "elul

Av

o] . Ao
lu=v| €lv]

(8.2)

9. Stability of minimal Newton forms. Let us now
turn to algorithms for the evaluation of polynomials.
Once and for all we will assume that

(9.1) the argument x for which a polynomial P(x) is to
be evaluated is representable.

Consider the evaluation of a polynomial in minimal
Newton form by the adapted Horner scheme (1.2).
All operations in this algorithm are stable except the
subtractions x —x;. The existence of a stable evalua-
tion thus depends on the possibility of evaluating the
differences x —x; in a stable manner.

To evaluate the difference x —y, we split y into its
representable part and remainder

y=}+r.

and evaluate (x—y)—r. Since x and y are both
representable, and therefore Ax=Ay=0, we have by

(8.2):

Ax—y) _ =1
elx—y|
Then again by (8.2):
A=y _ =yl Ax—y)
elx—yl ~ lx—yl elx—¥
LIV e Rt
lx—y| elr| lx—l

In view of |x—y|=|x—y+r| <|x—y|+|r| this gives

Ax=y) _ o, 2

€lx—»] lx =yl
Now according to (5.1)

Irl=ly—yl < lx—yl,

&}

since x is representable. Hence
A S
=)y 9.2)
€lx —y|

The algorithms (¥ —75%)+s)—r and (X —7)+ (s—7r),
where x is not required to be representable and where s
denotes the remainder term x —x of x, are not stable.
Indeed, if x=y, then both algorithms consist of simply
subtracting r from s, which was seen to be unstable in
section 6.

Consider the algorithm (1.2) for evaluating Newton
forms. Since all other operations of (1.2) are stable,
the entire algorithm (1.2) is stable provided the dif-
ferences x —x; are evaluated in the stable manner
described above.

For the step

D;

=ait(@—xi)Dit1,

we have by (9.2), (8.1), and (8.2)

Alx —xi)Dj 4 4 - Alx — x7) “AD; 44 AD; .
<]+ =5 a
€|(x —xi) Di 41 €lx—xi| €D €[Di
AD;]+|(l,| Aai | [(x—x)Dis 1| Alx—x)Diys
€| D;] = |Di| €|ai | D €|(x— x)D;j 4 1]
|(lz| |(X_Xi)Di+1| <_ AD[+])
<1442y 5+
DT DI\ elDe]
|”1’+r 1[)1+l| |X Xz‘)l)i+11 < A[)i+1>
s1+ + 4+ :
Dil D] €|Di|

Since minimal Newton forms are constructed so as to
ensure that |ai| + |(x —x)Di+ 1| =|Di|, we finally have

AD; | Xz)Az+1| (Di«l)
<2+ 4+ , 9.3
eI D Dl T A
from which one immediately concludes that
ADi ADi+1
<6+ :
GIDi| €|Di+ 1|
Since AD, < |D,|e, we have finally
AP
==
el P] 6n—+1, (9.4)

where n is the degree of the polynomial P(x).

Note that application of the estimate (8.2) is justi-
fied since the factors of the products (x —x;)D;+1 have
been arrived at in a stable manner.

10. Product forms. Every polynomial with real co-
efficients can be written in product form:

k=1 k+1-1
P(x)= ay, H (007) H (di+ (x — x3)2),
i=0 i=k

d;i >0, k+2l=n. (10.1)
A stable evaluation algorithm results if the differences
x —x; are evaluated in the stable manner described
in section 9. The algorithm involves not more than
2n+ 1 parameters, 2n additions, and n multiplications.
The following error estimate follows from (9.2), (8.1),
and (8.2):

AP

msSA-+ll[+l < 6n. (10.2)

11. Improved estimate. The reader observes not
only, that the error estimate (10.2) is better than the
estimate (9.4) for minimal Newton forms, but also that
fewer operations are required. It is therefore ques-
tionable whether minimal Newton forms should be
considered at all, unless the error estimate (9.4) can
be improved. We proceed to show that this is indeed
possible.

Let L denote the length of the interval [4, B]| and
define

Bi :=|ai|+|ain|L+. . . F|an| L, i=0, ... n

Then |D;|< B in [A., B] since

Di=ai+ aim(x—x)+. . A anx—x1) . . . (x—xn_1).
Therefore

STl TR T
and (9.3) reduces to

i =2" 5 (o)

Consequently
%s2+63—i‘1,+6££2 L+ . . .+HL",
and therefore

Ll SZ+£(BIL+BZLZ+. . . +BuLY. (11.1)

T

If we introduce the polynomial

M(L) =|ao[+|ai|L +|as| L2+ . .+ |an|L",
Then the B; are the intermediate results of the Horner
scheme applied to M(L). Thus Bo=M(L). More-
over, we obtain from (3.1) that B;+. . .+ B,L"!
=M'(L), and we may rewrite (11.1) as follows:
AP L ML .
P M(T) (11.2)

This error estimate establishes a preference for
minimal Newton forms in small intervals.
Polynomials with nonnegative coefficients are
minimal Newton forms for all intervals [0, x] with
x> 0. For such polynomials one derives analogously
AP P(L)L

12. Approximately minimal Newton forms. FEach
sequence of n critical values x; determines a unique
Newton representation of a given polynomial P(x).
If the values xf approximate the points x; which deter-

mine the minimal Newton form, then the Newton form
Px)=af+afx—xH+. . .
SF@lE=0%) o o o (=0)k

which is determined by the values x¥ is approximately

minimal, and for all practical purposes, it is stable.
For certain polynomials of low degree approximately
minimal Newton forms may be even rigorously stable
in the sense of section 6. Consider for instance the

quadratic polynomial in minimal Newton form
Ox)=ap+ (x—2z)?2, ao> 0.

The Newton representation of Q(x) determined by the
rounded value z takes the form:

Qx)=bo+bi(x—2z)+ (x—2z)2, (12.1)

where by > r*, by=—2r, with r:=z—2z. We proceed
to prove that the evaluation of (12.1) by algorithm
(1.2) is stable. We put s:=x—z. Then
D=b+(x—z)=—2r+s
Q :l)()'JT‘ (X—;)D:b()+SD.
We have

AD < 2|r|e+s|e|+|Dle

AsD < 2|sD|e+|s|AD < 3|sD|e+ 2|rs|e + s%€

16

and

AQ <|bole+3|sD|e+2|rs|e+s*e+ Qe (12.2)
By (5.1), |s—r|=|x—z|=|z—z|=|r|]. Hence
O=ao+ (x—2)*=(bo—1r?) + (s—r)2= bo
for all representable x. This in turn implies

Q=sD=0. As a consequence, we may delete most
of the absolute bars in (12.2):

éng0+38D+2

rs|+ s+ Q < 2Q+ 2sD + 2|rs| + 2.

If rs=<0, then 2|rs|+s2=s*—2rs=sD. Hence

A

If rs >0, then [s|=2|r|. Indeed (s—r)%*=r*> implies
2rs <%, and if rs >0, then we have also 2|r|s|<|s|>.
Furthermore, sD+2|rs|=sD+2rs=s% Finally,
note that

we

32
=

5 <4 for |s|=|2r|.

QIMN

(s—r)

17

Hence

£<‘ Q
qoi=*tot

This estimate is as good as the one derived from (10.2)
taking into account the fact that a,=1.

25&

References

[1] Belaga, E. G.. Some problems involved in the computation of
polynomials, Dokl. Adad. Nauk SSR 123, 775-777 (1958).

[2] Cheney, E. W., Algorithms for the evaluation of polynomials
using a minimum number of multiplications, Tech. Note 2,
Computation and Data Processing Center, Aerospace Corp..
1962.

[3] Knuth, D. E.. Evaluation of polynomials by computer, Comm.
Assoc. Comp. Mach. 5,595-599 (1962).

[4] Motzkin, T. S.. Evaluation of polynomials, Bull. Amer. Math.
Soc. 61,163, Abstract 315B (1955).

[5] v. Neumann, J.. and Goldstine, Numerical inverting of matrices
of high order, Bull. Amer. Math. Soc. 53, 1021-1099 (1947).

[6] Pan, V. Ya., Certain schemes for the calculation of values of
polynomials with real coefficients, Prob. Kibernetiki 5, 17-29
(1959).

[7] Rice, J. R..
Forms.

[8] Scarbrough, J. B.. Numerical Mathematical Analysis (Johns
Hopkins Press, Baltimore, Md.. 1930).

[9] Lawson. C. L., Study of methods of polynomial evaluations, Jet
Propulsion Laboratory, Interim Report No. 1, Feb. 1964.

On the Conditioning of Polynomial and Rational

FI1GURE 1

(Paper 71B1-191)

	jresv71Bn1p_11
	jresv71Bn1p_12
	jresv71Bn1p_13
	jresv71Bn1p_14
	jresv71Bn1p_15
	jresv71Bn1p_16
	jresv71Bn1p_17
	jresv71Bn1p_18

