JOURNAL OF RESEARCH of the National Bureau of Standards – A. Physics and Chemistry Vol. 71A, No. 6, November-December 1967

Fundamental Energy Levels of Neutral Promethium (Pm I)*

Joseph Reader and Sumner P. Davis**

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(August 21, 1967)

The spectrum of atomic promethium has been observed with a variety of light sources and spectrographs. The Zeeman effect has also been recorded. Analysis of the spectrum shows that the ground configuration of the neutral promethium atom is $4/^{3}6s^{2}$. The relative positions (in cm⁻¹) of the low levels of this configuration are:

${}^{6}\mathrm{H}^{\circ}_{5/2}$	0.00	${}^{6}\mathrm{H}^{\circ}_{13/2}$	3919.03	${}^{6}\mathrm{F}^{\mathrm{o}}_{5/2}$	5872.84
${}^{6}\mathrm{H}^{\circ}_{7/2}$	803.82	${}^{6}\mathrm{H}^{\circ}_{15/2}$	5089.79	${}^{6}\mathrm{F}^{\circ}_{7/2}$	6562.86
${}^{6}\mathrm{H}^{\circ}_{9/2}$	1748.78	${}^{6}\mathrm{F}^{\circ}_{1/2}$	5249.48	${}^{6}\mathrm{F}^{\circ}_{9/2}$	7497.99
${}^{6}\mathrm{H}^{\circ}_{11/2}$	2797.10	${}^{6}\mathrm{F}^{\circ}_{3/2}$	5460.50	${}^{6}\mathrm{F}^{\circ}_{11/2}$	8609.21

This group represents all levels of $4f^{5}6s^{2}$ expected below 14,000 cm⁻¹. From these results the following values of interaction parameters and their estimated uncertainties have been inferred:

 $\zeta_{4f} = 925 \pm 20 \text{ cm}^{-1}$ $E^3 = 510 \pm 20 \text{ cm}^{-1}$

Data on 209 upper levels of even parity and 714 classified lines are given.

Key Words: Atomic spectroscopy, electronic energy levels, neutral atom, promethium, rare earth.

1. Introduction

In this paper we present the first results of our investigation to determine the electronic structure of neutral promethium.

Promethium was the last lanthanon element to be discovered. Since the early 1900's it was known that an element lying between neodymium and samarium with atomic number 61 remained to be discovered. A large number of attempts were made to find this element in nature without success. Two false claims of discovery resulted in the early names of illinium and florentium for element 61. The long sought-for element was finally identified in 1947, when Marinsky, Glendenin, and Corvell made a chemical separation of a new element from among the fission products of uranium. They chose the name promethium for element 61 ". . . after Prometheus, the Titan in Greek mythology who stole fire from heaven for the use of mankind." This name was chosen not only to symbolize the dramatic way in which the element could be produced in quantity as a result of man's harnessing of the energy of nuclear fission, but also to "... warn man of the impending danger of punishment by the vulture of war," [1].¹

The first extensive work on the spectrum of Pm was carried out at the National Bureau of Standards by Meggers, Scribner, and Bozman [2], who published a list of 2249 Pm lines excited in arcs and sparks. Their attempts to separate the lines according to ionization state and to find spectral regularities were not successful. Their paper gives many of the details of the history of the discovery of Pm and of earlier spectroscopic studies.

Promethium is an entirely artificial element. All of its isotopes are radioactive, and none has ever been found in nature. In the several investigations of the promethium spectrum to date, including the present one, the samples have consisted of monoisotopic Pm¹⁴⁷. This is the only readily available form of Pm. It is produced in nuclear reactors as 2.6 percent of the fission products of uranium. Pm¹⁴⁷ decays by β^{-1} emission (0.22 MeV) into Sm¹⁴⁷ with a half-life of 2.6 years.

The original paper of Meggers, Scribner, and Bozman suggested the existence of appreciable hyperfine structure in a number of Pm¹⁴⁷ spectrum lines. This hfs was investigated by Klinkenberg and Tomkins [3] with a 9-meter grating spectrograph and later by Reader and Davis [4, 5] with Fabry-Perot interferometers. As a result of these investigations and others by the methods of paramagnetic resonance [6] and atomic beam resonance [7], it is known that the Pm¹⁴⁷ nucleus has a spin $I = \frac{7}{2}$, a magnetic dipole moment $\mu_I = 2.6$ nm, and an electric quadrupole moment

^{*}Part of this work was supported by a grant from the National Science Foundation and an optical research equipment grant from the Advanced Research Projects Agency to one of the authors (SPD). **University of California, Berkeley 94720.

¹ Figures in brackets indicate literature references at the end of this paper.

 $Q \sim 0.7$ barn. These nuclear moments cause many Pm lines to appear with very broad and complex hyperfine structure which impedes attempts to describe the spectrum.

The ionization energy of the neutral promethium atom has been estimated [8] by an interpolation method to be 5.55 ± 0.02 eV.

2. Experimental Procedure

2.1. Light Sources

The construction of light sources was undertaken with the greatest care, because Pm, being radioactive, cannot be handled in the ordinary way. The first light source was a cooled hollow cathode, made for the investigation of hyperfine structure. Its use was essential for that work [4], but it was not used extensively in the present investigation.

The more useful sources were electrodeless discharge tubes, constructed especially for us by Earl Worden at the Lawrence Radiation Laboratory, Livermore. The promethium was obtained from Oak Ridge National Laboratory, and purified either there or at the Lawrence Radiation Laboratory, Berkeley. A spectrographic analysis was made prior to its use. A typical tube was constructed of a section of fused silica tubing 2 cm long with 7 mm o.d. and 5 mm i.d., containing 200 μ g of PmI₃. A long handle was attached. No filling gas was admitted, since an initial heating of the tube released enough iodine to make subsequent starting of the discharge relatively easy.

Altogether, six of these tubes were used. Each tube was operated inside a microwave cavity, supplied with rf power by a magnetron at a frequency of 2450 MHz. The temperature of the tube (and hence intensity of the spectrum) was regulated by adjustment of power to the cavity and the amount of air-cooling. During operation, the discharge was a brilliant blue color.

2.2. Spectrographs

Our experimental investigation of the spectrum of promethium has extended over several years, and has included the taking of hundreds of spectrograms on several instruments, under many different conditions. As we gained experience and familiarity with the spectrum, each set of spectrograms was taken to provide specific information.

The 6.4-meter concave grating at Berkeley was used for preliminary testing of the light sources and identification of spectrum lines. The instrument has a plate factor of 1.25 Å/mm at 5000 Å in the first order.

The 3-meter Czerny-Turner plane-grating spectrograph at Berkeley was used for accurate wavelength measurements. This instrument has a grating of width 12.5 cm, ruled with 300 grooves/mm. It is used at angles of incidence and diffraction of approximately 64 deg. At 5000 Å the instrument is used in the 12th order, and the plate factor is 0.36 Å/mm.

A 3.4-meter Ebert plane-grating spectrograph at the Lawrence Radiation Laboratory, Berkeley, was used for some of the Zeeman spectrograms. The angles of use, orders, and plate factor of this instrument are about the same as for the 3-meter Czerny-Turner spectrograph just described.

The 9-meter concave grating spectrograph at the Argonne National Laboratory [9, 10] was used for the early spectrograms taken for wavelength measurements, temperature classification, and Zeeman effects. Spectrum lines were observed in orders as high as the eighth, although we generally confined our measurements to the third and fourth, in order to avoid overlapping orders. At these lower orders, overlapping could be prevented through the use of filters. The plate factor is about 0.45 Å/mm at 4000 Å in the fourth order.

2.3. Exposures

Three different magnets were used for the Zeeman spectrograms. Most of them were taken at Argonne, by using an electromagnet with iron pole-pieces, producing a field of 24,000 G. The discharge tube was excited in the cavity placed between the poles, perpendicular to the field.

The electromagnet used at the Radiation Laboratory produced a field of 29,000 G. A second magnet used there was a superconducting solenoid [11] operated at a field of 41,000 G. In this case, the source was operated in the cavity, but alined parallel to the magnetic field. A more stable operation of the discharge resulted with this orientation. A small mirror placed inside the solenoid permitted observation of the light emitted in a direction perpendicular to the field.

2.4. Exposures

The exposures made at Argonne were taken on 5×45 cm plates, with nine separate tracks on each plate. Thorium standard lines were placed on the top and bottom, with seven promethium exposures inbetween. Each Pm exposure was taken at a different lamp temperature to help separate the spectra [12]. The intensities differed by as much as a factor of 80 from the weakest to the strongest exposures. These plates proved to be very valuable for spectrum separation, but the presence of small unexplained shifts made them less useful for absolute wavelength measurements. Since the wavelengths of most of the classified lines given in this paper are based on these exposures, it is possible that the present wavelengths may eventually have to be revised by a few thousandths of an angstrom. The Zeeman exposures included pi, sigma, and no-field lines. The field was calibrated by means of patterns belonging to several lines of Ca, Ag, and Cu which appeared on the plates.

The spectrograms taken at Berkeley for wavelength measurements were made on 10×25 cm plates, with the thorium and promethium lines overlapping, to eliminate any errors of measurement. A samarium spectrum was also included on these plates to identify impurity lines due to small amounts of Sm formed by the decay of Pm. Overlapping grating orders were

		·		
Level	Calculated energy (cm ⁻¹)	Interval (cm ⁻¹)	Calculated g-value	Percentage composition
⁶ H ^o _{5/2} ⁶ H ^o _{7/2} ⁶ H ^o _{9/2} ⁶ H ^o _{11/2} ⁶ H ^o _{13/2} ⁶ H ^o _{15/2}	0 816 1769 2815 3924 5070	816 953 1046 1109 1146	0.297 0.829 1.071 1.201 1.278 1.327	96% ⁶ H 97% ⁶ H 98% ⁶ H 99% ⁶ H 99% ⁶ H
⁶ F ^o _{1/2} ⁶ F ^o _{3/2} ⁶ F ^o _{5/2} ⁶ F ^o _{7/2} ⁶ F ^o _{9/2} ⁶ F ^o _{11/2}	4915 5097 5478 6153 7077 8171	182 381 675 924 1094	-0.649 1.057 1.303 1.389 1.429 1.451	98% [«] F

TABLE 1. Theoretical predictions for the low-lying levels of the $4f^{5}6s^{2}$ configuration of Pm I.^a

^a J. G. Conway and B. G. Wybourne; Phys. Rev. 130, 2325 (1963).

separated by use of an external prism predisperser [13], which prevented light from the unwanted orders from entering the spectrograph. Each grating order was photographed separately.

Eastman Kodak spectroscopic plates were used for all exposures, processed in the recommended manner. Types 103a–O, 103a–F, 103–O, 103–F, and I–N were utilized. All but the first two were prefogged by exposures to weak light, prior to loading in the spectrograph.

2.5. Measurements

The plates were measured on two semiautomatic scanning comparators, one at the University of California and one at the National Bureau of Standards. Wavelengths for the thorium standards were taken from the work of Meggers and Stanley [14]. The estimated uncertainty of the wavelength measurements is about ± 0.005 Å. At the present time some of our plates from Argonne and most of the plane-grating plates remain to be measured. When these measurements are complete, we expect to provide a full description of the Pm spectrum.

3. Analysis

In the neutral rare earths the ground configurations are generally of the type $4f^{N}6s^2$ or $4f^{N-1}5d6s^2$. Since the ground configurations in Nd I and Sm I are $4f^{4}6s^2$ and $4f^{6}6s^2$, respectively, it was expected that the ground configuration in neutral Pm would be $4f\,{}^{5}6s^{2}$. The lowest level of $4f\,{}^{4}5d6s^{2}$ was not expected to be less than 10,000 cm⁻¹ above the lowest level of $4f\,{}^{5}6s^{2}$. The levels of $4f\,{}^{5}5d6s$ were expected to start at about 8500 cm⁻¹ above the lowest level of $4f\,{}^{5}6s^{2}$. Prior to out beginning the Pm I analysis, Conway and Wybourne [15] had published theoretical predictions for the relative energies and g-values of the low levels of $4f\,{}^{5}6s^{2}$ by using hydrogenic ratios for the Slater parameters and interpolating values of ζ/F_{2} . These predictions proved to be very useful to us in carrying out the analysis. Their results for Pm I are summarized in table 1.

The first part of the analysis was carried out through the use of the Zeeman data. A large number of selfreversed lines showed resolved patterns involving levels having J = 5/2 and 7/2 and g-values of about 0.30 and 0.83, respectively. It was clear that these lines were transitions to the $4f^{5}6s^{2} \, {}^{6}\text{H}^{\circ}_{5/2}$ and ${}^{6}\text{H}^{\circ}_{7/2}$ levels. After a certain amount of trial and error in searching for repeating differences involving these lines, the ${}^{6}\text{H}^{\circ}_{5/2} - {}^{6}\text{H}^{\circ}_{7/2}$ interval was found to be 803.82 cm⁻¹. About 15 upper even levels were established in this process. The good agreement between this result and the prediction of Conway and Wybourne showed that the predictions would be useful in extending the analysis.

By continuing to use the Zeeman data and by using an electronic computer to search for constant differences between groups of strong lines, two sets of classified lines were built up. One group represented transitions to the $4f \, {}^{5}6s^{2} \, {}^{6}\mathrm{H}_{5/2-13/2}^{\circ}$ group of levels; the other represented transitions to the $4f \, {}^{5}6s^{2} \, {}^{6}\mathrm{F}_{1/2-7/2}^{\circ}$ levels. However the connection between these two groups was not known. After a considerable amount of searching for this connection, a few weak, resolved

TABLE 2. Low levels of the 4f⁵6s² configuration of Pm I

Level	Energy (cm ⁻¹)	Interval (cm ⁻¹)	g-value
⁶ H ^o _{5/2} ⁶ H ^o _{7/2} ⁶ H ^o _{9/2} ⁶ H ^o _{11/2} ⁶ H ^o _{11/2}	0.00 803.82 1748.78 2797.10 3919.03	803.82 944.96 1048.32 1121.93	0.305 0.831 1.079 1.205
⁶ H ^o _{15/2}	5089.79	1170.76	1.33
⁶ F ^o _{1/2}	5249.48	211.02	-0.68
⁶ F ^o _{3/2} ⁶ F ^o _{5/2}	5460.50 5872.84	412.34 690.02	1.051 1.293
⁶ F ^o _{7/2} ⁶ F ^o _{9/2}	6562.86 7497.99	935.13 1111.22	1.385 1.440
$^6F^{\circ}_{11/2}$	8609.21		1.458

Zeeman patterns were found in the ultraviolet which proved to be transitions from upper levels known from combinations with ${}^{6}F^{\circ}$ levels down to the low ${}^{6}H^{\circ}$ levels. This established the energies of the ${}^{6}F^{\circ}_{9/2}$, and ${}^{6}F^{\circ}_{11/2}$ levels were later established, thus bringing our knowledge of the low levels to its present state. According to a recent diagonalization by Conway [16] this group represents all levels of $4f \, {}^{5}6s^{2}$ expected below 14000 cm⁻¹.

The results are given in tables 2, 3, and 4. Table 2 gives the energies and g-values of the odd levels. Table 3 gives the energies, J-values and g-values for the even levels. The classified lines are given in table 4. The estimated uncertainty in the values of the low levels given in table 2 is ± 0.01 cm⁻¹. The estimated uncertainty in the values of the high levels given in table 3 is about ± 0.03 cm⁻¹.

4. Discussion

The total number of self-reversed lines in Pm I is 122. Of these 120 have been classified as transitions to $4f \,{}^{5}6s^{2}$. This makes it certain that the ground configuration of Pm I is $4f \,{}^{5}6s^{2}$.

The eigenvectors given by Conway and Wybourne as a result of their diagonalization of $4f^{5}$ show the ⁶H° and ⁶F° terms to be nearly pure in LS coupling. We therefore would have expected a somewhat regular variation in intensity of the lines making transitions from a single upper level to several lower levels. However, according to our observations this is not the case. Figure 1 gives some of the more striking examples of the irregular intensities. Of special note are the lines from 26725.52(3/2). In this case the transition to ${}^{6}\mathrm{F}^{\circ}_{3/2}$ is just barely visible on the plates. The complete absence of the line from 28186.31(7/2) to ${}^{6}\text{H}^{\circ}_{7/2}$ is also very striking. A similar set of puzzling intensities has been observed by Shenstone [17] in the $3d^{6}4s - 4p$ transitions of Co III. Here the anomalous intensities were found in groups of lines connecting terms of different multiplicity. In this connection Shenstone noted "Especially difficult to understand is the not

ODD			6 6	۲°					⁶ F°		
	5/2	7/2	9/2	11/2	13/2	15/2	1/2	3/2	5/2	7/2	9/2
348.22(7/2)	700	100	400								
294.96 (9/2)		x	500	400							
8 . 9 8 (3/2)				3	300	200				. /	
725.52(3/2)	300						500	I	50		
169.71 (7/2)	×	300	100						x	x	x
186.31 (7/2)	200	x	200						х	500	50
002.94(3/2)	x						35	8	150		
	0000 848.22 (7/2) 848.22 (7/2) 81.98 (3/2) 725.52 (3/2) 169.71 (7/2) 186.31 (7/2) 002.94 (3/2)	ODD 5/2 348.22 (7/2) 700 294.96 (9/2) 700 81.98 (13/2) 700 725.52 (3/2) 300 169.71 (7/2) X 186.31 (7/2) 200 002.94 (3/2) X	ODD 5/2 7/2 5/2 7/2 700 100 294.96 (9/2) X X 81.98 (13/2) X 81.98 (13/2) 300 169.71 (7/2) X 300 186.31 (7/2) 200 X 300 186.31 (7/2) X	ODD 5/2 7/2 9/2 5/2 7/2 9/2 7/2 9/2 5/48.22(7/2) 700 100 400 294.96(9/2) X 500 81.98(13/2) X 500 81.98(13/2) X 500 169.71(7/2) X 300 100 186.31(7/2) 200 X 200 002.94(3/2) X X X	ODD 5/2 7/2 9/2 11/2 5/2 7/2 9/2 11/2 100 400 294.96 9/2 1 X 500 400 81.98 (13/2) X 500 400 81.98 (13/2) X 30 3 725.52 (3/2) X 300 100 169.71 (7/2) X 300 100 186.31 (7/2) X 200 X 200 002.94 (3/2) X	ODD 5/2 7/2 9/2 11/2 13/2 548.22(7/2) 700 100 400 3 300 3 300	ODD 6H° 5/2 7/2 9/2 11/2 13/2 15/2 348.22(7/2) 700 100 400 294.96(9/2) X 500 400 81.98(13/2) X 500 400 225.52(3/2) 300 X 300 200 169.71(7/2) X 300 100 186.31(7/2) 200 X 200 002.94(3/2) X	N 5/2 7/2 9/2 11/2 13/2 15/2 1/2 348.22(7/2) 700 100 400 848.22(7/2) 700 100 400 81.98(13/2) X 500 400 500	ODD 5/2 7/2 9/2 11/2 13/2 15/2 1/2 3/2 548.22(7/2) 700 100 400 3/2	ODD 5/2 7/2 9/2 11/2 13/2 15/2 1/2 3/2 5/2 548.22(7/2) 700 100 400	ODD 6H° 6F° 5/2 7/2 9/2 11/2 13/2 15/2 1/2 3/2 5/2 7/2 348.22(7/2) 700 100 400 Image: Second

FIGURE 1. Anomalous intensities in Pm I. No observed transition = X_i .

uncommon habit of intersystem combinations of missing the central of three levels of successive J." Although this phenomenon has not yet been investigated theoretically, it is clear that it stems from the lack of pure *LS* coupling in the upper configurations. It is likely that a theoretical study of the transition probabilities for the $3d^{6}4s - 3d^{6}4p$ array in Co III would shed more light on this problem.

No real effort has been made yet to understand the origin of the known upper levels in Pm I. However we note the following points. There are only two configurations which can make transitions to $4f^{5}6s^{2}$ with appreciable intensity, namely $4f \, {}^{5}6s6p$ and $4f \, {}^{4}5d6s^{2}$. For the 4f 56s6p configuration, the strongest transitions to the 4f 56s² 6H° and 6F° levels will originate from levels of the type 4f ⁵(⁶H)6s6p and 4f ⁵(⁶F)6s6p. If we consider the levels of the type $4f^{5}(^{6}\text{H})6s6p(J=5/2)$, we would expect them to fall into two groups: six of the type $4f^{5}(^{6}\text{H}) + 6s6p(^{3}\text{P})$ and two of the type $4f^{5}(^{6}\text{H}) + 6s6p(^{1}\text{P})$. This type of coupling (first described by Shenstone [18] in the case of the $3d^{9}4s4p$ configuration of Cu I) will hold approximately here because the parameter which determines the ${}^{1}P - {}^{3}P$ splitting, $G_{1}(sp)$, is expected by interpolation from other rare earths to be about 2640 cm⁻¹, whereas ζ_{μ} and ζ_{f} are only about 1000 cm⁻¹. The f-s and f-p interactions are much smaller (see Smith and Wybourne's treatment of the $4f^{7}(^{8}S)6s6p$ configuration in Eu I [19]) and for our purpose may be neglected. If one interpolates a value for the 4f⁵(⁶H)6s²- $4f^{5}(^{6}\text{H})6s6p$ energy difference and uses the above parameters to estimate the level positions, one finds that the six ³P type levels with J = 5/2 will lie in the region 14000–16000 cm⁻¹ and the two ¹P type levels with J = 5/2 will lie at about 20000-21000 cm⁻¹ [20]. Of the 27 observed upper levels with J = 5/2, 22 make strong transitions to the 6H group of lower levels. These 22 levels are distributed as follows: 14 between 20250 and 23550 cm⁻¹, 8 between 26600 and 28350 cm⁻¹. Thus of the observed levels with J = 5/2, only 2 would be expected to belong to 4f 5(6H)6s6p. It should also be noted that none of the lines classified so far in PmI shows the appreciable hyperfine structure which would be expected if one of the configurations contained a single 6s electron. Judd [21] has shown that it is possible for lines from certain levels of 4f^N6s6p configurations to 4f^N6s² to show no hyperfine structure. However, there are too many levels here whose transitions show no hfs to believe that the theory is applicable here. The absence of *hfs* in these lines more likely is evidence of a closed 6s shell in both upper and lower configurations. In this case the hyperfine structures due to the 4f electron in the upper and lower levels have the same sign and about the same magnitude, so that the observed line shows no resolved structure. For these reasons we believe that most of the known upper levels belong to the $4f \, {}^{4}5d6s^{2}$ configuration.

Comparison of the observed positions of the $4f \, {}^{5}6s^{2}$ ⁶H° and ⁶F° levels with the calculations of Conway and Wybourne shows that their predictions for the intervals within each term are very good, generally within $\pm 30 \text{ cm}^{-1}$ of the observed levels. However, the predicted positions of the ⁶F° levels are too low by nearly 7 percent in every case. This discrepancy results from the fact that the calculated intervals within the individual terms are very sensitive to the value of the spin-orbit parameter, but rather insensitive to the electrostatic parameters. On the other hand the separation between the barycenters of terms is governed primarily by the electrostatic parameters. At the time of Conway and Wybourne's work there was no neutral rare earth with more than one known term of $4f^{N}6s^{2}$. Therefore, information about the electrostatic parameters could be inferred from the known levels only through second order effects. Thus, a difference of only 7 percent between the predicted and observed ${}^{6}\text{H}^{\circ}-{}^{6}\text{F}^{\circ}$ separation in Pm I can be considered to be fairly good agreement.

It is not possible to obtain reliable values for the electrostatic parameters E^1 , E^2 , and E^3 from the known levels, because only one term separation is available. However, we note that since the ⁶H° and ⁶F° terms are nearly pure in LS coupling, to a first approximation the energy difference between the ⁶H° and ⁶F° barycenters $\Delta E(^6F, ^6H)$ will be equal to $9E^3$ [22]. If we include the Trees $\alpha L(L+1)$ correction [23], to a very good first approximation we then have:

$\Delta E({}^{6}\mathrm{F}, {}^{6}\mathrm{H}) = 9E^{3} - 18\alpha.$

If we use the known positions of the ⁶F° and ⁶H° levels to determine ΔE (⁶F, ⁶H), we find ΔE (⁶F, ⁶H) = 4167.92 cm⁻¹. If we set $\alpha = 30$ cm⁻¹ as indicated by the theoretical interpretation of the spectra of Ce III [24] and Pr III [25] we find $E^3 \sim 520$ cm⁻¹.

A preliminary value of ζ_{4f} can be obtained by considering the total widths of the ⁶H^o and ⁶F^o terms. To a first approximation the sum of these two widths is $91\zeta_{4f}$, which gives $\zeta_{4f} \sim 930$ cm⁻¹.

Crosswhite [26] has made a least squares fit of the ⁶F° and ⁶H° levels to the theoretical energy formulas by using hydrogenic ratios for the electrostatic parameters and a fixed value of 20 cm^{-1} for α . The parameters E^3 and ζ_{4f} were allowed to vary. A diagonalization with $E^3 = 510 \text{ cm}^{-1}$ and $\zeta_{4f} = 914 \text{ cm}^{-1}$ gave a mean error of 25 cm^{-1} . This could be reduced to about 8 cm^{-1} if slightly different values of ζ_{4f} were used for the two terms: 912 cm⁻¹ for ⁶H and 938 cm⁻¹ for ⁶F. Crosswhite notes that this is probably caused by a spinother-orbit interaction. The J-dependence of this interaction is the same as that of the spin-orbit interaction. However, the spin-other-orbit interaction constant varies from term to term. Thus, this interaction will cause the spin-orbit constants derived from different terms of a configuration to appear to be slightly different. This effect was first treated for l^N configurations by Horie [27]; the principal aspects of the theory have been summarized by Wybourne [28]. Since spinother-orbit effects cannot be observed by studying only one term of a configuration, the present results for Pm I provide a first opportunity to view their magnitude for the neutral rare earths.

The residual errors in the above calculation have a form very close to that expected from neglect of a spin-spin interaction. If an estimate of the spin-spin interaction energy is made by using Judd's [29] matrix elements and interpolated values of the radial integrals from the calculations of Blume, Freeman, and Watson [30], the mean error can be further reduced to about 2 cm⁻¹. When this is done the values of ζ_{4f} are changed to 910 cm⁻¹ for ⁶H° and 940 cm⁻¹ for ⁶F° [26].

In view of the uncertainties in the ratios of the electrostatic parameters, the value to be used for α , and the Hamiltonian needed to describe the levels, we give the values of E^3 and ζ_{4f} for the 4f ⁵6s² configuration of Pm I as:

$$\zeta_{4f} = 925 \pm 20 \text{ cm}^{-1}$$

 $E^3 = 510 \pm 20 \text{ cm}^{-1}$

That this value of ζ_{4f} fits in well with other values of ζ_{4f} in the rare earths is shown by the plot in figure 2.

FIGURE 2. Values of ζ_{4f} in the rare earths.

The solid circles represent values derived from $4f^{N}6s^{2}$ configurations of neutral atoms; the open circles are derived from $4f^{N}$ configurations of doubly ionized atoms. References: N = 1, La I, H. N. Russell and W. F. Meggers, J. Res. NBS 9, 625 (1932); N = 1, La III, J. Sugar and V. Kaufman, J. Opt. Soc. Am. 55, 1283 (1965); N = 2, Ce III, N. Spector, J. Opt. Soc. Am. 55, 1283 (1965); N = 3, Pr III, R. Trees, J. Opt. Soc. Am. 55, 492 (1965); N = 3, Pr III, R. Trees, J. Opt. Soc. Am. 54, 651 (1964); N = 4, Nd I, J. G. Conway and B. G. Wybourne, Phys. Rev. 130, 2325 (1963); N = 5, Pm I, this paper; N = 6, Sm I, J. G. Conway and B. G. Wybourne, Phys. Rev. 130, 2325 (1963); N = 12, Er I, J. Reader, unpublished calculations based on data of L. C. Marquet and S. P. Davis, J. Opt. Soc. Am. 55, 471 (1965). This value of ζ_{4f} of 2237 cm⁻¹ is nearly identical to the 2236 cm⁻¹ value of ζ_{4f} derived from the $4f^{12}6s$ configuration of Er II by Z. Goldschmidt, J. Opt. Soc. Am. 53, 594 (1963); N = 13, Tm I, W. F. Meggers, Rev. Mod. Phys. 14, 96 (1942). For simplicity, several values of ζ which have been published for $4f^{N}6s$ configurations of singly ionized rare earths have not been included.

Energy (cm ⁻¹)	J	g	Energy (cm ⁻¹)	J	g	Energy (cm ⁻¹)	J	g	Energy (cm ⁻¹)	J	g
17104.72 20006.04 20157.85 20265.98 20517.96	7/2 3/2 7/2 5/2 5/2	0.885 0.068 0.503 0.527 0.659	23443.79 23480.63 23501.57 23538.86 23550.60	5/2 9/2 11/2 5/2 11/2	$\begin{array}{c} 0.784 \\ 1.16 \\ 1.283 \\ 0.780 \\ 1.170 \end{array}$	26065.63 26080.99 26096.75 26101.28 26103.56	1/2 17/2 17/2 13/2 11/2	-0.36 1.29 1.25 1.2	28169.71 28186.31 28196.56 28273.52 28274.21	7/2 7/2 1/2 7/2 9/2	0.9 1.98 2.44 0.764 1.055
20567.76 20660.00 20675.81 20909.00 21100.10	5/2 7/2 5/2 7/2 7/2	0.910 1.114 1.075 0.929 1.319	23571.27 23584.31 23629.06 23712.56 23732.57	9/2 7/2 13/2 7/2 1/2	1.26 1.123 1.09 1.181 3.24	26181.98 26211.44 26237.84 26282.20 26285.02	13/2 7/2 9/2 13/2 7/2	1.55 0.715 1.43 0.95 0.877	28325.13 28338.98 28467.52 28490.35 28565.66	7/2 5/2 7/2 9/2 9/2	1.38 0.963 0.87 1.123 1.0
21143.06 21237.49 21348.22 21371.05 21590.60	7/2 9/2 7/2 7/2 3/2	0.977 0.841 0.815 0.927 0.135	23740.42 23743.96 23760.57 23926.91 23938.76	13/2 7/2 11/2 3/2 13/2	1.111 1.754 1.044	26300.30 26456.26 26468.80 26479.61 26522.35	1/2 13/2 1/2 3/2 3/2	0.955 -0.45 0.731 1.135	28607.33 28608.57 28657.02 28680.26 28994.90	9/2 3/2 1/2 7/2 11/2	1.079 1.740 0.29 0.88 1.30
21625.45 21657.89* 21666.80 21732.93 21920.49	9/2 5/2 7/2 9/2 9/2	1.117 1.01 0.696 1.137 0.986	24013.29* 24038.82 24071.03 24091.39 24122.41	13/2 11/2 9/2 3/2 13/2	1.29 1.08 1.12 1.395	26545.85 26555.44 26591.40 26609.39 26630.56	17/2 13/2 13/2 5/2 5/2	1.14 1.07 1.10 0.56 0.32	29002.94 29074.03 29129.60 29161.96 29242.64	3/2 9/2 9/2 9/2 11/2	0.99 1.162 1.0 1.259
21946.12 21976.26 22013.40 22080.08 22084.65	3/2 7/2 3/2 5/2 7/2	- 0.01 1.218 0.887 0.571 0.858	24180.80 24204.37 24234.42 24245.66 24338.33	13/2 7/2 9/2 13/2 9/2	1.28 0.670 1.14 1.17	26694.38 26695.79 26703.97 26725.52 26830.74	11/2 5/2 13/2 3/2 3/2	1.095 1.30 0.65 0.794	29585.21 29595.58 29648.42* 29705.77 29757.69	11/2 9/2 9/2 11/2 11/2	1.2 1.04
22205.44 22259.21 22294.96 22301.24 22309.94	9/2 1/2 9/2 5/2 7/2	$\begin{array}{c} 0.974 \\ - \ 0.32 \\ 1.245 \\ 0.976 \\ 0.850 \end{array}$	24418.44 24443.15 24443.57 244471.10 24503.45	7/2 13/2 9/2 7/2 11/2	1.124 1.17 1.037 0.83 1.22	26841.36 26955.22 27036.66 27042.18 27109.75	5/2 15/2 5/2 15/2 15/2	1.38 0.931	29784.08 29856.72 29883.87 29908.90 29960.42*	9/2 11/2 7/2 9/2 11/2	1.10 1.199 1.18
$\begin{array}{c} 22355.68\\ 22388.06\\ 22414.17\\ 22425.58\\ 22446.20\\ \end{array}$	9/2 3/2 11/2 5/2 11/2	1.374 0.84 1.12 0.83 1.531	24520.23 24533.27 24558.56 24627.53 24681.68	13/2 11/2 9/2 9/2 11/2	1.34 1.183 1.39 0.961 0.895	27245.99 27272.46 27304.15* 27319.28	5/2 {7/2 {9/2 15/2 7/2	0.761 0.8 1.44 1.274	30008.40 30063.62 30251.50* 30281.98	$11/2 \\ 9/2 \\ \begin{cases} 11/2 \\ 13/2 \\ 13/2 \end{cases}$	1.28 1.224 1.2
22456.72 22522.90 22586.77 22654.34 22656.68	9/2 5/2 9/2 7/2 5/2	0.936 0.735 1.283 0.84 0.936	24705.25 24754.58 24770.04 24789.86 24884.90	15/2 9/2 13/2 9/2 11/2	$1.102 \\ 0.888 \\ 1.17 \\ 1.08$	27334.48 27351.42 27383.92 27468.45 27476.28	5/2 7/2 15/2 3/2 7/2	0.947 0.92 0.21 1.077	30374.95 30457.44 30541.28 30726.26 30785.03	11/2 13/2 11/2 9/2 9/2	1.226 1.226
$\begin{array}{c} 22761.33\\ 22817.13\\ 22905.24\\ 22934.70\\ 23006.35 \end{array}$	11/2 11/2 5/2 7/2 11/2	1.296 1.134 1.16 1.237	24912.34 25104.27 25306.07 25351.46 25357.24	11/2 11/2 15/2 3/2 11/2	1.29 1.15 1.21 0.58	27512.95 27596.27 27621.74 27685.89* 27829.89	5/2 13/2 7/2 3/2 9/2	0.913 1.29 2.049 1.024	31103.24 31846.70 32022.32 32435.06 33180.50	11/2 11/2 9/2 13/2 15/2	1.285
23033.95 23178.13 23188.54 23198.33 23276.10	11/2 7/2 5/2 11/2 9/2	$1.0 \\ 1.150 \\ 1.48 \\ 1.12 \\ 0.83$	25402.61 25405.29 25448.28 25474.46 25521.55*	11/2 13/2 9/2 15/2 9/2	1.211 1.034 1.14 0.910	27919.29 27923.37 27939.87 28008.09 28030.99	3/2 5/2 9/2 7/2 13/2	1.31 0.869 1.025 1.39	33246.65	9/2	
$\begin{array}{c} 23278.90\\ 23334.10\\ 23337.53\\ 23345.07\\ 23435.40\end{array}$	7/2 5/2 7/2 11/2 9/2	$1.0 \\ 0.571 \\ 1.257 \\ 1.323 \\ 1.00$	25537.36 25618.77 25755.17 25919.50 26015.94	13/2 15/2 11/2 13/2 11/2	1.39 1.13 1.016 1.26	28075.94 28084.28 28086.21 28150.73 28153.69	9/2 5/2 11/2 7/2 5/2	$ 1.155 \\ 0.904 \\ 1.150 \\ 1.071 \\ 0.632 $			
			20010.71			10100107	5,2	0.002			

 TABLE 3. Even levels of Pm I. Levels with asterisk are uncertain.

 TABLE 4.
 Classified lines of Pm 1

 The wavelengths are in air. Even levels are designated by the energy in cm⁻¹ followed by the J-value in parenthesis. Intensities are visual estimates on a scale of 1 to 1000.

	C – complex L – shaded to S – shaded to W – wide P – perturbeo	o longer wavelengths o shorter wavelength d by close line, but r	U - perturbed by on D - double B - blend H - hazy esolved R1 - very widely r	lose line, but unresolv	ved	R2 – widely reverse R3 – moderately re R4 – slightly revers R5 – barely detecta * – classification i	ed versed ed bly reversed n doubt
λ (A)	I	σ (cm ⁻¹)	Classification	λ (Α)	I	σ (cm ⁻¹)	Classification
6420.171	10	15571.61	${}^{6}F^{\circ}_{11/2} - 24180.80 \ (13/2)^{*}$	5818.750	3P	17181.06	${}^{6}\mathrm{F}^{\circ}_{7/2} - 23743.96 (7/2)$
6355.910	100P	15729.04	${}^{6}F_{11/2}^{\circ} - 24338.33 (9/2)$	5776.992	200	17305.25	${}^{6}F_{5/2}^{0} = -23178.13(-7/2)$
6348.654	8	15747.02	${}^{6}\mathrm{F}^{\circ}_{7/2} - 22309.94 \ (7/2)$	5730.809	200	17444.70	${}^{\circ}F_{3/2}^{\circ} = 22905.24(-5/2)$
6335.048	100	15780.84	${}^{6}F_{9/2}^{\circ} - 23278.90 (7/2)$ ${}^{6}F_{9/2}^{\circ} - 24443.15 (13/2)^{*}$	5710.075	20	17404.00	${}^{6}F_{5/2}^{\circ} = 23337.53(-7/2)$ ${}^{6}F_{22}^{\circ} = 24071.03(-9/2)*$
0515.790	15	10000.90	$T_{11/2} = 24743.13(13/2)$			11000100	1 7/2 21011.00 (7/2)
6313.663	10	15834.29	${}^{6}F^{\circ}_{11/2} - 24443.57 (9/2)$	5671.018	500	17628.62	${}^{6}\mathrm{F}^{\circ}_{11/2} - 26237.84 (9/2)$
6311.586	85	15839.50	${}^{6}\mathrm{F}_{9/2}^{\circ} - 23337.53 (7/2)$	5657.260	300	17671.50	${}^{6}\mathrm{F}^{\circ}_{7/2} - 24234.42 (9/2)$
6308.577	20	15847.05	${}^{6}F_{9/2}^{\circ} = -23345.07 (11/2)$	5644.515	10	17711.40	${}^{6}F_{5/2}^{0} - 23584.31 (7/2)$
6302.377 6283 239	60 70	15802.04	${}^{6}F_{7/2}^{\circ} = 22425.58(-5/2)$ ${}^{6}F_{2212}^{\circ} = 24520.23(-13/2)$	5039.234	50 20	17775 43	${}^{6}F_{3/2}^{\circ} = 23188.54(-5/2)$
0203.239	10	15710.70	$1_{11/2} = 24020.20 (10/2)$	5024.102	20	11110.40	$T_{7/2} = 24330.33 (-9/2)$
6278.104	2	15923.97	${}^{6}F^{\circ}_{11/2} - 24533.27 (11/2)$	5603.922	125L	17839.69	${}^{6}\mathrm{F}^{\circ}_{5/2}$ -23712.56 (7/2)
6268.138	150	15949.29	${}^{6}F_{11/2}^{\circ} - 24558.56 (9/2)$	5598.944	$\frac{2}{2}$	17855.55	${}^{6}\mathrm{F}^{\circ}_{7/2} - 24418.44 (7/2)$
6263.942	10	15959.97	$F_{7/2} = -22522.90 (-5/2)$	5597.807	10H	17859.18	${}^{6}F_{9/2}^{\circ} - 25357.24(11/2)$
6255.078	10	15982.59	${}^{\circ}\mathbf{F}_{9/2} = -23480.03 (-9/2)$ 6 $\mathbf{F}^{\circ} = -23501.57 (-11/2)$	5501.090	100	17871.09	${}^{6}F_{5/2}^{6} = 23743.96(-7/2)$
0240.909	30	10003.49	$T_{9/2} = 23501.57 (11/2)$	5591.000	330	17000.07	$r_{7/2} = 24443.57 (-9/2)$
6220.118	10	16072.42	${}^{6}\mathrm{F}^{\circ}_{11/2} - 24681.68 \ (11/2)$	5583.619	15	17904.56	${}^{6}F^{\circ}_{9/2} - 25402.61 \ (11/2)^{*}$
6219.809	50	16073.22	${}^{6}\mathrm{F}^{\circ}_{\mathrm{9/2}} = 23571.27$ (9/2)	5559.525	150L	17982.15	${}^{6}F_{11/2}^{0} - 26591.40 \ (13/2)$
6214.768	75	16086.25	${}^{6}\mathrm{F}^{\circ}_{9/2} - 23584.31 \ (7/2)$	5559.188	5	17983.24	${}^{6}\mathrm{F}^{\circ}_{3/2} - 23443.79 (5/2)$
6208.146	80	16103.41	${}^{6}\mathrm{F}^{\circ}_{5/2} = -21976.26 (7/2)$	5555.354	100	17995.66	${}^{6}\mathrm{F}^{\circ}_{7/2} - 24558.56 (9/2)$
6193.898	200	16140.46	${}^{6}F^{\circ}_{5/2} = 22013.40 \ (3/2)$	5546.769	100	18023.51	${}^{6}\mathrm{F}^{6}_{9/2} = 25521.55 (-9/2)$
6186.089	2	16160.83	${}^{6}F^{\circ}_{11/2} - 24770.04 \ (13/2)$	5537.379	200 <i>C</i>	18054.07	${}^{6}\mathrm{F}^{\circ}_{5/2}$ -23926.91 (3/2)
6168.403	5	16207.17	${}^{6}\mathrm{F}^{\circ}_{5/2} - 22080.08~(5/2)$	5529.938	3	18078.36	${}^{6}F_{3/2}^{8^{-}} - 23538.86 (5/2)$
6165.603	70	16214.53	${}^{6}F_{9/2}^{\circ} - 23712.56 (7/2)$	5527.883	5	18085.09	${}^{6}\mathrm{F}^{\circ}_{11/2} - 26694.38 \ (11/2)^{*}$
6153.685	80	16245.93	${}^{6}F^{\circ}_{9/2} - 23743.96 (7/2)$	5524.945	150	18094.70	${}^{6}\mathrm{F}^{6}_{11/2} - 26703.97(13/2)$
6142.459	100	16275.62	${}^{6}\mathrm{F}^{\circ}_{11/2} - 24884.90 \ (11/2)$	5487.381	20	18218.57	${}^{6}\mathrm{F}_{5/2}^{0} = 24091.39(-3/2)$
6132.934	40	16300.90	${}^{6}\mathrm{H}^{\circ}_{7/2} = 17104.72~(~7/2)$	5484.872	10U	18226.90	${}^6\mathrm{F}^{\mathrm{o}}_{\mathrm{7/2}}~-24789.86~(~9/2)^*$
6132.125	200	16303.05	${}^{6}F_{11/2}^{\circ} - 24912.34 \ (11/2)$	5471.313	150 <i>C</i>	18272.07	${}^{6}\mathrm{F}^{\mathrm{o}}_{\mathrm{3/2}}$ -23732.57 (1/2)
6117.382	100	16342.34	${}^{6}F_{7/2}^{\circ} - 22905.24 (5/2)$	5430.600	25	18409.06	${}^{6}\mathrm{H}^{\circ}_{9/2} = 20157.85~(-7/2)$
6085.359	150 P	16428.34	${}^{6}\mathrm{F}^{\mathrm{o}}_{5/2}$ -22301.24 (5/2)	5421.374	10	18440.38	${}^{6}\text{H}^{\circ}_{11/2} - 21237.49 (-9/2)$
6082.102	30S	16437.13	${}^{6}\mathrm{F}^{\circ}_{5/2} = -22309.94 \ (7/2)$	5413.736	100 <i>C</i>	18466.40	${}^{6}\mathrm{F}_{3/2}^{6} = 23926.91 (-3/2)$
6053.356	150	16515.19	${}^{6}\mathrm{F}^{\circ}_{5/2} = 22388.06~(-3/2)$	5408.846	100 <i>C</i>	18483.09	${}^{6}\mathrm{F}^{\circ}_{1/2}$ -23732.57 (1/2)
6039.646	30	16552.68	${}^{6}F_{5/2}^{6^{-}} - 22425.58 (5/2)$	5405.328	2	18495.12	${}^{6}\mathrm{H}^{\circ}_{13/2} - 22414.17~(11/2)$
6032.252	90	16572.97	${}^{6}\mathrm{F}^{\circ}_{9/2} = 24071.03 \ (9/2)$	5392.454	10	18539.28	${}^{6}\mathrm{H}^{\circ}_{15/2} - 23629.06~(13/2)$
6015.361	5	16619.50	${}^{6}\mathrm{F}^{\circ}_{3/2} - 22080.08 (5/2)$	5390.622	20	18545.58	${}^6\mathrm{F}^{\mathrm{o}}_{5/2}~-24418.44~(~7/2)$
6013.146	40	16625.63	${}^{6}\mathrm{F}^{\circ}_{7/2} = 23188.54 \ (5/2)$	5365.939	50	18630.89	${}^{6}\mathrm{F}^{\circ}_{3/2} - 24091.39 \ (3/2)$
5980.648	100 <i>D</i>	16715.97	${}^{6}\mathrm{F}^{\circ}_{7/2} - 23278.90 \ (7/2)$	5352.567	25 <i>C</i>	18677.43	${}^{6}F^{\circ}_{1/2} - 23926.91 (3/2)$
5973.373	10	16736.32	${}^{6}\mathrm{F}^{\circ}_{9/2} - 24234.42 \ (9/2)$	5334.737	200	18739.85	${}^{6}F_{9/2}^{\circ} - 26237.84 (9/2)$
5969.214	20	16747.98	${}^{6}F_{11/2}^{\circ} - 25357.24 (11/2)$	5305.840	75S	18841.91	${}^{6}\mathrm{F}^{\mathrm{o}}_{1/2} = 24091.39 (3/2)$
5960.957	3	16771.18	${}^{6}F_{7/2}^{\circ} - 23334.10(5/2)$	5305.732	50 <i>B</i>	18842.30	${}^{6}\mathrm{H}^{\circ}_{13/2} - 22761.33~(11/2)$
5959.738	125	16774.61	${}^{6}\mathrm{F}^{\circ}_{7/2} = 23337.53 \ (\ 7/2)$	5303.854	7	18848.97	${}^{6}\mathrm{H}^{\circ}_{15/2} - 23938.76~(13/2)$
5953.095	100	16793.33	${}^{6}F^{\circ}_{11/2} - 25402.61 \ (11/2)$	5290.064	15	18898.10	${}^{6}\mathrm{H}^{\circ}_{13/2} - 22817.13~(11/2)$
5951.191	100	16798.71	${}^{6}F^{\circ}_{3/2} - 22259.21 \ (1/2)$	5286.398	2	18911.21	${}^{6}\mathrm{H}^{\circ}_{9/2} - 20660.00 ~(7/2)$
5936.504	200	16840.26	${}^{6}F^{\circ}_{9/2} - 24338.33 (9/2)$	5252.679	25	19032.61	$^{6}\mathrm{H}^{\circ}_{15/2} - 24122.41~(13/2)$
5922.221	3	16880.88	${}^{6}\mathrm{F}^{\mathrm{o}}_{7/2} - 23443.79 \ (5/2)$	5230.058	10	19114.93	${}^{6}\mathrm{H}^{\circ}_{13/2} - 23033.95~(11/2)$
5909.318	5	16917.74	${}^{6}\mathrm{F}^{\circ}_{7/2} = 23480.63 \ (9/2)$	5227.747	20	19123.38	${}^{6}\mathrm{H}^{\circ}_{11/2} - 21920.49~(-9/2)$
5905.899	100	16927.53	${}^{6}F^{\circ}_{3/2} - 22388.06 (-3/2)$	5218.879	100	19155.87	${}^{6}\mathrm{H}^{\circ}_{15/2} - 24245.66~(13/2)$
5899.630	20	16945.52	${}^{6}F^{\circ}_{9/2} - 24443.57 (9/2)$	5217.699	30P	19160.20	${}^{6}\mathrm{H}^{\circ}_{9/2} - 20909.00 ~(~7/2)$
5892.838	10P	16965.05	${}^{6}F_{3/2} = -22425.58 (5/2)$	5185.467	100	19279.30	${}^{6}\text{H}^{\circ}_{13/2} - 23198.33 (11/2)$
5877.354	300	17009.74	$r_{1/2} = -22259.21 (1/2)$	5171.689	10	19330.66	$P_{11/2} = 27939.87 (-9/2)$
5878.337	50	17021.38	$r_{7/2} = 23584.31 (-7/2)$	5166.176	10P	19351.29	${}^{\circ}\mathbf{H}_{9/2}^{\circ} = 21100.10 \ (-7/2)$
5869.549	30	17032.36	${}^6\mathrm{F}^\circ_{5/2}$ -22905.24 (5/2)	5165.623	150	19353.36	$^{6}\mathrm{H}^{\circ}_{15/2}-24443.15~(13/2)$
5859.865	50	17060.51	${}^{6}\mathrm{F}^{\circ}_{9/2} - 24558.56 \ (9/2)$	5165.443	100	19354.03	${}^{6}\mathrm{H}^{\mathrm{o}}_{7/2} - 20157.85 ~(~7/2)$
5844.718	200L	17104.72	${}^{6}F_{5/2}^{\circ} = 17104.72 (7/2)$	5150.995	150	19408.32	${}^{6}\mathrm{H}^{\circ}_{11/2} - 22205.44~(9/2)$
5833.183	125	17138.55	${}^6\mathrm{F}^{\mathrm{o}}_{\mathrm{1/2}}~-22388.06~(~3/2)$	5146.298	500R3	19426.03	${}^{6}\mathrm{H}^{\circ}_{13/2} - 23345.07~(11/2)$
5829.407	50	17149.65	${}^{6}\mathrm{F}^{\circ}_{7/2}$ -23712.56 (7/2)	5145.126	400R4	19430.46	${}^{6}\mathrm{H}^{o}_{15/2} - 24520.23~(13/2)$

TABLE 4. Classified lines of Pm I-Continued

λ (A)	I	σ (cm ⁻¹)	Classification	λ (A)	I	σ (cm ⁻¹)	Classification
5136.752 5132.836 5129.749 5127.342 5111.431	5 10C 200 400R3 40	19462.13 19476.98 19488.70 19497.85 19558.54		4892.516 4890.549 4889.191 4887.018 4885.070	700R2 10 50C 500R3 25	20433.68 20441.89 20447.57 20456.66 20464.82	
5105.170 5100.766 5096.601 5096.181 5094.831	50 400R3 50 200 400R3	19582.53 19599.44 19615.45 19617.07 19622.27		4882.946 4881.674 4872.416 4871.845 4870.957	1 2C 700R2 30 50	20473.72 20479.06 20517.97 20520.37 20524.11	
5092.418 5087.872 5085.154 5081.182 5079.822	200 10 <i>C</i> 25 50 100	19631.56 19649.10 19659.61 19674.98 19680.24	$\begin{array}{l} {}^6H^{\circ}_{13/2}-23550.60~(11/2)\\ {}^6H^{\circ}_{11/2}-22446.20~(11/2)\\ {}^6H^{\circ}_{11/2}-22456.72~(-9/2)\\ {}^6F^{\circ}_{7/2}-26237.84~(-9/2)\\ {}^6F^{\circ}_{15/2}-24770.04~(13/2) \end{array}$	4869.801 4866.147 4865.724 4865.302 4862.183	400R4 100 500R2 300R3 100	20528.98 20544.40 20546.19 20547.97 20561.15	$\begin{array}{l} {}^6H_{15/2}^\circ-25618.77~(15/2)\\ {}^6H_{7/2}^\circ-21348.22~(~7/2)\\ {}^6H_{9/2}^\circ-22294.96~(~9/2)\\ {}^6H_{11/2}^\circ-23345.07~(11/2)\\ {}^6H_{9/2}^\circ-22309.94~(~7/2) \end{array}$
5072.149 5071.094 5058.311 5051.739 5043.672	150 25 300R2 60 15	19710.02 19714.12 19763.93 19789.65 19821.30		4860.745 4860.619 4858.210 4856.687 4855.787	700R1 400R3 25 100 75	20567.23 20567.77 20577.97 20584.42 20588.23	$\begin{array}{l} {}^{6}\mathrm{H}_{7/2}^{\circ} = -21371.05~(~~7/2) \\ {}^{6}\mathrm{H}_{5/2}^{\circ} = -20567.76~(~~5/2) \\ {}^{6}\mathrm{F}_{9/2}^{\circ} = -28075.94~(~~9/2) \\ {}^{6}\mathrm{H}_{13/2}^{\circ} = -24503.45~(11/2) \\ {}^{6}\mathrm{F}_{9/2}^{\circ} = -28086.21~(11/2) \end{array}$
5034.813 5030.805 5029.624 5026.019 5019.185	50L 200R3 50 <i>C</i> 30 100	19856.18 19871.99 19876.66 19890.91 19918.00	$\begin{array}{r} {}^{6}\mathrm{H}^{\circ}_{7/2} \ -20660.00 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} \ -20675.81 \ (\ 5/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} \ -21625.45 \ (\ 9/2) \\ {}^{6}\mathrm{F}^{\circ}_{3/2} \ -25351.46 \ (\ 3/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} \ -21666.80 \ (\ 7/2) \end{array}$	4852.727 4851.808 4851.379 4849.663 4844.012	350R3 50 35 20 200	20601.21 20605.12 20606.94 20614.23 20638.28	$\label{eq:startestimate} \begin{array}{l} {}^{6}H_{13/2}^{\circ}-24520.23~(13/2) \\ {}^{6}F_{3/2}^{\circ}-26065.63~(-1/2) \\ {}^{6}H_{9/2}^{\circ}-22355.68~(-9/2) \\ {}^{6}H_{13/2}^{\circ}-24533.27~(11/2) \\ {}^{6}H_{11/2}^{\circ}-23435.40~(-9/2) \end{array}$
5007.559 5002.571 4997.095 4993.676 4993.601	15 10 500R1 50 75	19964.24 19984.15 20006.04 20019.74 20020.04	$\begin{array}{l} {}^{6}H^{\circ}_{11/2}-22761.33~(11/2)\\ {}^{6}H^{\circ}_{9/2}-21732.93~(-9/2)\\ {}^{6}H^{\circ}_{5/2}-20006.04~(-3/2)\\ {}^{6}H^{\circ}_{13/2}-23938.76~(13/2)\\ {}^{6}H^{\circ}_{11/2}-22817.13~(11/2) \end{array}$	4841.379 4840.626 4838.919 4837.655 4835.220	15 100 400R4 800R1 10S	20649.50 20652.71 20660.00 20665.40 20675.80	$\begin{array}{r} {}^6F^{\circ}_{5/2} & -26522.35 \ (\ 3/2) \\ {}^6F^{\circ}_{9/2} & -28150.73 \ (\ 7/2) \\ {}^6H^{\circ}_{5/2} & -20660.00 \ (\ 7/2) \\ {}^6H^{\circ}_{9/2} & -22414.17 \ (11/2) \\ {}^6H^{\circ}_{5/2} & -20675.81 \ (\ 5/2) \end{array}$
4981.727 4975.162 4973.250 4972.448 4968.843	5L 5 25 150R5 35S	20067.76 20094.24 20101.97 20105.21 20119.79	$\begin{array}{rrr} {}^6F^\circ_{7/2} & -26630.56 \ (\ 5/2) \\ {}^6H^\circ_{3/2} - 24013.29 \ (13/2)* \\ {}^6F^\circ_{1/2} & -25351.46 \ (\ 3/2) \\ {}^6H^\circ_{7/2} & -20909.00 \ (\ 7/2) \\ {}^6H^\circ_{13/2} - 24038.82 \ (11/2) \end{array}$	4833.506 4833.417 4832.297 4830.170 4828.524	50 75 50 125 <i>C</i> 20	20683.14 20683.52 20688.31 20697.42 20704.47	$\begin{array}{l} {}^{6}\mathrm{F}_{7/2}^{\circ} = -27245.99 ~(5/2) \\ {}^{6}\mathrm{H}_{11/2}^{\circ} = -23480.63 ~(9/2) \\ {}^{6}\mathrm{F}_{9/2}^{\circ} = -28186.31 ~(7/2) \\ {}^{6}\mathrm{H}_{9/2}^{\circ} = -22446.20 ~(11/2) \\ {}^{6}\mathrm{H}_{11/2}^{\circ} = -23501.57 ~(11/2) \end{array}$
4965.600 4959.461 4956.053 4948.286 4946.851	5 700R1 100 125 100	20132.94 20157.86 20171.72 20203.38 20209.24	$\begin{array}{r} {}^6F^\circ_{7/2} & -26695.79 \ (\ 5/2) \\ {}^6H^\circ_{5/2} & -20157.85 \ (\ 7/2) \\ {}^6H^\circ_{9/2} & -21920.49 \ (\ 9/2) \\ {}^6H^\circ_{13/2} & -24122.41 \ (13/2) \\ {}^6H^\circ_{11/2} & -23006.35 \ (11/2) \end{array}$	4827.716 4821.054 4817.116 4816.438 4816.131	400R3 40 400R4 75 7P	20707.94 20736.56 20753.51 20756.43 20757.75	$\begin{array}{r} {}^6\mathrm{H}^\circ_{9/2} = -22456.72~(~9/2) \\ {}^6\mathrm{F}^\circ_{5/2} = -26609.39~(~5/2) \\ {}^6\mathrm{H}^\circ_{1/2} = -23550.60~(11/2) \\ {}^6\mathrm{F}^\circ_{7/2} = -27319.28~(~7/2) \\ {}^6\mathrm{F}^\circ_{5/2} = -26630.56~(~5/2) \end{array}$
4945.127 4942.390 4940.101 4934.027 4932.994	125 40 <i>S</i> 30 50 600R1	20216.28 20227.48 20236.85 20261.77 20266.01	$\begin{array}{l} {}^6H^{\circ}_{15/2}-25306.07~(15/2)\\ {}^6H^{\circ}_{9/2}-21976.26~(~7/2)\\ {}^6H^{\circ}_{11/2}-23033.95~(11/2)\\ {}^6H^{\circ}_{13/2}-24180.80~(13/2)\\ {}^6H^{\circ}_{5/2}-20265.98~(~5/2) \end{array}$	4815.000 4812.914 4812.323 4811.850 4809.536	50C 100 100 50P 700R2	20762.63 20771.63 20774.18 20776.22 20786.22	$eq:started_st$
4929.960 4925.637 4918.283 4917.008 4916.047	3 10C 400R4 2C 3C	20278.48 20296.28 20326.62 20331.90 20335.87	$\begin{array}{rl} {}^6F^\circ_{7/2} & -26841.36\ (\ 5/2) \\ {}^6H^\circ_{7/2} & -21100.10\ (\ 7/2) \\ {}^6H^\circ_{13/2} & -24245.66\ (13/2) \\ {}^6F^\circ_{9/2} & -27829.89\ (\ 9/2) \\ {}^6H^\circ_{9/2} & -22084.65\ (\ 7/2) \end{array}$	4808.994 4802.618 4801.356 4801.051 4800.083	30 30C 900R1 100 3	20788.56 20816.16 20821.63 20822.95 20827.15	$\begin{array}{r} {}^6\mathrm{F}^{0}_{2} -27351.42(\ 7/2) \\ {}^6\mathrm{F}^{0}_{1/2} -26065.63(\ 1/2) \\ {}^6\mathrm{H}^{0}_{2} -21625.45(\ 9/2) \\ {}^6\mathrm{F}^{5}_{2} -26695.79(\ 5/2) \\ {}^6\mathrm{F}^{5}_{9/2} -28325.13(\ 7/2) \end{array}$
4915.234 4904.278 4904.035 4900.296 4897.663	125 300R4 15 <i>S</i> 400R3 3 <i>P</i>	20339.23 20384.67 20385.68 20401.23 20412.20	$^6\mathrm{H}^{\circ}_{7/2}$ -21143.06 ($7/2$) $^6\mathrm{H}^{\circ}_{5/2}$ -25474.46 (15/2)* $^6\mathrm{F}^{\circ}_{11/2}$ -28994.90 (11/2) $^6\mathrm{H}^{\circ}_{11/2}$ -23198.33 (11/2) $^6\mathrm{H}^{\circ}_{11/2}$ -26285.02 ($7/2$)*	4799.491 4798.977 4797.586 4797.171 4794.588	150 700R1 100 15 250	20829.72 20831.95 20837.99 20839.79 20851.02	$\begin{array}{l} {}^{6}H_{15/2}^{\circ}-25919.50~(13/2)\\ {}^{6}H_{11/2}^{\circ}-23629.06~(13/2)\\ {}^{6}H_{3/2}^{\circ}-22586.77~(-9/2)\\ {}^{6}H_{3/2}^{\circ}-26300.30~(-1/2)\\ {}^{6}H_{3/2}^{\circ}-24770.04~(13/2)\\ \end{array}$

TABLE 4. Classified lines of Pm I-Continued

λ (Α)	Í	σ (cm ⁻¹)	Classification	λ (Α)	I	σ (cm ⁻¹)	Classification
4794.207 4791.840 4782.081 4781.292 4780.285	50 35 <i>C</i> 150R4 900R1 150	20852.68 20862.98 20905.55 20909.00 20913.41	$\begin{array}{r} {}^{6}F^{\circ}_{5/2} & -26725.52 \left(\begin{array}{c} 3/2 \right) \\ {}^{6}H^{\circ}_{7/2} & -21666.80 \left(\begin{array}{c} 7/2 \right) \\ {}^{6}H^{\circ}_{9/2} & -22654.34 \left(\begin{array}{c} 7/2 \right) \\ {}^{6}H^{\circ}_{5/2} & -20909.00 \left(\begin{array}{c} 7/2 \right) \\ {}^{6}F^{\circ}_{7/2} & -27476.28 \left(\begin{array}{c} 7/2 \right) \end{array} \end{array}$	4678.918 4678.093 4677.916 4677.456 4675.764	60 400R5 500R2 200 5 <i>C</i>	21366.48 21370.25 21371.06 21373.16 21380.89	$\begin{array}{r} {}^{6}\mathrm{H}^{\circ}_{15/2}-26456.26~(13/2)\\ {}^{6}\mathrm{F}^{\circ}_{3/2}-26830.74~(-3/2)\\ {}^{6}\mathrm{H}^{\circ}_{5/2}-21371.05~(-7/2)\\ {}^{6}\mathrm{F}^{\circ}_{5/2}-27245.99~(-5/2)\\ {}^{6}\mathrm{F}^{\circ}_{3/2}-26841.36~(-5/2) \end{array}$
4776.699 4773.458 4771.916 4770.142 4768.866	100R5 700R1 150 150 25	20929.11 20943.32 20950.09 20957.88 20963.48	$\begin{array}{l} {}^{6}\mathrm{H}^{2}_{7/2} - 21732.93 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}\mathrm{H}^{2}_{1^{1/2}} - 23740.42 \left(13/2 \right)^{*} \\ {}^{6}\mathrm{F}^{o}_{7/2} - 27512.95 \left(\begin{array}{c} 5/2 \right) \\ {}^{6}\mathrm{F}^{o}_{5/2} - 26830.74 \left(\begin{array}{c} 3/2 \right) \\ {}^{6}\mathrm{H}^{o}_{1^{1/2}} - 23760.57 \left(11/2 \right) \end{array} \end{array}$	4675.148 4674.420 4671.759 4671.234 4665.188	35 500R4 400 500R2 400R2	21383.71 21387.04 21399.22 21401.63 21429.36	$\begin{array}{l} {}^{6}H_{1/2}^{\bullet} \longrightarrow 24180.80 \ (13/2) \\ {}^{6}H_{13/2}^{\bullet} \longrightarrow 25306.07 \ (15/2) \\ {}^{6}F_{11/2}^{\bullet} \longrightarrow 30008.40 \ (11/2) \\ {}^{6}H_{7/2}^{\bullet} \longrightarrow 22205.44 \ (9/2) \\ {}^{6}H_{9/2}^{\bullet} \longrightarrow 23178.13 \ (7/2) \end{array}$
4767.719 4766.024 4763.670 4762.569 4762.309	60 5C 2 700R1 5C	20968.53 20975.99 20986.35 20991.20 20992.35	$\begin{array}{r} {}^{6}F^{\circ}_{5/2} & -26841.36\ (\ 5/2) \\ {}^{6}F^{\circ}_{11/2} & -29585.21\ (11/2) \\ {}^{6}F^{\circ}_{11/2} & -29595.58\ (\ 9/2) \\ {}^{6}H^{\circ}_{15/2} & -26080.99\ (17/2) \\ {}^{6}F^{\circ}_{3/2} & -28490.35\ (\ 9/2) \end{array}$	4663.455 4663.261 4661.729 4661.476 4661.012	600R2 300R4 25 <i>U</i> 40 <i>C</i> 60	21437.33 21438.22 21445.26 21446.43 21448.56	$\begin{array}{c} {}^{6}\mathrm{H}_{1/2}^{\circ}-24234.42~(~9/2)\\ {}^{6}\mathrm{H}_{13/2}^{\circ}-25357.24~(11/2)\\ {}^{6}\mathrm{F}_{7/2}^{\circ}-28008.09~(~7/2)*\\ {}^{6}\mathrm{F}_{5/2}^{\circ}-27319.28~(~7/2)\\ {}^{6}\mathrm{H}_{11/2}^{\circ}-24245.66~(13/2) \end{array}$
4762.095 4758.996 4758.694 4757.968 4757.732	75U 800R1 150 5 500R2	$\begin{array}{c} 20993.29\\ 21006.96\\ 21008.29\\ 21011.50\\ 21012.54 \end{array}$	$\label{eq:constraint} \begin{array}{l} {}^6\mathrm{H}^\circ_{13/2}-24912.34~(11/2)\\ {}^6\mathrm{H}^\circ_{15/2}-26096.75~(17/2)\\ {}^6\mathrm{F}^\circ_{3/2}-26468.80~(-1/2)\\ {}^6\mathrm{H}^\circ_{15/2}-26101.28~(13/2)\\ {}^6\mathrm{H}^\circ_{11/2}-22761.33~(-9/2) \end{array}$	4660.794 4659.745 4659.383 4658.169 4657.301	500R3 2 300 75 50	21449.56 21454.40 21456.06 21461.65 21465.66	
4756.247 4751.701 4749.076 4747.268 4746.595	90D 20 70D 3C 30	21019.10 21039.21 21050.84 21058.86 21061.84	$\begin{array}{r} {}^{6}\mathrm{F}^{\circ}_{3/2} & -26479.61 \ (\ 3/2) \\ {}^{6}\mathrm{F}^{\circ}_{11/2} & -29648.42 \ (\ 9/2)^{*} \\ {}^{6}\mathrm{F}^{\circ}_{1/2} & -26300.30 \ (\ 1/2) \\ {}^{6}\mathrm{F}^{\circ}_{7/2} & -27621.74 \ (\ 7/2) \\ {}^{6}\mathrm{F}^{\circ}_{3/2} & -26522.35 \ (\ 3/2) \end{array}$	$\begin{array}{r} 4655.046\\ 4654.496\\ 4653.413\\ 4652.834\\ 4650.525\end{array}$	500R5 400 400R3 5 500	21476.05 21478.59 21483.59 21486.26 21496.93	
4745.282 4745.128 4739.776 4738.779 4737.987	10P 350R2 200C 2 500R2	21067.67 21068.35 21092.15 21096.58 21100.11	$\begin{array}{r} {}^{6}\mathrm{F}^{\circ}_{9/2} & -28565.66 \ (9/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} & -22817.13 \ (11/2) \\ {}^{6}\mathrm{H}^{\circ}_{15/2} - 26181.98 \ (13/2) \\ {}^{6}\mathrm{F}^{\circ}_{11/2} - 29705.77 \ (11/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} & -21100.10 \ (7/2) \end{array}$	4650.421 4649.508 4648.537 4647.028 4645.234	600R5 600 50 600R3 40	$\begin{array}{c} 21497.41\\ 21501.63\\ 21506.12\\ 21513.11\\ 21521.41 \end{array}$	$\begin{array}{r} {}^{6}\mathrm{H}^{\circ}_{7/2} - 22301.24 \ (\ 5/2) \\ {}^{6}\mathrm{H}^{\circ}_{15/2} - 26591.40 \ (13/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} - 22309.94 \ (\ 7/2) \\ {}^{6}\mathrm{F}^{\circ}_{7/2} - 28075.94 \ (\ 9/2) \\ {}^{6}\mathrm{F}^{\circ}_{7/2} - 28084.28 \ (\ 5/2) \end{array}$
4735.915 4734.274 4728.678 4728.361 4727.144	75 <i>C</i> 800R1 400R3 700R1 10	21109.34 21116.66 21141.65 21143.06 21148.50	$\begin{array}{r} {}^{6}F^{\circ}_{9/2} & -28607.33 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}H^{\circ}_{7/2} & -21920.49 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}H^{\circ}_{11/2} - 23938.76 \left(13/2 \right) \\ {}^{6}H^{\circ}_{5/2} & -21143.06 \left(\begin{array}{c} 7/2 \right) \\ {}^{6}F^{\circ}_{11/2} & -29757.69 \left(11/2 \right) \end{array}$	4643.959 4643.355 4640.961 4638.672 4633.473	200 700R2 400R3 100 300 <i>B</i>	$\begin{array}{c} 21527.32\\ 21530.13\\ 21541.23\\ 21551.86\\ 21576.04 \end{array}$	
4727.062 4723.722 4722.332 4721.752 4719.607	300 125 40 <i>D</i> 30 <i>B</i> 2	21148.87 21163.83 21170.06 21172.66 21182.28	$\begin{array}{r} {}^{6}\mathrm{F}^{\circ}_{3/2} & -26609.39 \ (5/2) \\ {}^{6}\mathrm{F}^{\circ}_{5/2} & -27036.66 \ (5/2) \\ {}^{6}\mathrm{F}^{\circ}_{3/2} & -26630.56 \ (5/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} & -21976.26 \ (7/2) \\ {}^{6}\mathrm{F}^{\circ}_{9/2} & -28680.26 \ (7/2) \end{array}$	4633.452 4632.353 4630.930 4630.742 4630.349	600R3 10 <i>P</i> 200 15 125	21576.14 21581.26 21587.89 21588.77 21590.60	
4718.800 4717.351 4712.058 4711.368 4708.968	100 75 50 125C 150	21185.90 21192.41 21216.21 21219.32 21230.14	$\label{eq:heat} \begin{array}{l} {}^{6}H_{9/2}^{\circ}-22934.70\ (\ 7/2)\\ {}^{6}H_{15/2}^{\circ}-26282.20\ (13/2)\\ {}^{6}H_{11/2}^{\circ}-24013.29\ (13/2)\\ {}^{8}F_{1/2}^{\circ}-26468.80\ (\ 1/2)\\ {}^{6}F_{1/2}^{\circ}-26479.61\ (\ 3/2) \end{array}$	4629.127 4627.595 4625.289 4624.409 4623.675	150 400R3 500R2 900 <i>W</i> 700R1	21596.30 21603.45 21614.22 21618.33 21621.76	$\begin{array}{l} {}^{6}\mathrm{H}^{9}_{9/2} - 23345.07 \ (11/2) \\ {}^{6}\mathrm{F}^{5}_{5/2} - 27476.28 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{6}_{15/2} - 26703.97 \ (13/2) \\ {}^{6}\mathrm{H}^{6}_{13/2} - 25537.36 \ (13/2) \\ {}^{6}\mathrm{H}^{9}_{7/2} - 22425.58 \ (\ 5/2) \end{array}$
4706.401 4705.114 4702.886 4701.242 4700.803	100 100 10 W 1 100C	21241.72 21247.52 21257.59 21265.03 21267.01	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{1/2}-24038.82~(11/2)\\ {}^{6}\mathrm{F}^{\circ}_{01/2}-29856.72~(11/2)\\ {}^{6}\mathrm{H}^{\circ}_{9/2}-23006.35~(11/2)\\ {}^{6}\mathrm{H}^{\circ}_{3/2}-26725.52~(-3/2)\\ {}^{6}\mathrm{F}^{\circ}_{7/2}-27829.89~(-9/2) \end{array}$	4623.310 4621.571 4619.750 4618.487 4618.398	500 500 500R4 400R4 200	21623.47 21631.61 21640.13 21646.05 21646.47	$\begin{array}{rrr} {}^{6}F_{7/2}^{\circ} & -28186.31 (\ 7/2) \\ {}^{6}F_{9/2}^{\circ} & -29129.60 (\ 9/2) \\ {}^{6}F_{3/2}^{\circ} & -27512.95 (\ 5/2) \\ {}^{6}H_{11/2}^{\circ} -24443.15 (13/2) \\ {}^{6}H_{11/2}^{\circ} -24443.57 (\ 9/2) \end{array}$
4699.508 4699.276 4698.761 4697.749 4696.796	200 150 150 30 <i>C</i> 500R2	21272.87 21273.92 21276.25 21280.83 21285.16	$\begin{array}{l} {}^{6}\mathrm{F}^{\prime}_{1/2} & -26522.35 \ (\ 3/2) \\ {}^{6}\mathrm{H}^{\prime}_{11/2} - 24071.03 \ (\ 9/2) \\ {}^{6}\mathrm{H}^{\prime}_{7/2} & -22080.08 \ (\ 5/2) \\ {}^{6}\mathrm{H}^{\prime}_{7/2} & -22084.65 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\prime}_{9/2} & -23033.95 \ (11/2) \end{array}$	4617.023 4615.961 4614.670 4614.059 4612.787	600R1 50 <i>SP</i> 2 150 10	21652.91 21657.89 21663.96 21666.82 21672.80	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{7/2} - 22456.72 \ (9/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} - 21657.89 \ (5/2) \\ {}^{8}\mathrm{F}^{\circ}_{9/2} - 29161.96 \ (9/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} - 21666.80 \ (7/2) \\ {}^{6}\mathrm{F}^{\circ}_{11/2} - 30281.98 \ (13/2) \end{array}$
4693.589 4687.952 4682.920 4682.266 4680.223	40L 20 700R1 150 2	21299.70 21325.31 21348.22 21351.20 21360.52	$\begin{array}{l} {}^{6}F_{11/2}^{\circ}-29908.90\ (9/2)\\ {}^{6}H_{11/2}^{\circ}-24122.41\ (13/2)\\ {}^{6}H_{51/2}^{\circ}-21348.22\ (7/2)\\ {}^{6}F_{11/2}^{\circ}-29960.42\ (11/2)^{*}\\ {}^{6}F_{7/2}^{\circ}-27923.37\ (5/2) \end{array}$	4609.846 4607.062 4605.657 4604.739 4694.593	500R3 150 600R2 400C 400	21686.62 21699.73 21706.35 21710.67 21711.36	$\begin{array}{l} {}^{6}\mathrm{H}^{9}_{9/2} - 23435.40 \ (9/2) \\ {}^{6}\mathrm{H}^{+}_{13/2} - 25618.77 \ (15/2) \\ {}^{6}\mathrm{H}^{+}_{01/2} - 24503.45 \ (11/2) \\ {}^{6}\mathrm{F}^{+}_{7/2} - 28273.52 \ (7/2) \\ {}^{6}\mathrm{F}^{+}_{7/2} - 28274.21 \ (9/2) \end{array}$

595

TABLE 4.	Classified	lines of	Pm I-	Continued
----------	------------	----------	-------	-----------

λ(Α)	Ι	σ (cm ⁻¹)	Classification	λ (Α)	Ι	σ (cm ⁻¹)	Classification
4602.957 4602.105 4600.250 4599.338 4597.546	400R3 15W 500R3 35 800R5	21719.08 21723.10 21731.86 21736.17 21744.64	$\label{eq:hardenergy} \begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{7/2} \; - 22522.90 \; (\; 5/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} - 24520.23 \; (13/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} \; - 23480.63 \; (\; 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} - 24533.27 \; (11/2) \\ {}^{6}\mathrm{F}^{\circ}_{9/2} \; - 29242.64 \; (11/2) \end{array}$	4501.666 4500.925 4500.330 4499.398 4498.090	20C 40 350R2 150 3	22207.77 22211.42 22214.36 22218.96 22225.42	
4596.646 4595.822 4593.991 4593.817 4593.086	400C 400R4 50 200 75	21748.90 21752.80 21761.47 21762.29 21765.76	$\begin{array}{r} {}^{6}F_{5/2}^{\circ} & -27621.74 \ (\ 7/2) \\ {}^{6}H_{9/2}^{\circ} & -23501.57 \ (11/2) \\ {}^{6}H_{11/2}^{\circ} & -24558.56 \ (\ 9/2) \\ {}^{6}F_{7/2}^{\circ} & -28325.13 \ (\ 7/2) \\ {}^{6}F_{11/2}^{\circ} & -30374.95 \ (11/2) \end{array}$	4490.504 4487.493 4485.842 4485.052 4482.792	300R4 20 25 300R3 75 <i>U</i>	22262.97 22277.91 22286.11 22290.03 22301.27	$\begin{array}{l} {}^6\mathrm{H}^{\circ}_{3/2}-26181.98~(13/2)\\ {}^6\mathrm{F}^{\circ}_{5/2}-28150.73~(~7/2)\\ {}^6\mathrm{F}^{\circ}_{9/2}-29784.08~(9/2)\\ {}^6\mathrm{H}^{\circ}_{9/2}-24038.82~(11/2)\\ {}^6\mathrm{H}^{\circ}_{5/2}-22301.24~(~5/2) \end{array}$
4589.456 4588.921 4585.487 4583.131 4581.145	125 35 300R3 125 300	21782.97 21785.51 21801.82 21813.03 21822.49	$\begin{array}{r} {}^6\mathrm{H}^{*}_{7/2} \ -22586.77 \ (9/2) \\ {}^6\mathrm{F}^{*}_{3/2} \ -27245.99 \ (5/2) \\ {}^6\mathrm{H}^{*}_{9/2} \ -23550.60 \ (11/2) \\ {}^6\mathrm{F}^{*}_{5/2} \ -27685.89 \ (3/2)^* \\ {}^6\mathrm{H}^{*}_{9/2} \ -23571.27 \ (9/2) \end{array}$	4481.603 4481.047 4478.577 4471.271 4470.382	300R1 15 350R1 15D 25P	22307.19 22309.95 22322.26 22358.73 22363.18	$\begin{array}{l} {}^6H^{\circ}_{11/2}-25104.27~(11/2)\\ {}^6H^{\circ}_{3/2}-22309.94~(~7/2)\\ {}^6H^{\circ}_{9/2}-24071.03~(~9/2)\\ {}^6F^{\circ}_{9/2}-29856.72~(11/2)\\ {}^6H^{\circ}_{13/2}-26282.20~(13/2) \end{array}$
4579.478 4578.411 4578.285 4575.752 4575.267	300R3 200R5 300 200 400R1	21830.43 21835.52 21836.12 21848.21 21850.52	$\begin{array}{l} {}^{6}H_{11/2}^{\circ}-24627.53~(~9/2)\\ {}^{6}H_{9/2}^{\circ}-23584.31~(~7/2)\\ {}^{6}H_{13/2}^{\circ}-25755.17~(11/2)\\ {}^{6}F_{11/2}^{\circ}-30457.44~(13/2)\\ {}^{6}H_{7/2}^{\circ}-22654.34~(~7/2) \end{array}$	4468.155 4466.077 4465.838 4465.408 4462.895	250R2 8C 125P 100C 20S	22374.32 22384.73 22385.93 22388.09 22400.69	$\label{eq:heat} \begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{7/2} \ -23178.13\ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} \ -23188.54\ (\ 5/2) \\ {}^{6}\mathrm{F}^{\circ}_{9/2} \ -29883.87\ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} \ -22388.06\ (\ 3/2) \\ {}^{6}\mathrm{F}^{\circ}_{5/2} \ -28273.52\ (\ 7/2) \end{array}$
4574.781 4572.148 4570.367 4568.145 4563.960	60 300R5 200 <i>P</i> 300R4 50	21852.85 21865.43 21873.95 21884.59 21904.66	$\begin{array}{l} {}^{6}H_{1/2}^{\circ} - 22656.68 \ (\ 5/2) \\ {}^{6}H_{151/2}^{\circ} - 26955.22 \ (15/2) \\ {}^{6}F_{3/2}^{\circ} - 27334.48 \ (\ 5/2) \\ {}^{6}H_{11/2}^{\circ} - 24681.68 \ (11/2) \\ {}^{6}F_{7/2}^{\circ} - 28467.52 \ (\ 7/2) \end{array}$	4460.859 4457.945 4452.638 4451.985 4451.350	10 30 25 100 5	22410.92 22425.57 22452.30 22455.59 22458.79	$\begin{array}{rl} {}^6F^{\circ}_{8/2} &= 29908.90 \ (\ 9/2) \\ {}^6H^{\circ}_{5/2} &= 22425.58 \ (\ 5/2) \\ {}^6F^{\circ}_{5/2} &= 28325.13 \ (\ 7/2) \\ {}^6H^{\circ}_{9/2} &= 24204.37 \ (\ 7/2) \\ {}^6F^{\circ}_{3/2} &= 27919.29 \ (\ 3/2) \end{array}$
4559.206 4558.253 4555.338 4554.034 4552.979	300R5 50 500R1 300R3 3	21927.50 21932.08 21946.12 21952.40 21957.48	${}^6F^\circ_{1/2} = -28490.35 \ (\ 9/2) \\ {}^6F^\circ_{11/2} = -30541.28 \ (11/2) \\ {}^6H^\circ_{1/2} = -21946.12 \ (\ 3/2) \\ {}^6H^\circ_{15/2} = -27042.18 \ (15/2) \\ {}^6H^\circ_{11/2} = -24754.58 \ (\ 9/2) \\ \end{array}$	4450.628 4450.544 4448.677 4448.126 4446.038	10 50 30 75 35	22462.43 22462.86 22472.28 22475.07 22485.62	$\begin{array}{l} {}^6F_{9/2}^{\circ} & -29960.42 \ (11/2)^* \\ {}^6F_{3/2}^{\circ} & -27923.37 \ (\ 5/2) \\ {}^6H_{7/2}^{\circ} & -23276.10 \ (\ 9/2) \\ {}^6H_{7/2}^{\circ} & -23278.90 \ (\ 7/2) \\ {}^6H_{9/2}^{\circ} & -24234.42 \ (\ 9/2) \end{array}$
4551.672 4549.775 4549.088 4545.173 4544.083	60 400R2 175 <i>D</i> 200 500R2	21963.79 21972.95 21976.27 21995.20 22000.47	${}^{6}\mathrm{H}^{\circ}_{9/2} = 23712.56 (7/2)$ ${}^{6}\mathrm{H}^{\circ}_{11/2} = 24770.04 (13/2)$ ${}^{6}\mathrm{H}^{\circ}_{5/2} = 21976.26 (7/2)$ ${}^{6}\mathrm{H}^{\circ}_{9/2} = 23743.96 (7/2)$ ${}^{6}\mathrm{H}^{\circ}_{13/2} = 25919.50 (13/2)$	4444.376 4441.911 4441.136 4440.995 4438.682	75 15 3L 3L 300R2	22494.03 22506.51 22510.44 22511.16 22522.89	$\label{eq:results} \begin{array}{l} {}^6F^{\circ}_{11/2} - 31103.24 \ (11/2) \\ {}^6H^{\circ}_{15/2} - 27596.27 \ (13/2) \\ {}^6F^{\circ}_{9/2} - 30008.40 \ (11/2) \\ {}^6F^{\circ}_{7/2} - 29074.03 \ (9/2) \\ {}^6H^{\circ}_{5/2} - 22522.90 \ (5/2) \end{array}$
4543.598 4542.539 4541.746 4541.415 4540.062	20C 75 450R4 300R5 300 <i>H</i>	22002.82 22007.95 22011.79 22013.40 22019.96		4437.224 4436.546 4435.859 4431.354 4430.275	125 300R3 250R4 100 100	22530.29 22533.73 22537.22 22560.13 22565.63	$\begin{array}{l} {}^{6}H_{7/2}^{\circ}-23334.10\ (\ 5/2)\\ {}^{6}H_{7/2}^{\circ}-23337.53\ (\ 7/2)\\ {}^{6}H_{13/2}^{\circ}-26456.26\ (13/2)\\ {}^{6}H_{11/2}^{\circ}-25357.24\ (11/2)\\ {}^{6}F_{9/2}^{\circ}-30063.62\ (\ 9/2) \end{array}$
4535.008 4534.608 4533.759 4533.378 4527.700	45D 100 25U 50 400R1	22044.50 22046.44 22050.57 22052.42 22080.08	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4430.054 4425.584 4424.577 4422.459 4421.935	10 35 25 10 75	22566.75 22589.54 22594.69 22605.51 22608.19	$\begin{array}{rl} {}^6F_{7 2}^{\circ} & -29129.60 \ (\ 9/2) \\ {}^6H_{9/2}^{\circ} & -24338.33 \ (\ 9/2) \\ {}^6F_{5/2}^{\circ} & -28467.52 \ (\ 7/2) \\ {}^6H_{11/2}^{\circ} & -25402.61 \ (11/2) \\ {}^6H_{11/2}^{\circ} & -25405.29 \ (13/2) \end{array}$
$\begin{array}{c} 4526.762\\ \overline{4526.231}\\ 4526.116\\ 4524.250\\ 4524.115\end{array}$	250R5 2 250R4 65 50	22084.65 22087.24 22087.80 22096.91 22097.57	$eq:started_st$	4418.871 4417.361 4416.422 4415.724 4413.540	50 5 <i>H</i> 150 150 125	22623.86 22631.60 22636.40 22639.99 22651.19	$\label{eq:response} \begin{array}{l} {}^{6}F_{3/2}^{\circ} & -28084.28 \ (\ 5/2)^{*} \\ {}^{6}H_{7/2}^{\circ} & -23435.40 \ (\ 9/2) \\ {}^{6}H_{13/2}^{\circ} & -26555.44 \ (13/2) \\ {}^{6}H_{7/2}^{\circ} & -23443.79 \ (\ 5/2) \\ {}^{6}H_{11/2}^{\circ} & -25448.28 \ (\ 9/2) \end{array}$
4523.323 4520.502 4520.128 4520.052 4517.306	200 100 40 5 200	22101.44 22115.24 22117.06 22117.44 22130.88	$\begin{array}{r} {}^6H_{7/2}^\circ - 22905.24 \ (\ 5/2) \\ {}^6H_{1/2}^\circ - 24912.34 \ (11/2) \\ {}^6F_{1/2}^\circ - 30726.26 \ (\ 9/2) \\ {}^6F_{7/2}^\circ - 28680.26 \ (\ 7/2) \\ {}^6H_{7/2}^\circ - 22934.70 \ (\ 7/2) \end{array}$	4412.924 4412.470 4409.938 4409.416 4408.552	75 500R2 125S 400R4 35	$\begin{array}{c} 22654.35\\ 22656.68\\ 22669.69\\ 22672.37\\ 22676.82\end{array}$	$\label{eq:heat} \begin{array}{l} {}^{6}H_{5/2}^{\circ} = -22654.34 \ (\ 7/2) \\ {}^{6}H_{5/2}^{\circ} = -22656.68 \ (\ 5/2) \\ {}^{6}H_{9/2}^{\circ} = -24418.44 \ (\ 7/2) \\ {}^{6}H_{13/2}^{\circ} = -26591.40 \ (13/2) \\ {}^{6}H_{7/2}^{\circ} = -23480.63 \ (\ 9/2) \end{array}$
4516.418 4513.313 4508.148 4506.843 4506.379	20 <i>CP</i> 25 1 250 60	22135.23 22150.46 22175.84 22182.26 22184.54	${}^6F^{\circ}_{5/2}-28008.09$ ($7/2)^*$ ${}^6F^{\circ}_{9/2}-29648.42$ ($9/2)^*$ ${}^6F^{\circ}_{1/2}-30785.03$ ($9/2)$ ${}^6H^{\circ}_{13/2}-26101.28$ (13/2) ${}^6H^{\circ}_{13/2}-26103.56$ (11/2)	4405.370 4405.063 4399.722 4399.305 4397.262	10 60 50 75 150	22693.20 22694.78 22722.33 22724.48 22735.04	$\begin{array}{r} {}^{6}F_{3/2}^{\circ} - 28153.69 \ (\ 5/2) \\ {}^{6}H_{9/2}^{\circ} - 24443.57 \ (\ 9/2) \\ {}^{6}H_{9/2}^{\circ} - 24471.10 \ (\ 7/2) \\ {}^{6}H_{11/2}^{\circ} - 25521.55 \ (\ 9/2) \\ {}^{6}H_{7/2}^{\circ} - 23538.86 \ (\ 5/2) \end{array}$

TABLE 4. Classified lines of Pm I-Continued

λ (A)	I	σ (cm ⁻¹)	Classification	λ (Α)	I	σ (cm ⁻¹)	Classification
4397.124 4397.066 4396.252 4393.466 4391.001	150 70D 50U 2W 75	22735.75 22736.05 22740.26 22754.68 22767.45	$\begin{array}{r} {}^{6}F_{3/2}^{6} &= 28608.57 \;(\ 3/2) \\ {}^{6}F_{3/2}^{2} &= 28196.56 \;(\ 1/2) \\ {}^{6}H_{11/2}^{6} &= 25537.36 \;(13/2) \\ {}^{6}H_{3/2}^{6} &= 24503.45 \;(11/2) \\ {}^{6}H_{7/2}^{7} &= 23571.27 \;(\ 9/2) \end{array}$	4224.049 4222.272 4218.308 4215.984 4210.411	75R4 200 50R4 60 15	23667.30 23677.26 23699.51 23712.58 23743.96	$\begin{array}{r} {}^{6}\mathrm{H}^{\circ}_{7/2} = -24471.10~(-7/2) \\ {}^{6}\mathrm{H}^{\circ}_{3/2} = -27596.27~(13/2) \\ {}^{6}\mathrm{H}^{\circ}_{3/2} = -25448.23~(-9/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} = -23712.56~(-7/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} = -23743.96~(-7/2) \end{array}$
4389.473 4388.489 4387.718 4387.630 4383.305	75 400R3 35 100 100	22775.38 22780.49 22784.49 22784.94 22807.43	$\begin{array}{l} {}^{6}\mathrm{H}_{312}^{\circ}-26694.38~(11/2)\\ {}^{6}\mathrm{H}_{712}^{\circ}-23584.31~(-7/2)\\ {}^{6}\mathrm{H}_{912}^{\circ}-24533.27~(11/2)\\ {}^{6}\mathrm{H}_{312}^{\circ}-26703.97~(13/2)\\ {}^{6}\mathrm{H}_{312}^{\circ}-28680.26~(-7/2)\\ \end{array}$	$\begin{array}{r} 4208.727\\ 4207.865\\ 4205.303\\ 4201.505\\ 4196.315\end{array}$	35 3 125 15P 85	23753.46 23758.33 23772.80 23794.29 23823.72	$\begin{array}{l} {}^{6}F_{1/2}^{\circ} = -29002.94 \left({\begin{array}{*{20}c} 3/2 \right)} \\ {}^{6}H_{11/2}^{\circ} = 26555.44 \left({13/2} \right) \\ {}^{6}H_{9/2}^{\circ} = 25521.55 \left({\begin{array}{*{20}c} 9/2 \right)} \\ {}^{6}H_{11/2}^{\circ} = 26591.40 \left({13/2} \right) \\ {}^{6}H_{7/2}^{\circ} = 24627.53 \left({\begin{array}{*{20}c} 9/2 \right)} \end{array} \end{array}$
4382.852 4369.700 4369.640 4364.583 4363.917	50 25 <i>U</i> 300R2 100 350R2	22809.78 22878.44 22878.75 22905.26 22908.76	$\begin{array}{l} {}^{6}H^{6}_{9/2} = -24558.56 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}F^{*}_{3/2} = -28338.98 \left(\begin{array}{c} 5/2 \right)^{*} \\ {}^{6}H^{6}_{9/2} = -24627.53 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}H^{5}_{3/2} = -22905.24 \left(\begin{array}{c} 5/2 \right) \\ {}^{6}H^{2}_{7/2} = -23712.56 \left(\begin{array}{c} 7/2 \right) \end{array} \end{array}$	4183.396 4181.722 4174.056 4167.915 4164.379	150 5 50 50 10	23897.29 23906.85 23950.76 23986.05 24006.42	
4359.322 4358.975 4357 943 4357.745 4356.625	80 5 100S 75 125D	$\begin{array}{c} 22932.90\\ 22934.73\\ 22940.16\\ 22941.20\\ 22947.10\\ \end{array}$	$\begin{array}{c} {}^{6}\mathrm{H}^{\circ}_{9/2} - 24681.68 \ (11/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} - 22934.70 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} - 23743.96 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{15/2} - 28030.99 \ (13/2) \\ {}^{6}\mathrm{F}^{\circ}_{1/2} - 28196.56 \ (\ 1/2) \end{array}$	4163.572 4149.687 4146.151 4137.064 4136.673	5 20CP 150R5 2 15	24011.07 24091.41 24111.96 241 <u>6</u> 4.91 24167.20	${}^{6}\mathrm{F}_{5/2}^{\circ} = -29883.87$ (7/2) ${}^{6}\mathrm{H}_{5/2}^{\circ} = -24091.39$ (3/2) ${}^{6}\mathrm{H}_{13/2}^{\circ} = -28030.99$ (13/2) ${}^{6}\mathrm{H}_{13/2}^{\circ} = -27383.92$ (15/2) ${}^{6}\mathrm{H}_{13/2}^{\circ} = -28086.21$ (11/2)
4354.545 4347.715 4345.510 4339.778 4338.856	100 <i>B</i> 200 50 80 60	22958.06 22994.12 23005.79 23036.18 23041.07		4130.322 4119.631 4104.818 4102.807 4094.117	$2 \\ 10 \\ 5P \\ 2 \\ 75$	24204.36 24267.17 24354.74 24366.68 24418.40	
4323.458 4322.156 4321.030 4318.797 4315.905	75 150 20 400 1 <i>W</i> /	23123.13 23130.09 23136.12 23148.09 23163.60	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{12/2}-27042.18~(15/2)\\ {}^{6}\mathrm{F}^{\circ}_{5/2}-29002.94~(-3/2)\\ {}^{6}\mathrm{H}^{\circ}_{9/2}-24884.90~(11/2)\\ {}^{6}\mathrm{F}^{\circ}_{3/2}-28608.57~(-3/2)\\ {}^{6}\mathrm{H}^{\circ}_{9/2}-24912.34~(11/2) \end{array}$	4085.306 4076.425 4074.455 4057.716 4056.565	200R5 2 100 5 200R3	24471.07 24524.37 24536.23 24637.45 24644.44	$\begin{array}{l} {}^6\mathrm{H}^{\circ}_{5/2}=\!$
4313.197 4311.255 4310.858 4309.779 4305.638	50 40P 2 15 200R5	23178.14 23188.58 23190.72 23196.52 23218.83		4044.537 4031.260 4007.594 3986.768 3976.162	125 100 150 200 100	24717.72 24799.13 24945.57 25075.88 25142.77	$\label{eq:heat} \begin{array}{l} {}^{6}\mathrm{H}_{7/2}^{\circ} = -25521.55~(-9/2) \\ {}^{6}\mathrm{H}_{11'2}^{\circ} = -27596.27~(13/2) \\ {}^{6}\mathrm{H}_{9/2}^{\circ} = -26694.38~(11/2) \\ {}^{6}\mathrm{H}_{9/2}^{\circ} = -28994.90~(11/2) \\ {}^{6}\mathrm{H}_{11'2}^{\circ} = -27939.87~(-9/2) \end{array}$
4305.192 4303.889 4298.848 4296.687 4294.529	35 200 <i>C</i> 40 50 20	23221.24 23228.27 23255.50 23267.20 23278.89	$\begin{array}{r} {}^{6}F_{7/2}^{\circ} & -29784.08 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}F_{9/2}^{\circ} & -30726.26 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}F_{1/2}^{\circ} & -31846.70 \left(11/2 \right) \\ {}^{6}H_{7/2}^{\circ} & -24071.03 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}H_{3/2}^{\circ} & -23278.90 \left(\begin{array}{c} 7/2 \right) \end{array} \end{array}$	3968.364 3961.816 3954.759 3953.158 3947.771	100 300 300R5 50 300R5	25192.17 25233.81 25278.84 25289.08 25323.59	${}^{6}\mathrm{H}^{\circ}_{15/2}-30281.98~(13/2)\\ {}^{6}\mathrm{H}^{\circ}_{11/2}-28030.99~(13/2)\\ {}^{6}\mathrm{H}^{\circ}_{11/2}-28075.94~(-9/2)\\ {}^{6}\mathrm{H}^{\circ}_{11/2}-28086.21~(11/2)\\ {}^{6}\mathrm{H}^{\circ}_{13/2}-29242.64~(11/2)$
4293.026 4289.872 4289.448 4286.776 4284.368	10 4P 100 125 300R5	23287.04 23304.16 23306.46 23320.99 23334.10	$\begin{array}{r} {}^{6}F^{\circ}_{9/2} & -30785.03 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}H^{\circ}_{11/2} - 26101.28 \left(13/2 \right) \\ {}^{6}H^{\circ}_{11/2} - 26103.56 \left(11/2 \right) \\ {}^{6}F^{\circ}_{7/2} & -29883.87 \left(\begin{array}{c} 7/2 \right) \\ {}^{6}H^{\circ}_{5/2} & -23334.10 \left(\begin{array}{c} 5/2 \right) \end{array} \end{array}$	3943.420 3940.912 3934.714 3930.629 3926.704	25 200 20 15 75	25351.52 25367.66 25407.61 25434.02 25459.44	
4283.751 4280.448 4279.787 4275.061 4272.179	40P 75 50U 3 100C	23337.46 23355.47 23359.07 23384.90 23400.67	$\label{eq:heat} \begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{5/2} - 23337.53 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} - 25104.27 \ (11/2) \\ {}^{6}\mathrm{F}^{\circ}_{1/2} - 28608.57 \ (\ 3/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} - 26181.98 \ (13/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} - 24204.37 \ (\ 7/2) \end{array}$	3923.982 3923.352 3916.820 3904.745 3895.073	300 400 200 75 200	25477.10 25481.20 25523.69 25602.62 25666.19	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{1/2}-28274.21~(~~9/2)\\ {}^{6}\mathrm{H}^{\circ}_{2/2}-26285.02~(~~7/2)\\ {}^{6}\mathrm{H}^{\circ}_{9/2}-27272.46\\ {}^{6}\mathrm{H}^{\circ}_{9/2}-27351.42~(~~7/2)\\ {}^{6}\mathrm{H}^{\circ}_{13/2}-29585.21~(11/2) \end{array}$
4270.924 4269.908 4264.321 4247.098 4246.451	50C 10 300R3 150R3 8	23407.55 23413.12 23443.79 23538.86 23542.45	$\begin{array}{l} {}^{6}F_{1/2}^{\circ} & -28657.02 \left(\begin{array}{c} 1/2 \right) \\ {}^{6}F_{1/2}^{\circ} & -32022.32 \left(\begin{array}{c} 9/2 \right) \\ {}^{6}H_{5/2}^{\circ} & -23443.79 \left(\begin{array}{c} 5/2 \right) \\ {}^{6}H_{5/2}^{\circ} & -23538.86 \left(\begin{array}{c} 5/2 \right) \\ {}^{6}F_{3/2}^{\circ} & -29002.94 \left(\begin{array}{c} 3/2 \right) \end{array} \end{array}$	3890.971 3885.792 3882.598 3879.598 3876.863	250 300R3 35 50 200	25693.25 25727.49 25748.66 25768.56 25786.74	$\begin{array}{l} {}^{6}H_{11/2}^{\circ}-28490.35~(-9/2)\\ {}^{6}H_{91/2}^{\circ}-27476.28~(-7/2)\\ {}^{6}F_{91/2}^{\circ}-33246.65~(-9/2)\\ {}^{6}F_{11/2}^{\circ}-28565.66~(-9/2)\\ {}^{6}H_{13/2}^{\circ}-29705.77~(11/2) \end{array}$
4238.912 4235.147 4233.467 4226.453 4225.504		23584.32 23605.28 23614.65 23653.84 23659.15		3874.034 3873.336 3870.862 3869.073 3854.297	300 300 35 75 75	25805.57 25810.22 25826.72 25838.66 25937.71	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{1/2} = -26609.39 \;(\ 5/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} = -28607.33 \;(\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{2/2} = -26630.56 \;(\ 5/2) \\ {}^{6}\mathrm{H}^{\circ}_{13/2} = -29757.69 \;(11/2) \\ {}^{6}\mathrm{H}^{\circ}_{13/2} = -29856.72 \;(11/2) \end{array}$

TABLE 4. Classified lines of Pm 1-Continued

λ (Α)	I	σ (cm ⁻¹)	Classification	λ (Α)	Ι	σ (cm ⁻¹)	Classification
3839.519 3838.951 3833.101 3831.891 3817.009	300 250W 500R5 150 300	26037.54 26041.39 26081.14 26089.37 26191.09	${}^{6}\mathrm{H}^{\circ}_{7/2} = -26841.36 (5/2)$ ${}^{6}\mathrm{H}^{\circ}_{13/2} = -29960.42 (11/2) *$ ${}^{6}\mathrm{H}^{\circ}_{9/2} = -27829.89 (9/2)$ ${}^{6}\mathrm{H}^{\circ}_{13/2} = -30008.40 (11/2)$ ${}^{6}\mathrm{H}^{\circ}_{9/2} = -27939.87 (9/2)$	3658.578 3655.898 3655.678 3655.284 3655.077	75 100 50 50 20	27325.24 27345.27 27346.91 27349.86 27351.41	
3816.033 3814.046 3810.932 3807.093 3804.538	75 50 400 25 75	26197.79 26211.44 26232.85 26259.30 26276.94	$eq:started_start_star$	3653.144 3646.844 3641.368 3639.503 3639.338	300 300 100 300 350	27365.89 27413.16 27454.39 27468.45 27469.70	$\begin{array}{c} {}^{6}\mathrm{H}_{7/2}^{\circ} = -28169.71 \ (\ 7/2) \\ {}^{6}\mathrm{H}_{9/2}^{\circ} = -29161.96 \ (\ 9/2) \\ {}^{6}\mathrm{H}_{11/2}^{\circ} = -30251.50 \\ {}^{6}\mathrm{H}_{5/2}^{\circ} = -27468.45 \ (\ 3/2) \\ {}^{6}\mathrm{H}_{7/2}^{\circ} = -28273.52 \ (\ 7/2) \end{array}$
3803.370 3797.292 3796.513 3795.800 3792.125	400 75 300 500 100	26285.01 26327.08 26332.48 26337.43 26362.95	$\label{eq:heat} \begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{5/2} = -26285.02 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} = -28075.94 \ (\ 9/2)^{\ast} \\ {}^{6}\mathrm{H}^{\circ}_{13/2} = -30251.50 \\ {}^{6}\mathrm{H}^{\circ}_{13/2} = -28086.21 \ (11/2) \\ {}^{6}\mathrm{H}^{\circ}_{13/2} = -30281.98 \ (13/2) \end{array}$	$\begin{array}{c} 3639.249\\ 3637.328\\ 3636.136\\ 3633.617\\ 3632.512\\ \end{array}$	$150 \\ 35 \\ 20 \\ 25 \\ 3$	27470.37 27484.88 27493.89 27512.95 27521.31	$^6\mathrm{H}^{\circ}_{7/2}-28274.21~(~9/2)$ $^6\mathrm{H}^{\circ}_{11/2}-30281.98~(13/2)$ $^6\mathrm{H}^{\circ}_{9/2}-29242.64~(11/2)$ $^6\mathrm{H}^{\circ}_{9/2}-27512.95~(~5/2)$ $^6\mathrm{H}^{\circ}_{7/2}-28325.13~(~7/2)$
3791.842 3783.806 3781.429 3780.768 3780.284	$50 \\ 100 \\ 200 \\ 300 \\ 150$	26364.92 26420.92 26437.52 26442.14 26445.53	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{11'2}-29161.96 \ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{0'12}-28169.71 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{0'12}-28186.31 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{7'2}-27245.99 \ (\ 5/2) \\ {}^{6}\mathrm{H}^{\circ}_{1'/2}-29242.64 \ (11/2) \end{array}$	$\begin{array}{r} 3630.678\\ 3625.065\\ 3619.304\\ 3613.816\\ 3610.835\end{array}$	50 200 5 400R5 75	27535.21 27577.85 27621.74 27663.69 27686.53	$\begin{array}{l} {}^{6}\mathrm{H}_{7/2}^{\circ} = -28338.98~(~5/2)^{*} \\ {}^{6}\mathrm{H}_{11/2}^{\circ} = 30374.95~(11/2) \\ {}^{6}\mathrm{H}_{3/2}^{\circ} = -27621.74~(~7/2) \\ {}^{6}\mathrm{H}_{7/2}^{\circ} = -28467.52~(~7/2) \\ {}^{6}\mathrm{H}_{7/2}^{\circ} = -28490.35~(~9/2) \end{array}$
3776.986 3775.419 3770.312 3769.334 3768.994	250R4 300P 100P 75S 200P	26468.62 26479.61 26515.47 26522.35 26524.74	$\label{eq:hardenergy} \begin{array}{l} {}^{6}\mathrm{H}_{7/2}^{2} = -27272.46 \\ {}^{6}\mathrm{H}_{3/2}^{0} = -26479.61 \ (\ 3/2) \\ {}^{6}\mathrm{H}_{7/2}^{0} = -27319.28 \ (\ 7/2) \\ {}^{6}\mathrm{H}_{3/2}^{0} = -26522.35 \ (\ 3/2) \\ {}^{6}\mathrm{H}_{9/2}^{0} = -28273.52 \ (\ 7/2) \end{array}$	$\begin{array}{r} 3603.332\\ 3601.038\\ 3595.645\\ 3591.392\\ 3590.049 \end{array}$	15 100 100 75 250	27744.18 27761.85 27803.49 27836.41 27846.82	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{1/2}-30541.28~(11/2)\\ {}^{6}\mathrm{H}^{\circ}_{7/2}-28565.66~(-9/2)\\ {}^{6}\mathrm{H}^{\circ}_{7/2}-28607.33~(-9/2)\\ {}^{6}\mathrm{H}^{\circ}_{9/2}-29585.21~(11/2)\\ {}^{6}\mathrm{H}^{\circ}_{9/2}-29595.58~(-9/2) \end{array}$
3768.895 3767.052 3765.747 3761.678 3757.007	150 40 300 200 75	26525.44 26538.42 26547.61 26576.33 26609.37	$\begin{array}{l} {}^{6}H_{9/2}^{\circ}-28274.21\ (\ 9/2)\\ {}^{6}H_{13/2}^{\circ}-30457.44\ (13/2)\\ {}^{6}H_{7/2}^{\circ}-27351.42\ (\ 7/2)\\ {}^{6}H_{9/2}^{\circ}-28325.13\ (\ 7/2)\\ {}^{6}H_{5/2}^{\circ}-26609.39\ (\ 5/2) \end{array}$	3586.236 3583.252 3580.731 3580.209 3579.465	50 50 20 100 100	27876.43 27899.64 27919.29 27923.36 27929.16	$\label{eq:heat} \begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{7/2} = 28680.26 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} = 29648.42 \ (\ 9/2) \ast \\ {}^{6}\mathrm{H}^{\circ}_{5/2} = 27919.29 \ (\ 3/2) \\ {}^{6}\mathrm{H}^{\circ}_{3/2} = 27923.37 \ (\ 5/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} = 30726.26 \ (\ 9/2) \end{array}$
3755.190 3754.020 3748.122 3746.530 3744.846	50 5 150 25 35	26622.24 26630.54 26672.45 26683.78 26695.78	$\begin{array}{l} {}^6H^{\circ}_{3/2}-30541.28~(11/2)\\ {}^6H^{\circ}_{3/2}-26630.56~(~5/2)\\ {}^6H^{\circ}_{7/2}-27476.28~(~7/2)\\ {}^6F^{\circ}_{7/2}-33246.65~(~9/2)\\ {}^6H^{\circ}_{3/2}-26695.79~(~5/2) \end{array}$	3577.348 3575.902 3571.949 3569.377 3569.271	25 100 100 50 100	27945.69 27956.99 27987.93 28008.10 28008.92	$\begin{array}{l} {}^6H^{\circ}_{13/2}-31846.70~(11/2)\\ {}^6H^{\circ}_{9/2}-29705.77~(11/2)\\ {}^6H^{\circ}_{11/2}-30785.03~(9/2)\\ {}^6H^{\circ}_{11/2}-28008.09~(7/2)\\ {}^6H^{\circ}_{9/2}-29757.69~(11/2) \end{array}$
3742.973 3741.629 3740.679 3738.433 3731.939	300R4 150 300 200 200	26709.14 26718.73 26725.51 26741.58 26788.10	$^{6}\mathrm{H}^{\circ}_{7/2}$ =27512.95 (5/2) $^{6}\mathrm{H}^{\circ}_{9/2}$ =28467.52 (7/2) $^{6}\mathrm{H}^{\circ}_{3/2}$ =26725.52 (3/2) $^{6}\mathrm{H}^{\circ}_{3/2}$ =28490.35 (9/2) $^{6}\mathrm{H}^{\circ}_{9/2}$ =2852.21 (11/2)	3565.911 3559.695 3558.878 3553.264 3550.916	40 500R5 100 300 300	28035.32 28084.27 28090.72 28135.10 28153.70	$\begin{array}{l} {}^{6}\mathrm{H}^{o}_{9/2} - 29784.08 ~(\ 9/2) \\ {}^{6}\mathrm{H}^{o}_{5/2} - 28084.28 ~(\ 5/2) \\ {}^{6}\mathrm{H}^{o}_{15/2} - 33180.50 ~(15/2) \\ {}^{6}\mathrm{H}^{o}_{9/2} - 29883.87 ~(\ 7/2) \\ {}^{6}\mathrm{H}^{o}_{5/2} - 28153.69 ~(\ 5/2) \end{array}$
3727.938 3726.009 3724.534 3722.153 3715.219	300 500 100 400 200	26816.86 26830.74 26841.36 26858.53 26908.66		3550.109 3546.808 3543.627 3536.282 3535.869	35 200 50 50 300	28160.10 28186.31 28211.61 28270.21 28273.51	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{9/2} = -29908.90 \ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} = -28186.31 \ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} = -29960.42 \ (11/2)* \\ {}^{6}\mathrm{H}^{\circ}_{7/2} = -29074.03 \ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{5/2} = -28273.52 \ (\ 7/2) \end{array}$
3712.074 3708.064 3704.436 3699.079 3697.626	35 75 200 75 300R5	26931.46 26960.58 26986.99 27026.06 27036.68	${}^{6}H_{9/2}^{0} = -28680.26 (7/2)$ ${}^{6}H_{11/2}^{0} = 29757.69 (11/2)$ ${}^{6}H_{11/2}^{0} = 29784.08 (9/2)$ ${}^{6}H_{7/2}^{0} = 27829.89 (9/2)$ ${}^{6}H_{5/2}^{0} = -27036.66 (5/2)$	3531.795 3530.711 3529.426 3527.701 3525.319	75 200 2 250 75	28306.12 28314.82 28325.12 28338.97 28358.12	
3687.381 3686.328 3684.088 3677.558 3674.848	200 250 25 10 200	27111.80 27119.54 27136.03 27184.21 27204.26		$\begin{array}{c} 3511.772\\ 3505.794\\ 3494.457\\ 3492.308\\ 3485.722\\ \end{array}$	20 100 5 15 50	28467.51 28516.05 28608.56 28626.16 28680.25	$\begin{array}{l} {}^{6}\mathrm{H}_{5/2}^{\circ} = -28467.52~(~7/2) \\ {}^{6}\mathrm{H}_{13/2}^{\circ} = 32435.06~(13/2) \\ {}^{6}\mathrm{H}_{5/2}^{\circ} = -28608.57~(~3/2) \\ {}^{6}\mathrm{H}_{9/2}^{\circ} = -30374.95~(11/2) \\ {}^{6}\mathrm{H}_{5/2}^{\circ} = -28680.26~(~7/2) \end{array}$
3673.896 3669.218 3666.455 3665.702 3664.588	250 300R5 15 20 25	27211.31 27246.00 27266.54 27272.14 27280.43	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{1/2} - 30008.40 \ (11/2) \\ {}^{6}\mathrm{H}^{\circ}_{3/2} - 27245.99 \ (5/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} - 30063.62 \ (9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} - 28075.94 \ (9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} - 28084.28 \ (5/2) \end{array}$	3472.223 3472.132 3465.864 3449.970 3449.639	10 25 35 50 25	28791.75 28792.50 28844.58 28977.46 28980.24	$\begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{7/2} & -29595.58 \ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} & -30541.28 \ (11/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} & -29648.42 \ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} & -30726.26 \ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} & -29784.08 \ (\ 9/2) \end{array}$

TABLE 4. Classified lines of Pm I-Continued

λ (Α)	Ι	σ (cm ⁻¹)	Classification	λ (Α)	Ι	σ (cm ⁻¹)	Classification
3442.984 3437.803 3420.721 3416.680 3416.484 3405.661 3373.083	50 15 75 40 50 3 75	29036.25 29080.01 29225.22 29259.79 29261.47 29354.45 29637.95	$\label{eq:4} \begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{9/2} = -30785.03 \;(9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} = -29883.87 \;(\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} = -32022.32 \;(\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} = -30063.62 \;(\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{13/2} = -33180.50 \;(15/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} = -31103.24 \;(11/2) \\ {}^{6}\mathrm{H}^{\circ}_{11/2} = -32435.06 \;(13/2) \end{array}$	3345.327 3341.011 3334.464 3319.548 3302.264 3283.174 3202.305	20 50 75 25 25 25 25 25	29883.85 29922.46 29981.21 30115.92 30273.53 30449.56 31218.48	$\label{eq:heat} \begin{array}{l} {}^{6}\mathrm{H}^{\circ}_{5/2} \ -29883.87\ (\ 7/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} \ -30726.26\ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} \ -30785.03\ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} \ -31846.70\ (11/2) \\ {}^{6}\mathrm{H}^{\circ}_{9/2} \ -32022.32\ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{1/2} \ -32022.32\ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} \ -32022.32\ (\ 9/2) \\ {}^{6}\mathrm{H}^{\circ}_{7/2} \ -32022.32\ (\ 9/2) \end{array}$

We acknowledge the very generous assistance of John Conway and Earl Worden of the Lawrence Radiation Laboratory in preparing the electrodeless lamps and in other phases of our experiment. We also thank Mark Fred and Frank Tomkins of the Argonne National Laboratory for their help in photographing the first set of wavelength and Zeeman effect plates, and Henry Crosswhite of the Johns Hopkins University for his suggestions concerning the calculation of the parameters. Our success in making the recent planegrating spectrograms is due in large measure to the efforts of Richard J. Wolff. Some of the Zeeman plates were measured and reduced at the Argonne National Laboratory by Thomas Dickinson. The Zeeman plates taken at M.I.T. by L. Johnson were made available to us by Lee C. Bradley, III.

5. References

- [1] J. A. Marinsky and L. E. Glendenin, Chem. Eng. News 26. 2346 (1948).
- [2] W. F. Meggers, B. F. Scribner, and W. R. Bozman, J. Res. NBS 46, 85 (1951) RP2179.
- [3] P. F. A. Klinkenberg and F. S. Tomkins, Physica 26, 103 (1960).
- [4] J. Reader and S. P. Davis, J. Opt. Soc. Am. 53, 431 (1963).
- J. Reader, Phys. Rev. 141, 1123 (1966).
- [6] H. J. Stapleton, C. D. Jeffries, and D. A. Shirley, Phys. Rev. 124, 1455 (1961).
- [7] B. Budick and R. Marrus, Phys. Rev. 132, 723 (1963).

- [8] J. Reader and J. Sugar, J. Opt. Soc. Am. 56, 1189 (1966).
- [9] F. S. Tomkins and M. Fred, Spectrochimica Acta 6, 139 (1954).
- [10] F. S. Tomkins and M. Fred, Applied Optics 2, 715 (1963).
- [11] J. G. Conway, S. P. Davis, and R. J. Wolff, J. Opt. Soc. Am. 57, 583 (1967).
- [12] E. F. Worden, R. G. Gutmacher, and J. G. Conway, Applied Optics 2, 707 (1963).
- [13] J. Reader, L. C. Marquet, and S. P. Davis, Applied Optics 2, 963 (1963).
- [14] W. F. Meggers and R. W. Stanley, J. Res. NBS 69A (Phys. and Chem.) No. 2, 109 (1965).
- [15] J. G. Conway and B. G. Wybourne, Phys. Rev. 130, 2325 (1963).
- [16] J. G. Conway, private communication (1966).
- [17] A. G. Shenstone, Can. J. Phys. 38, 677 (1960).
- [18] A. G. Shenstone, Phil. Trans. Roy. Soc. London 241, 297 (1948).
- [19] G. Smith and B. G. Wybourne, J. Opt. Soc. Am. 55, 121 (1965).
- [20] J. Sugar, private communication (1967).
- [21] B. R. Judd, Seventh Brookhaven Conference on Molecular Beams and Atomic Resonance, Uppsala, Sweden (1964)unpublished.
- [22] C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the p^n , d^n , and f^n Configurations (The MIT Press, Cambridge, Mass., 1963).
- [23] R. Trees, Phys. Rev. 83, 756 (1951); 84, 1089 (1951).
- [24] N. Spector, J. Opt. Soc. Am. 55, 192 (1965).
- [25] R. Trees, J. Opt. Soc. Am. 54, 651 (1964)
- [26] H. M. Crosswhite, private communication (1967).
 [27] H. Horie, Progr. Theoret. Phys. (Kyoto) 10, 296 (1953).
- [28] B. G. Wybourne, Spectroscopic Properties of Rare Earths,
- pp. 78–82 (Interscience Publishers, New York, 1965). [29] B. R. Judd, Proc. Phys. Soc. (London) A69, 157 (1956).
- [30] M. Blume, A. J. Freeman, and R. E. Watson, Phys. Rev. 134, A320 (1964).

(Paper 71A6-475)