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Using polyethylene as an example, the kinetics of growth of chain-folded polymer crystals is treated 
using a theory for the kinetics of growth of chains in multicomponent systems. The kinetic chain is 
considered to be a chain-folded strip growing on the lateral face of a chain-folded lamella, and the 
various components are the possible lengths I) the polymer chain may form on folding at the end of 
the growing strip. Thus, the number of components is in principle infinite, but it is sufficient to take 
a number of the order of 20- 50 for the calculations. By an iteration procedure, the calculations are 
carried out so that the average thickness of the strip is the same as that of the chain-folded lamella 
on which it grows. This necessitates modification of the rate constants that would be used without 
this requirement. The rate of growth, average thickness and its standard deviation, and the pair dis
tribution are calculated as a function of undercooling and other relevant parameters of the system. 
The results for the rate of growth and thickness are similar to those of simpler theories, provided that 
the constant end-surface free-energy of those theories is replaced by a temperature dependent "ef
fective" surface free-energy. The standard-deviation of the thickness is larger than commonly believed, 
values of 8 to 14 A being typical. Consequently, the crystals as grown may have quite rough fold sur
faces, although the equilibriu m roughness will be less. 
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free-energy. 

1. Introduction 

In the preceding paper in this issue [1]1 (henceforth 
referred to as I) we demonstrated how a theory [2] 
(henceforth referred to as LDP) of the kinetics of 
growth of chains in multicomponent systems could 
be applied to the kinetics of crystallization in binary 
systems. The chain is considered to be a layer of 
molecules deposited at a growth step. The system 
chosen for study in I ~as that composed of' the n
paraffins C24H5o and C26H54 • It was shown in I that it 
is relatively easy using the LDP method to calculate 
the total flux, the composition of crystal growing 
from a given composition of liquid, and the pair 
distribution. Phase diagrams at equilibrium (total 
flux zero) and kinetic conditions (total flux greater 
than zero) were calculated, and the behavior of the 
flux with temperature deduced. 

In I , there is some question about the relationship 
between the calculated flux and the crystal growth 
rate. In the present case a layer of chain·folded 
segments growing at the lateral surface of a chain
folded lamella forms the kinetic chain. This layer 
is expected to have only a very small number of 
kinks (if any) and hence the kinetics of growth of such 
a layer will quite accurately represent the rate of 
crystal growth. Indeed, this is the usual approach 

(- I Figures in brackets indicate the literature references at the end of this paper. 

taken in theories of polymer crystallization [3, 4, 5]. 
It is our purpose, then, to apply the LDP theory to 

the problem of the kinetics of formation of chain 
folded polymer crystals. Several quite adequate 
theories for this problem are available [3, 4, 5], but 
they all have some deficiencies. These arise primarily 
from the methods of treating fluctuations in the 
lamellar thickness. In the theory of Hoffman and 
Lauritzen [3], fluctuation is not treated directly. 
Under given conditions, it is assumed that a uniform 
lamella (or, in the sense of I, a uniform strip) will 
grow. The growth rate as a function of the thickness 
is calculated, and this is maximized with respect to 
thickness. The thickness which gives the maximum 
rate is considered to be the thickness growing under 
those conditions, and its value is given by the well
known equation, derived for small undercoolings , 

2aeT! kT 
l*=-.--+

g IlhllT aa 
(1) 

where l; is the thickness, a e the end surface free
energy, Ilh the heat of fusion per unit volume of 
crystal, a the lateral surface free-energy, a the lateral 
dimension of the unit cell, T,,~ the melting point of the 
infinitely thick Iam~lla, T the absolute temperature, 
IlT the undercooling and k Boltzmann's constant. 
The distribution in thickness of these uniform strips 
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about this maximum rate thickness is also calculated 
and shown to be relatively small [3]. 

Clearly, this treatment is not completely adequate. 
Rather than assuming that a uniform strip grows , 
and consequently laying down segments of uniform 
le ngth at the end of the growing strip , the depos ited 
segment le ngth should be permitted to vary, so that 
each depos ited segment should have all possible 
le ngths. This larger problem was attacked by Frank 
and Tosi [41 in their extension of the Hoffm an·Lauritze n 
theory by permitting a single fluctuation in the segment 
le ngth. 

In addition to this, Frank and Tosi investigated the 
effect of change in substrate thickness, as discussed 
in I in the section on the effect of the two-dimen
sional character of crystallization, but again by allow
ing only a single fluctuation. This treatment led to 
the disquieting result that crystallization cannot 
occur at an undercooling less than 

llT= a-T~./allh. (2) 

The only complete attack on the problem was made 
by Price, who permitted all possible lengths for each 
segment deposited at the end of the growing strip. 
However, Price adapted a formalism developed by 
Mullins [6] for the distribution in Markov chains 
any step of which may go into any of n states, and 
this method is useful only when equilibrium obtains 
in the growing chain. (This equilibrium does not, of 
course, pertain to the whole lamella, for the equilib
rium thickness implicitly assumed in all the kinetic 
theories is infinite.) It should thus be exactly ap
plicable only when the crystallization rate is zero, 
although for very small undercoolings not too much 
error is likely to be made, as pointed out in I. For 
polymer crystallization, however, rather large under
coolings are easily attainable (indeed, they are the 
rule) and under these conditions significant differ
ences between this equilibrium treatment and a truly 
kinetic theory may arise. Moreover, the equilibrium 
theory cannot, of course, say anything about the rate 
of crystallization. 

In this paper we solve a problem which in our view 
is a more reasonable theoretical approximation to the 
true situation in polymer crystallization than any of 
the previously given treatments. The problem is 
best formulated with reference to figure 1. We have 
a substrate, which represents an already-grown chain 
folded lamella, of thickness is. On the edge of this 
lamella a new strip of c-hain folded material is initiated 
and grows. The thickness of the initial segment of 
the strip laid down is il; the molecule then folds and 
lays down a segment of thickness i2; this in turn folds 
and lays down a segment of thickness - i3 , etc. Each 
of the thicknesses [I, i2, i3, etc. may have any value. 
We wish an answer to these questions: (a) What is 
the rate of growth (at steady state) of the strip as a 
function of the relevant parameters of the system? 
(b) What is the average thickness of the strip? (c) 
What is the width and nature of the distribution about 

a 

R· J 

2· I 

FIGU RE 1. Schematic diagram for the model of a chain folded strip 
growing on the lateral f ace of a chainjolded lamella of uniform 
thickness_ 

The growing strip is the kinetic chain of the LOP theory 121, and the segment lengths 
(or thicknesses) Ij and /j are the various components of the syste m. 

this average? (d) What are the pair distributions, 
i.e., how much correlation is there between segments 
of various thicknesses? 

It is clear that this problem is one that may be 
solved by the LDP theory. The "chain" in that theory 
is represented by the "strip" in this problem, and 
the components are the possible thicknesses ij • These 
various thicknesses ij are then considered as various 
" species" j, each species being one of the components 
of the system, and in what follows we will use the 
words "chain" and "strip," and "species j" and 
"thicknesses i/' interchangeably. Considered in this 
sense, the "species" are evanescent things; they do 
not exist in the liquid phase and come into existence 
only when the random coil polymer chain in the liquid 
phase folds with the thickness ij onto the lateral face 
of the growing crystal. Except for this character of 
the "species" this is, then, similar to the problem 
solved in I , but the number of components is , of 
course, larger than two. Indeed it is, in principle, 
infinitely large for an infinite molecular weight polymer. 
Since the LDP theory cannot easily be adapted to an 
infinite number of components, for the calculations 
a number of sufficient size must be taken so that the 
results are not affected by taking a larger number. 
This will be discussed more fully below. 

An outline of the method by which these calculations 
may be made has already been given in I and in ref
erence [2] and will not be repeated here. We will, 
however, give some pertinent equations which are 
necessary for the subsequent exposition. The LDP 
theory assumes only nearest neighbor interactions, 
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and assumes knowledge of the rate constants a6 , 
{3{ , aii a nd {3 ii, which are rate constants for the for
ward and backward processes for, respectively, the 
initial and subsequent steps in the chain_ The kinetic 
equation s for chain growth at steady state are solved 
in terms of q uantities Aj defined by 

(3) 

where n is the number of components· in the system. 
The total flux is given by 

n ajNo>J 
5 - ~ 0 
r- LJ {3j + Aj 

j = 1 1 

(4) 

where No is simply a scaling factor. The fraction 1; of 
species i in the grown chain is given by 

(5) 

and the Ni III turn are obtained from the recursion 
relation 

with Nt given by 

n ~,iiNj 
Ni= ~_U'_v __ l 

v LJ Qii+ Ai 
} = 1 I-" 

(6) 

(7) 

For large v, eq (6) becomes independent of v and be
)' comes the matrix equation 

. n a,iiNi 
N'-~--. 

LJ Qij + Ai 
} = 1 I-" 

(8) 

The pair distribution function, lij, which gives the 
;> fraction of i, j pairs in the system is given by 

AjaijNi 1 
!ij= Q"+ \.' 5-' 

/-,1} I\.} T 
(9) 

With these equations , and knowing the rate constants, 
the co mplete problem may be solved, and the descrip

id 
tion of the method of calculation will be given in a sub-
sequent section. 

There are two processes conceptually possible in 
the chain fold problem that are not considered by the 
LDP theory, and one of which is not possible in I. 
These are processes by which a given species at a 

';> given position in the chain may be replaced by an-

other species. In the LDP theory, the only way in 
which a certain species j (thickness lj) at a given 
position v in the chain (position in the strip) can 
change to species i is by removal of all species from 
positions v, (v + 1), etc. (i.e., "melting" of the strip 
back to position (v-I)) and then replacing species 
j at position v with species i at that position. In the 
present problem, however, it would seem relatively 
easy to change species at a given location by read
justment in the lengths of segments between folds, 
provided only that the contour length of the deposited 
polymer chain remain unaltered. (In I such a change 
of species would require an actual interchange of 
molecules.) This process, which is not considered in 
this treatment , may, as will be discussed below, 
have important consequences in the experimental 
correlation of values of surface energies obtained 
from crystallization experiments with those obtained 
from melting point experiments. In the second proc
ess , the change of species j to species i at position 
v can be accomplished by only incomplete removal 
of species j and subsequent refolding to the length 
appropriate to species i. The importance of this process 
is difficult to assess without a detailed theory in which 
it is incorporated. 

Of these two processes the first clearly is not part 
of the sequential growth process of the strip, and 
arises from rearrangements after the strip has grown. 
Its effect in the present treatment will not change the 
growth rate, insofar as this can be considered as 
determined by the sequential deposition of segments 
at the lateral face of the growing lamella. Nor, in 
fact, will it change the average thickness of the 
strip, for the contour length of the polymer chain 
must be preserved. But it may have an important 
bearing on the ultimate distribution of thicknesses 
in the strip and will affect the pair and higher dis
tributions. We will return to this point later; for the 
present it should be borne in mind that the distribu
tions we compute are those determined by the kinetic 
process of growth and not necessarily those obtaining 
after rearrangements occur. 

For the calculations we use parameters appropriate 
to polyethylene, since the crystallization behavior 
of this polymer is better understood than that of any 
other. Unlike the approach in I, our aim in this paper 
is an intensive study of this well-known system, The 
results are illustrative of what happens in polymer 
crystallization in general. 

2. The Rate Constants 

2.1. Preliminary Considerations 

In order to apply the LDP theory we need to know the 
rate constants ai, {3{, aij and {3ij, which are, respec
tively, the rate of initiation of new strips by depositing 
from the melt or solution the species lj on a fresh sub
strate; the rate of dissolution of this back to melt or 
solution; the rate of adding species j to a strip whose 
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terminal element is species i; and the rate of removal 
of species j from a strip whose terminal elements are 
i and j. Under kinetic conditions, these rate constants 
are ~mpossible to deduce without knowing the exact 
detaIls of the. element~ry processes involved in adding 
and subtractmg speCIes from the chain. However it 
is shown in LDP that at equilibrium (total flux or r~te 
of crystallization zero) the ratios of (X~/f3: and (Xii/f3ij are 
given by 

(lOa) 

(lOb) 

~he.re /J-j is the chemical potential of species j in the 
bqUId phase, and EJ and Eij are, respectively, the free 
energies of initiating a chain and of adding species j 
to a chain terminating in species i . Clearly, the argu· 
ments of these exponentials are the changes in free 
energy of the system which result from removing the 
species j from solution or melt and placing it on the 
substrate, divided by kT. 

These equations give only the ratio of the rate con· 
stants; without more knowledge we do not know how 
to apportion this free energy change between the for· 
ward and backward rate-constants. Frank and Tosi 
[4] considered the problem of apportionment and came 
to the conclusion that it was reasonable to assign all 
the free energy change to the energetically more un
favorable step. As in I , we, however, adopt a some
what more empirical approach. We first assume that 
under kinetic conditions, the rate-constant ratio is 
still given by eqs (3). Then we carry out calculations 
for various arbitrary assignments of the free energy 
change. 

T?e calculation of this free energy change is easily 
carned out by a method similar to that used by Price 
[5] and outlined in I. More elaborate and more ac
c.urate methods could doubtless be used. In par
tIcula.r, for crystallization from solution, the Flory
Huggms theory [7] of polymer solutions could be used 
to evaluate /J-j, but to enter into this much detail at 
this stage of our knowledge of polymer crystallization 
adds a detail which is unnecessary for the under
standing of the elements of the problem. In the 
method used by Price each species added to the 
growing strip is considered to be a rectangular paral
lelepiped. We assumed it to have a square cross
section wi~h an area one half the area of the (001) 
cross sectIOn of the polyethylene unit cell. This 
parallelepiped is considered to have a surface free 
energy 0" per unit lateral area and O"e per unit end 
area. Then, if the strip grows on a substrate of thick
ness ls, and with reference to figure 1, we may write 

tlhtlT 
/J-j - E~ = a2[. --- - 2a[.0" 

J J TO J 
m 

tlhtlT 
/J-j - Eij = a2lj---ro - 2a20"e - 2aO"U(lj - id 

m 

- 2aO"U(lj - is) + kT In tll/8 (llb) 

where tlh is the heat of fusion per unit volume of 
crystal, T~ is tne melting point of the infinitely thick 
lamella, tlT= TZ, - T, and U(x) is the function 

U(x) = x 

U(x) = 0 

x:30 

x:";; o. 

Except for the term itT In tli /8 (which is discussed 
below) these are the same energies used by Price, 
although he symmetrized the matrix composed of 
them because of the requirements of the Mullins 
treatment, and which in any case is the correct 
procedure at equilibrium. In our own case it will 
be noti~ed that the /J-j - Eij matrix is not symmetric. 

It will be noticed that in eq (l la) we do not have a 
term involving the end surface energy. This is not an 
omission. In our view, the first segment attached to the 
substrate has a length of dangling polymer chain on 
each end. One end (or possibly both) will subse
quently fold, but we take the energy necessary for 
this into account in the energy for the next step 
(eq lIb, and see below under Apportionment of Free 
Energy). The first step, as we count them does not 
involve folding. What should be added is a term 
involving the localization of the chain, but such a 
term is difficult to calculate. Moreover, the initial 
rate constant is important primarily in determining 
the temperature dependence of the total flux , and 
such terms as this would add negligibly to this tem
perature dependence. We also note that if the end of 
the polymer chain is considered to lie flush with the 
edge of the substrate (in our view a highly unlikely 
event) then this would involve a surface energy 
more like 0" than 0" e. 

The term kT lntll/o does not arise from funda
mental causes but only because of computational 
limitations. In this term 8 represents the minimum 
length difference between unlike species (generally 
the length of one unit cell c dimension) and tll repre
sent~ the difference in length between two adjacent 
speCIes chosen for the computation, i.e., tli = lj+1 -ij. 
For very broad distributions, as are found in this prob
lem as will be discussed fully under Results, it is 
necessary to have a very wide range of lengths. Now, 
the number of components in the system is this ran"e of 
lengths divided by the difference in length beh:een 
adjacent species. This length difference should be the 
"natural" length 8, but this makes the number of com
ponents greater than the capacity of the computer 
(on the order of 50 components). Hence, it is neces
sary to use a larger length, tll. This in turn causes an 
un~ere.stimation of the free-energy change on crys
tallizatIOn because each "species" chosen for the 
calc.ulat~on represents tll/o "natural" species, re
sultmg m an mcorrect estimation of the entropy of 
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kin I1l/o. Whe n comparing calculations carried out for 
various I1l it is important to include this term. 

The rigid-rod approximation for the species used in 
calculating these free energies is expected to be 
only a crude approximation to the true energies in
volved. This approximation will be worse the larger 
the length of species j is compared to the substrate. 
For large differences (what might be called large 
"overhangs") the portion of the chain extending above 
the substrate will doubtless be some type of random 
loop, a nd the use of the rigid-rod approximation 
should not be taken to imply that this is our view of 
the true physical state of these overhanging chains_ 
The rigid-rod approximation is in our view, however, 
a good approximation for those chains shorter than 
the sub s trate and those only slightly longer. We use 
it for all lengths because it is difficult to know exactly 
at what le ngths to begin treating the overhanging 
c hains as random coils, and because s uch treatment 
would in itself be subject to considerabe un cert ainty. 
All that we can say with certainty about these greatly 
overhanging chains is that their free energy is higher 
than that of the same chains in th e crystalline state and 
the rigid-rod approximation adequately takes thi s into 
account. Moreover, to treat prope rly large loops of 
random coils on the surface would involve more than 
nearest neighbor inte rac tion s, and a thorough treat
ment of the problem would become quickly intractable. 

As have previous authors, we neglect those (pre
s umably rare) occasions where lj may be less than ls 
but still protrude beyond the substrate. 

2.2. The Effect of the Two-Dimensional Nature 
of the Problem 

As already discussed in I, the process of crystal
lization has a two-dimensional character that makes 
it difficult to treat by the one-dimensional LDP theory. 
Thus, when the composition of the growing strip is 
calculated by the LDP theory, there is no assurance 
that its average thickness , defined as 

(12) 

where Ii is the fraction of species] 111 the grown 
strip , is the same as that of the substrate. Clearly, 
if our calculations are to represent a real physical 
process of crystallization, this is a minimum require
ment. It would appear that this physical process could 
easily be represented by choosing a substrate thickness 
ls, growing a strip on it, using this strip as a sub-

u strate for ~ subsequent strip and continuing the process 

until ls = l. This is essentially the procedure used by 
Price. This would meet the requirement that the 
thickness of the growing crystal would be constant, 
but would not assure us that the pair and higher dis
tributions in the strip and the substrate would be the 
same; but it would be a first and reasonable appro xi-

> mation to the true physical situation. 

If this process is carried out with the rate constants 
calculated by eqs (10) using the energies in eqs (11), 
it is found that crystallization does not proceed at 
te mperatures above by so me finite undercooJi l!g, essen
tially as was found by Frank and Tosi. Above these 
temperatures the thickness converges to a value below 
that stable for that undercooling and the flux drops 
to zero. This does not occur if the thickness of the 
substrate is not allowed to vary. 

In this problem, as also in I, when rate constants 
appropriate to a one-dimensional problem are used 
for a two-dimensional one, difficulties are encoun
tered. In particular, we would expect our theory to 
predict crystallization at temperatures near the 
melting point for it is at these temperatures that the 
steady-state conditions assumed would be most likely 
to obtain. Thus, the result that crystallization does 
not proceed at a temperature above a relatively large 
undercooling (about 33 degrees) seems to us to be the 
result of an incorrect treatment of an essentially 
two-dimensional problem by a one-dimensional theory, 
and results as an artifact of the treatment. How
ever, it should be noted at this time, that in the process 
of correcting this difficulty we trade it for another, 
but perhaps more explicable one. This is discussed 
fully in the section on the Total Flux. 

The only proper way to overcome this difficulty 
would be to construct a truly two-dimensional theory. 
This would be a truly formidable task. As in I, we 
adopt a more realistic course of action and ask if 
there is some way of modifying the rate constants so 
that physical results will be obtained over the entire 
temperature range. 

In order to answer this question, the same type of 
variational analysis carried out in the appendix to I 
may be carried out for this problem. That is, an en
semble consisting of crystals of various thicknesses 
each with strips of various thicknesses and lengths 
growing on them is considered. The free energy of 
this sys tem is expressed in terms of the number of 
strips and their lengths, compositions, thickness and 
substrate thicknesses. This free energy is minimized 
with respect to these variables. Then, using the princi
ple of detailed balance it may be show n that the rate 
constant ratio that minimizes this free energy at equi
librium (total flux zero , but not necessarily at the 
melting point) is given by 

exb 1 [ I1MT ] -=exp - a2 [· ---2aa[. - aa ll - l ·1 
f3~ kT J n, J J S 

(13a) 

(13b) 

During this derivation it was necessary to assume that 
the distribution of species in the strip was symmetric. 
This will not necessarily be the case under kinetic 
conditions. 
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These rate constants are very similar to those in 
eqs (11), the only difference being the replacement of 
the term 2aa-U(ij -is) with aa- lij-isl . The term 2aa-U 
(lj -is) arose because we had a very definite process 
in mind of placing species of thickness ij on a sub
strate of thickness is. It is in just this step that the 
two-dimensional character of the problem becomes 
apparent, and, as already pointed out, we cannot take 
this two-dimensional character exactly into account. 
Now, if instead of 'considering the formation of a crystal 
in the dimension normal to the growing strip we were 
asked to calculate the free-energy of an already grown 
crystal, we should use a term just like aa-Ilj -l81 - This 
makes the appearance of this term somewhat more 
plausible. 

In a somewhat more empirical vein, it should be 
noted that, in the ratio of aij j f3ii in eqs (11) (which 
determines the composition of the growing strip) either 
of the U functions may be replaced by an absolute 
value function . Of the four possibilities only that ex
pressed by eqs (1:1) leads to the result that crystal
lization proceeds continuously to T:I" whatever the 
distribution of free-energy to forward and backward 
rate constants. Moreover, symmetrizing the rate con
stants as was done by Price also leads to a cessation 
of crystallization at all temperatures above a finite 
undercooling. In short, the rate constants given by 
eqs (13) are the only ones that do not lead to a cessa
tion of cyrstallization above a finite temperature 
below T~,. 

Without further discussion, then, we take the same 
approach as in I and assume that these rate-constant 
ratios, which are derived for equilibrium, will also 
hold under kinetic conditions. We then have left the 
problems of the apportionment of the free-energies and 
the treatment of interfacial transport terms. 

2.3. The Apportionment of the Free Energies 

As previously discussed, without a detailed model 
of the processes involved in the deposition of species 
on the growing strip, it is not possible to know how the 
free-energy changes in crystallization are to be appor
tioned to the forward and backward rate constants. 
Rather than assume such a model, or try to derive it, 
we adopt a more empirical approach and carry out 
calculations for various arbitrary apportionments. 

First , we have the problem of apportioning the free
energy to the rate constants for the initial step in the 
chain, viz , 0'11 and f3~. These rate constants do not 
affect the composition of the chain, but they do strongly 
affect the total flux. We cannot hope to predict this 
accurately in any case, and all we can do is try to 
predict its dependence on temperature. 

There are two extreme cases to be considered: (a) 
All the free energy in the forward reaction rate con
s tant and (b) all in the backward rate constant. In 
the former case , f3i1 in unity ; in the latter, a jo is unity , 
and it is easy to derive the relationship between the 
total flux in the two cases. If we let S~ an d S¥ represent 
the fluxes in the two cases we may write from eqs (4) 
for the total flux in each case 

Sa = '" NoakAi 
T LJ 1+,v 

J 

S@..= '" NoN . 
1 LJ ~ +'!J 

J 

Now, for the second case, (3jl is (aJo)- 1 for the first case. 
Hence we may write 

Now, if both A) and a~ are much less than unity, both 
fluxes are approximately the same. Near T~, Aj «i 1, 
and aJ is always much less than unity. At rather large 
undercoolings f,) is no longer small, and may be as 
high as 0.2. Nevertheless, we only carry out calculations 
in which all the energy is assigned to the forward rate 
constant and take f3{ = 1. In a sense this is physically 
reasonable, since it makes the free energy a "barrier" 
to be overcome in the initial step of the chain, and is 
the apportionment that Frank and Tosi derived as 
being correct. 

For the subsequent steps in the chain we envision 
the following process. When a polymer chain has laid 
a segment on the growing strip, before it can lay down 
another segment on the strip it must form a fold. 
This requires an energy approximately of the amount . 
2a2a-e which therefore acts as a "barrier" to subse
quent growth of the strip. We thus put this term in 
the 0' ii. The remainder of the energy we apportion in 
arbitrary ways, as was done in I. If we let Eij be the 
argument of the exponentials in eq (l3b) then we take 

f3U = exp[(cp-1)(E ij + 2a2a-e)jkT] (l4b) ~ 

where cp is an arbitrary parameter the value of which I 
can range from zero to unity. We shall see that the 
value of cp has a significant effect on the results, par
ticularly at high undercoolings. 

2.4. The Effect of the Interfacial Transport Term 

The rate constant ratios . expressed by eqs (13) 
were derived at equilibrium (total flux zero) and as a 
result do not contain terms expressing the rate of 
transport or diffusion of species from the melt or 
solution to the growing interface. If this diffusion or 
transport depends upon both the diffusing species 
(j) and the species at the end of the chain (i), then the \. 
rate constants given by eqs (12) should be multiplied 
by factors au and bu, as already pointed out in I. 
Unfortunately, it seems almost impossible at this time 
to decide what these factors ought to be. 

A simpler but less correct approach is to assume 
that a;j and bu are independent of i and j. If this is 
done, then, as discussed in I, . the composition and ' 
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distribution in the chain is not affected. The only 
result is that the total flux as calculated by the LDP 
theory should be multiplied by a transport term. 
Because this term will have an Arrhenius or WLF 
[8] temperature dependence, the temperature Cle
pendence of the total flux calculated here will be 
somewhat in error, and this error will become greater 
the greater the undercooling and the closer to . the 
glass-transition temperature the conditions become. 
However, as will be seen below, other effects intervene 
at such large undercoolings. Nevertheless, it will be 

~ understood that where we discuss the temperature 
dependence of the total flux we do not include this 
transport term. 

~ 
I 

3. Method of Calculation 

The constants, parameters and the variables and 
their ranges used in the computations are given in 
table 1. The equilibrium melting point, heat of fusion 
and lateral dimension are those of polyethylene. The 
parallelepiped shown in figure 1 was assumed to have 
a square cross section, but this is expected to have no 
significant effect on the calculations. Three different 
values of the end and lateral surface energies were 
used, although most of the calculations were carried 
out with the values <Te = 60 ergs/cm 2 and <T = 10 
ergs/cm 2. The values of <T e given in the literature 
cover a wide spectrum, with the value 60 ergs/cm 2 

being on the low side [4, 5, 9, 10, 11]. As we will see, 
however, the actual value of this constant is less im
portant than the value of a parameter derived from it. 
The value of 10 ergs/cm 2 is a normal value from sev
eral different sources [9, 12] . The number of com
ponents was usually taken to be 21, although often 
the calculations were repeated with 50 components, 
particularly under those conditions where the de
posited layer had a broad distribution of lengths. 
With the value of 6.l shown, these numbers of com
ponents gave ranges of lengths of 105, 250, 210, and 
500 A. Usually the combinations n = 21, 6.l = 5, or 
n = 50, 6.l = 5 were used. 

TABLE 1. Value and range of parameters for calculation 

Temperature 
I).h /k 

T:1t 
1). / 

Number of Components 

(T 

<p 
a 

a Mosl commonly used values. 

·360-415.2 OK 
21.2 °K/A' 
415.2 OK 
5" . lOA 
21,50 
82.8,60,41.4 ergs/em :! 
5, lOa, 20 ergs/em 2 

0, 1/2, 1 
4.285 A 

The calculations were carried out as follow s, First, 
for th e te mperature in ques tion , a substrate thick ness 
l" c lose to the final expec ted layer thickness was 
chose n, The le ngth s lj were chosen so t hat the short es t 

~ length was give n by ls_ (n~l) I1l for n odd, and 

Ls -~ l1l for n even, If this minimum length was less 

than zero, the value 5 A was chosen. With this value 
of s ubstrate thickness, lengths Lj , and the other 
relevant parameters, ail' /Ji , ai) and f3i) were calcu
lated from eqs (14). From these, the values of Ai 
defined by eq (3) were calculated by the iteration 
procedure outlined in 1 and LDP until co vergence to 
one part in 10 7 was obtained. From these " j, the N{ 
were calculated by the rec ursion formula eq (6) until 
again convergence to one part in 10 7 was ob tained, 
and then the J; were calc- ulat ed by eq (5). trom these 
last quantities th e average thickn ess T of the grown 
strip was comput ed by eq (12). Thi s was now compared 
to Is. If the differe nce was grea te r than ()n~l)art in 10 7, 

the whole procedure was re peated using I as the new 
ls. A ne w se t of lengths Lj was c hosen by the procedure 
already outlined, which had the advantage in most 
cases of having one of the Lj equal to T whel!...con
ve rge nce between land (, was obtained. When I was 
th e same as Ls within one part in 10 7, the iteration was 
discontinued and S, and th e J; com put ed by eqs (4) 
and (5) respec tively. For those computations with 
n = 21, Ii) (eq (9)) were also co mputed. In addition to 
th ese . two oth e r quantities of interest were calc ulated. 
Th e first, whi c h we denote by 5/, is th e s tandard devi
ation in I , and is defined by 

"~( p;(l, ~ n}' 
Thi s gives a meas ure of' the s pread in th e distribution. 
The seco nd , which we denote by g, is the avcrage free 
e ne rgy per segme nt in th e strip , and is given by 

g= Ta2 6.~~T + kT 2: jj In /; - kT2: J;j In Ii) 
m J i . j • 

- a(J' 2:ijI Lj - l s l- a<T 2:id!; - /;1 
i. j 

~ 

I 

r 

We will now di sc uss in some detail tli e behavior of 
the various quantities calculated. We are particularly 
interested in the total Aux, 5.,.; the average length, l; 
and t he composition of the chain, i; and J;j. 

4. Results 

4.1 . The Average Thickness and Its Standard Deviation 

A plot of T against the reciprocal of the undercooling 
is )!iven in figure 2 for <T= 10 ergs/cm~, (J'p = 60 ergs/ c lll ~, 
and [or the three values of <p. 

The curves are si milar to those already presented 
by Price and trank and Tos i. Th ey have a linear 
portion at low unde rcooling, fall to a minimum value 
at an undercoolin g of 20 to 25 degrees, and then rise 
rapidly to very large values. We will henceforth denote 
the temperature at which the thickness diverges by 
Tri. The behavior in this region depends markedly on 
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FIGURE 2. Plots of average thickness of chain folded crystals agamst 
reciprocal of the undercooLingfor u = 10 ergs/em' , U e = 60 ergs/em2 , 

alldIor three values of <p. 
The almost linear portion at low undercoolings extends 10 the melting point. 

the value of cp, but discussion of these curves will 
be postponed until we have presented the results for 
Sf· 

The results for s, against undercooling are given 
in figure 3 for !Je = 60 ergs/cm2 and !J= 10 ergs/cm 2 

for the three values of the parameter cpo It will be
come clear from the subsequent discussion in this 
section that s, is independent of !Je (over any reason
able range of values), the experimental value of which 
has considerable uncertainty, but is strongly de
penden t on !J, which fortunately is somewhat better 
known. The behavior of s, varies considerably witp 
cpo In all cases, the value of s, approaches 8.133 A 
at T~i' but below this temperature the curves diverge 
considerably. For cp= 1 and cp= 1/2, the change of 
s, with temperature is not very great, but for cp=O, 
s, becomes very large as the temperature at which 
l goes to infinity is approached (figure 2). In fact, 
detailed investigation in this region indicates that 
not only does T approach infinity , but , for cp= 0, the 
width of the distribution fj also approaches infinity, 
with a consequent divergence of s, at this temperature. 

It is interesting to compare our results for the value 
of "surface roughness" as expressed by figure 3 with 
those of Price. On the figure there is indicated the 
equilibrium 2 value of Sf, which is closest to the curve 
for cp= 1, but in any case this is considerably larger 
than the 1 to 2 A roughness quoted by Price. Indeed, 
the minimum values of 8 to 10 A obtained here for 
cp= 1/2 and cp= 1 are relatively large for crystals of 
ordinary thickness (125 to 150 A), to say nothing of 
the case for cp = 0, which would predict very furry 
crystals indeed at large undercoolings. However, for 
experimental purposes, the differences in these curves 
may be less important, for at the normally attain
able undercoolings (for polyethylene) of 10 to 15 °C, 

~ The "equi librium" value of SI is the value of 51 thai minimizes the frt!t' energy uf a chain 
folded ('ryslal when the thiek.ness uf the crystal is maintained constant. The method of 
caieu lali()11 will be presented in a s ubsequ e nt publication. 
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FIGURE 3. Plots of standard deviation oI thickness (eq 15 of the text) 
of chain folded crystals against undercooling for a = 10 ergs/em' 
and for three values of <p. 

The standard deviation of the thickness is essentially independent of <II' for reasonable 
values of thickness. The dashed curve represents the value of s{ tha t minimizes the free 
energy of a chain folded crystal when the mean thickness of the c rystal is maintained 
constant. 

s, varies only from S.5 to 14 A for the vanous values 
of cpo 

We now return to a discussion of the curves in 
figure 2. The linear portion of the curves makes it 
tempting to analyze their behavior by an equation 
analogous to eq (1). We accordingly define two param
eters !Jeff and ol, and express the average thickness 
at any temperature T by the equation 

(17) 

This is of the same form as eq (1), with ol (T) replacing 
kT/a !J, and with !Je replaced by a temperature de
pendent !Jeff' The parameter !Jeff is amenable to non
arbitrary definition; hence the form of eq (17). That 
is , !Jef~T) may be defined, in analogy to the theory of 
Lauritzen and Hoffman, by 

2 2 _a2 l!::..h!::..T __ 
a !Jeff - TO g 

iii 

(IS) 

where g is defined by eq (16), From this equation it will 
be seen that !Jeff is given by 

2a2 !Jerr = 2a2!Je - kT 'iii In Ii+ kT 'i .!u"lnjij 
j i , j 

+ a!J 'ifjllj-lsl + a!J 'iful!;-fjl 
i, j 

- kT In 6.l/ o. (19) 
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In th e theory of Lauritzen and Hoffman , (Je is of 
course essentially temperature independent , and in 
the prese nt work it is interesting to compare (Je and 
(Jeff ' 

Accordingly, in figure 4 we show a plot of (Je -(Jeff 

for se ve ral different values of the lateral s urface 
e nergy (J , and for several different values of the 
param e ter cpo First, it will be noticed that since (Je 

is a c onstant, (Jeff is rather strongly temperature· 
de pende nt. Secondly, it will be noticed from the 
c urves fur (J= 10 that there is a strong dependence 
on cp, whi ch , however , becomes progressively smaller 
as t:.T approaches zero, and disappears entirely at 
n:,. Thirdly, it will be noticed that the difference 
between (J" and (Jeff is dependent upon (J, and is a 
s ignificant fraction of (Je. From the de finition of 
(Jeff, it is c lear that if Ji and Jij are inde pendent of 
(Je, the n (J,, - (Jeff will also be independe nt of it. But 
from the de finition of th e rate cons tants, the term in 
l 2 a 2(Je/kT is s imply a multiplicative factor inde· 
pende nt of i and j and hence does not influ ence the 
di s tribution. We have th e res ult , the n, that (Jeff- (Je 

is a me as ure of the width of th e di stribution, which 
is s tron gly influ enced by (J , as is e vid ent from the 
expressi ons for the ra te cons tant s. Thu s, (Jeff - (Je, 

measures , so to speak , the same thing SI does, bt;t is 
som ewh at more basic, for , as will be di sc ussed in 
the section on the total flux, (Jeff controls thi s quantity. 

There is a rather simple physical explanation for the 
behavior of (J e - (Jeff' For a rough surface, a great 
deal of extra lateral surface is exposed, and this would 
tend to make the effective surface free-energy greater 
than the surface energy of the smooth surface, (Je. 

This is expressed by the terms a(J 2:Jilli - lsi and 
i 

acr 2:Jij lfi - fi l in the definition of (Jeff' These terms 
i , j 

would te nd to raise the free energy of the solid phase 
compared to the (higher) free-energy of the liquid 
phase. But the introduction of this rough surface 
introduces a " mixing entropy" expressed by the terms 
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FIGURE 4 . Plots of ((Te - (Tcrr) (eq 19 of the text) versus undercool ing 
f or various values of (T and cp o 

r The qu a ntit y (a,. - (Ten) is not apprec ia bl y dependent on Ue unless u e is ve ry s mall. 

kTlfi In f; and kTlJij In f;j . The mixing entropy ari ses 
from the various configurations a polymer in the 
crystal may adopt. These terms tend to lower the 
free-energy of the solid as compared to the liquid. 
At the equilibrium these latter terms must win out and 
override the effect of the lateral surface terms, for if 
they did not there would be no mixing. Thus, at the 
melting point (J e - (Jeff is positive, rather than nega
tive as might be expected from considerations of 
surface energy alone. However, for highly nonequilib
rium distributions, such as occur with cp = 0 near the 
divergence temperature Td (see fig. 3), the lateral 
surface terms win out and (Je -(Jeff is negative, and 
hence (Jeff> (Je. Note that (Jeff can be equal to (Je 

under two conditions_ The first and obvious one is when 
all the species are of the same length and the dis
tribution is therefore a delta function_ This is the 
Hoffman and Lauritzen case. The second, and less 
obvious, is when for kinetic reasons sufficient lateral 
surface is exposed that the terms relatin g to those in 
eq (19) just balance the mixing terms. This , as ex
plained above , cannot happen at equilibrium_ 

The value of al calculated from eq. (17) at each 
temperature is shown in figure 5 plotted against un
dercooling for the same values of the parameters as 
figures 2 and 3. The values for cp= 0 and 1/2 are about 
the same up to undercoolings of approximately 20 
degrees and then the cp = 0 curve rapidly increases, 
as would be expected from the behavior of the curves 
of figure 2. The curve for cp = 1 is somewhat lower 
over the whole range, but also diverges at Td . 

It is interesting to compare the values of al in the 
range of 0 to 20 degrees undercooling with the term 
kT/a(J in eq (1). The values of al in this range of 
t:.T var y from about 18 to 35 A, wh ereas kT/a (J in 
this range by comparison is constant and equal to 
12.9 A. _ 

The undercooling at whic h l approach es infinit y is 
given by (JT~,/at:. h for all va lues of cp, alth ough thi s is 
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F I GU RE 5. Plols of a/ leq 17 of the text) versus supercoolingfor 
(T = /0 ergs/e lll " (lI1dfor th ree L'aill es of cpo 

These plots are independent of crt unless (FI ' becomes too small. T he curves fO T !.p= O and "' = 1/2 do not act ua ll y CTOSS one anothe r. the .p= O curve bei ng above the r.p= 1/2 cu rve 
throughout the whole range. 
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difficult to prove analytically except for cp = 1, and is 
as much a deduction as a proof. It is interesting to note 
in this regard , however, that this is the same undercool
ing at which Price found such a divergence, but is half 
the undercooling at which Frank and Tosi found it
The existence of this divergence is not the result of a 
fluctuation treatment of the problem , for it is also 
found in an extension of the Hoffman-Lauritzen treat
ment [13J- In that treatment as in that of Frank and 
Tosi it occurs at twice the undercooling found here_ 
For (J = 10 ergs/cm2 , the undercooling at which the 
divergence occurs in our work is 33_14 °C 

This is a rather high undercooling which is very 
difficult or perhaps impossible to achieve experimen
tally in crystallization from the melt, but can be 
achieved in crystallization from solution_ Nevertheless 
at such high undercoolings it may be that the steady
state conditions required by the theoretical treatment 
are never attained_ We return to this point when dis
cussi ng the behavior of the total flux. 

We will not attempt at this time to fit experimental 
results with our theoretical treatment- This rather long 
and involved task will be reported in a subsequent 
publication. It will be shown there that in order to 
fit the known experimental results (with any theory, 
not necessarily our own) it is necessary to invoke a 
small temperature dependence for (J as well as the 
temperature dependence for (Jeff and at found here_ 

As a result of this analysis we can say that over most 
of the range of interest, the variation of lamellar 
thickness with temperature may be represented by 
an equation of the form of eq (1) , namely eq (17). 
However, the parameters (Je and al must be considered 
temperature dependent, the exact amout of this de
pendence depending on the value of cp appropriate to 
the problem. 

4.2. The Total Flux 

The behavior of the total flux, 5T , which, except for 
transport terms, is representative of the rate of 
crystallization, is best analyzed by an equation anal
ogous to that derived by Frank and Tosi. In our 
notation this may be written 

5 [ ( at:l.ht:l.T) ] (-4a(J(JeTg,) 
T = 59·(cp,T) exp T.O - 1 exp . 

(J III t:l.ht1TkT 

(20) 

In this expression the preexponential term 5¥(cp,T) 
is expected to have only a slight temperature depend
ence as compared to the exponential terms, as it 
should if this representation is to be of value. More
over, it is expected that the dominant term is 

exp ( - 4a(J(J en,,/ t:l.ht:l.TkT), 

the other having only a minor effect- We antIcIpate 
that (J e in eq (20) should be replaced by (Jeff' 

A plot of t:l.T log 5T against t:l.T is given in figure 6 
for the same value of the parameters as in figures 
2 and 3. For low to moderate undercoolings , the 
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FIGURE 6. Plots oj Ll.T log ST versus undereoolingJor(J" = 10 ergs/em'. 
(J"c = 60 ergs/em', and for three values oj <p. 
The c urves are very nearl y linear at lo w undercoolings. 

curves are very nearly linear with an average slope 
that depends on cpo This near linearity indicates that 
in this range the terms 5Hexp (at:l.ht:l.T/(JT~,) -1] are 
indeed of negligible variation compared to the other 
term in eq (20). However, near Td the curves have a 
maximum. For the cp = 0 curve, this maximum is 
caused in fact by the very large values of (Jeff, but 
in the other curves it is caused by a fall-off of the 5¥ 
term. It is to be noted that this maximum exists 
without a transport term and is not occasioned, as 
usually accepted, by the activation energy for trans
port becoming the dominant factor in the nucleation 
process. The flux falls to zero at an undercooling of 
(JT~,lat1h, and we will return to this important point 
at the end of this section. 

In spite of this maximum in the total flux , oV'er a 
large range of undercooling the curves are approxi
mately linear, which indicates that over this range 
59·(cp, T) is indeed approximately constant- To illustrate 
this, in figure 7 we show the value oflog 59·(cp, T) plotted 
against undercooling for a range of t:l.T of 30°C (The 
temperature Til corresponds to a t:l.T of 33.14 °C) Over 
this range 5~.(0, T) shows a variation of about one order 
of magnitude, while 59 (1/2 , T) and 5~ (1, T) show a vari
ation of about one half order of magnitude. Compared 
to the variation in the exponential factors , this variation 
is completely negligible. In fact, over the range of 
undercoolings considered, the variation of 

(exp [at:l.ht:l.T/(J~J -1), 
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FIGURE 7. Plots of Jog ~ (eq 20 of the text) versus undereooling for 
(T= 10 ergs/em", (Te = 60 ergs/em2 , andfor three values ofcp. 

is also negligible, as is indeed the VarIatIOn with cpo 
Thus we conclude that the total flux , for an under
cooling of as much as 30°C is given with more accuracy 
th an is usually necessary for the interpretation of 
growth rate data by the expression 

S .. - So atlhtlT . (- 4a<T<TeffY'li,) 
1 - T <TTH, exp tlhtlTkT (21) 

where 59· is a constant. 
Now, eq (21)' has a n important conseque nce for the 

interpretation of growth rate data, for it indicates that 
to the extent th at this theory is representative of the 
processes involved in the grow th of c hain folded poly
mer crystals, <T<T eff is the parameter that controls the 
temperature depend ence of the growth rate, a nd not 
<T<Tr • As we have seen, for low undercoo lings, <Teff 

may be quite s mall compared to <Te and inde penden t 
of cpo 

With this interpretation , there is no reason to expec t 
the value of the e nd surface fre e-e nergy computed 
from crys tal growth data to be the same as the value of 
the end s urface free-energy obtained from, for example, 
experiments on melting point against la mellar thick
nests. The reason for thi s is as follows: the parameter 
<Teff is a measure of both the free energy of making a 
fold a nd of the irregularity of the folded surface, as is 
evide nt from eq (19). If the surface is perfec tly regularly 
folded, <Teff is equal to <Te, but for surfaces that are not 
perfect ly regul ar, the value of <Teff is de pendent upon 
the parti cular di s tribution of fold lengths. For th e 
valu es of <Teff quot ed here thi s distribution is deter
mined by the kinetics of the growth process. Now, it is 
quite possible that although whe n a lamella is freshly 
grown it may have thi s kineti c distribution of fold 
lengths, upon subseq ue nt s torage, and particularl y 
upon heating to the melting point, thi s di s trib ution 
wi ll very likely c hange and approach so me other di s
tribution, eve n though T may re main unchanged. If th e 
di s tribution approaches a perfectly sharp di stribution , 
th e n the surface e nergy meas ured will indeed be <Te. 
However, it is much more likely that the di stribution 
would approach the equilibrium dis tribution charac-

teri stic of the particular te mperature in ques tion , a nd 
the end s urface energy would be the value charac te r
is tic of that distribution. In short , kinetic experiments 
such as growth-rate measurements, lead to a value of 
<Terr characteristic of a kinetic distribution, while 
"equilibrium" type experiments lead to a value char
acteristic of an equilibrium distribution. 

The difference between the two types of experi
ments should not , however, be overemphasized. In 
particular, in the worst case, namely cp = 0, for <Te = 60 
ergs/cm2 the value of <Teff varies from about 36 ergs/cm 2 

at very low undercoolings to about 46 ergs/cm 2 at 
an undercooling of 20 deg. The value characteristic 
of the equilibrium distribution over this whole te mpera
ture range is approximately 36 ergs/cm 2 • As may be 
seen from figure 4, the variation for cp = 1/2 and 
cp = 1 is somewhat less. 

We now turn to a discussion of the maximum in 
S T, and the decrease of 5 T to zero at an undercooling 
of <TT9,, /atlh . Thi s, of course, is the same undercool
ing at which Frank and Tosi found a cessation of 
crystallization, but there is one important difference 
between our results and theirs. In our case, crystal
lization proceeds relatively normally above this 
temperature, whereas in theirs crystallization pro
ceeds only below it. Moreover, at this temperature 
our thickness diverges , while theirs is regular. Never
theless, by our choice of rate constants, we have 
traded the disquieting result that crystallization does 
not proceed above a certain unde rcooling for the 
equally disquieting result that crystallization does not 
proceed below it. Of the two possibilities we prefer 
the latter, although it would seem to be contrary to 
experience. After all, we know from experiments on 
homogeneous nucleation that crystal growth can occur 
at undercoolings greater than <TT9,.Iatlh. The reason 
for our preference is that these theories of crystal
lization presume that steady-state exists. Now, it is 
much more likely that steady-state can be obtained 
near the melting point where processes are slow, 
than at large undercoolings where processes are rapid 
and more complex. While weare by no means certain 
that this is the proper explanation of the difference 
between our results and observed behavior, we can 
suggest that at undercoolings approaching our di
vergence temperature , steady state never obtains in 
the real physical case, and our treatment (and any 
other) becomes inapplicable. To see how this ration
alizes the results, we note first that if the thickness 
of the growing layer is finite , the total flux is not 
zero, as will be evident from our expressions for 
a~/f3{ and aij/(3ij. If we now imagine a str ip nucleating 
on a substrate formed, for example, from a homo
geneous nucleus, it may start with some finite thick
ness, and begin to increase to the thickness determined 
by the steady state equations, which may be infinite. 
If it could achieve this, its rate of growth would drop 
to zero (eq. (13a)), but it is e ntirely likely that before 
it reaches this thickness it might encounter another 
strip growing in the same manner on the same sub
strate and hence never approaches this steady-state 
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thickness. Clearly, to solve this problem correctly 
(in one dimension), one would have to solve the full 
time dependent equations given in LDP. We know of 
no way i:o do this, and the only conclusion we can come 
to is that the reason our treatment does not reproduce 
reality in the range of undercoolings of Td and below 
is that steady state is never .attained. 

We note also that the inclusion of transport terms 
to slow down the overall rate will not necessarily help 
matters any. It is not the absolute magnitude of the 
flux which is important, but the relative rates of initia· 
tion and growth of strips (in our notation , essentially 
the relative magnitudes of cxJlf3{ and a ij/f3 ij). Thus, 
unless the transport terms affect initiation and growth 
in significantly different ways (which we consider 
unlikely) the retardation of the whole process by 
transport will not change the achievement of steady 
state materially. 

4.3. The Distribution 

Having discussed the effect of the distribution as 
exemplified, e.g. , by SI and <Teff, we now give some 
detailed examples of it. 

Ii 

(Pi -1l. A 

fIGURE 8. Plots of f" the fraction of species i (eq 5 of the t~xt), versus 
the deviation of Ii from its mean value for ~T= 3, cp= 1/2, and 
three values of a. _ 

This plot is essentially independent of the value of Uf? except that I is different for the 
different values of (T e_ At higher undercoolings the curves are similar but broader. 

Figure 8 gives a plot of Ii against Ij - I at an under
cooling of 3 degrees for three different values of the 
lateral surface energy term <T and for If! = 1/2. The 

curves have a peak at the value of Ij = I, and fall off 
on both sides of this value at a rate which is dependent 
on the value of the lateral surface energy <T. These 
curves are very similar to those already presented 
by Price. The curves are not affected by the value of 

<Te, although I of course is strongly dependent on it. 
The higher the value of lateral surface energy the 
sharper the distribution, as would be expected, for 
the higher the value of <T, the more energetically 
unfavorable is the exposure of lateral surface, and 
this results in a smoother surface. The values of 
S I, which is characteristic of the distribution, are 
3.745, 8.548, and 18.519 A respectively, for <T= 20, 
10, and 5 ergs/cm 2 • 

Figure 9 gives an example of the pair distribution 
function, fu. This is plotted from the results for 
cp= 1/2, !1T= 15°C, <Te=60 ergs/cmz, <T= 10 ergs/cm"-!.: 
The plot is made so that the origin is at Ij = Ii = I. 
At this point, as is expected,J;j is a maximum and falls 
off monotonically in all directions. 

Not too much can be said about the figure, but some 
things should be pointed out. First, in any plane 
Ij = constant, or li = constant, the maxim~m value of 

fij occurs at the value of Ii or Ij equal to I . This indi
cates that correlation with the substrate thickness is 
the most important factor in determining fu. Second, 

a shoulder is noticeable in the region Ii > I, I ~ Ij 
~ Ii. (The same shoulder appears opposite the origin, 

-lj_ 

FIGURE 9. Plot of fiJ, the pair distribution (eq 9 of the text) versus 
Ii and IJo,. ~ T = 15, cp = 1/2, and a = 10 ergs/cm 2. 

This plot was calculated for .!!'e = 60 ergs/cmz. and is essentially independent of U e 
provided the origin is at Ii = Ij = I. The peak in the plot is at the origin, and is more pro
nounced at lower undercoolings. 
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i.e., where li < i, i '~)j ~ Ii.) This indicates that cor
relation occurs with i and all lengths between i j and 

I, but falls off very rapidly for ij > Ii. Similarly, fij 
falls off very rapidly with Ij as Ij becomes smaller than 
l for Ii ~l. All these remarks have their counterparts 
for li < l. 

This behavior is what would be expec!.ed on physical 
grounds. Imagine a segment Ii > Is = L deposited at 
the end of the growing strip. The next segment to be 
deposited, 1 j, will be energ~tically most favored if 
it is the same thickness as l. For any thickness less 
than T, not only is the bulk free-en~gy term 
ex21/:1h!1T/T?, in eq (13b) less than if lj = I, but the 
term acTllj-lsl further reduces it. If Lj > is but less 
than I i, the bulk free energy term ex 21 jtlhtl T /T~1/ 
tends to favor accretion as compared to lj ~ Is, but the 
term au lij -lsi more than compensates for it except 
near Td • Finally, for lj> ii, the term 2auU(lj-li ) 

is added to the term aullj-isl and the probability of 
accretion falls off rapidly with increasing ij • The 
same remarks, with proper changes, apply when 
ii < is. 

We may compare Ii) with the pair-distribution that 
would occur for random mixing, as was done in 1. 
For the random case we have, 

IT; = IJj = If; 

where 1/ is the (symmetric) pair distribution when 
random mixing occurs. From this we may construct 
the difference 

8f;j = lij - IT; = fij - fJj· 

The results for this difference are difficult to present 
graphically. However, in the difference matrix the 
following behavior is observed at low undercoolings 

(3°C). The maximum occurs at Iii where li = i, as is 
to be expected. Now, if for the purposes of discussion a 
cartesian coordinate system is laid on the matrix with 
origin at Iii, and the x axis along the direction of 
increasing j, then for small tlT the first and third 
quadrants are negative and the second and fourth 
positive, and the coordinate axes are positive. Said 
less graphically but more precisely 

alij > 0, li ~ i, i j ~ t 
-

8f;j > 0, ii ,,;:; i , ij ,,;:; t 
-

alii < 0, ii > l, ij < t 

ali.i < 0, li < l, ij > t. 

For tlT somewhat larger (15 deg) these quadrants are 
predominantly of the same signs as for lower tlT, 
but deviations o~cur for ij or ii considerably larger 
or smaller than i , i.e., away from the origin but near 
the coordinate axes. The afij matrix is almost sym-

, metrical but definitely not so, and thus the fiJ matrix 

is also not. This is as expected from the matrix of the 
ex ij and f3 ij. 

4.4. The Approach to the Steady-State Thickness 

It will be recalled that in the section on the method 
of calculation, we described that beginning with a 
substrate of thickness r; we grow_ on it at a given tem
perature a strip the thickness of I which in general will 
be different from Is. This is then used as a substrate 
for a subsequent strip, and the process continued 
until T = is. This amounts to a theoretical analog of the 
well-known experiment in which a crystal growing at 
a given temperature is cooled to another temperature 
and growth permitted to proceed with the formation 
of a step. Our procedure gives a profile of this step. 
This type of information has already been given by 
Price, and although we have not pursued this matter 
thoroughly, preferring to replace the above iteration 
scheme with a considerably more efficient one mathe
mati cally, we will present one result both because it is 
different from what Price has already presented and be
cause it may be of some experimental interest. Ac
cordingly, we show in figure 10 the a~proach to the 
final thickness when a substrate 133.1 A thick is us ed 
as a substrate for growth at a temperature at which the 
final thic kness is 113.8 A. This corresponds to having 
grown a crystal at 405.2 OK and continuing growth on 
it at 402.2 oK. It will be noticed that the decrease in 
thickness is monotonic, arriving smoothly at the final 
result. After 24 steps the thickness is within 1 A of the 
final result, but it take s 81 steps to arrive at within one 
part in 107 of the final thickness. It is interesting to 
note that some recent results of Bassett, Blundell, and 
Keller [14J obtained by gold deposition on surfaces, 
show a differ~nt behavior of the gold in a region approx
imately 100 A wide near a step than in other regions. 
Twenty-four layers corresponds to 103 A; however, 
before more can be said, detailed calculations for the 
particular conditions in question would have to be 
carried out, and a knowledge of just what this gold 
deposition technique measures in the region of the step 
would have to be known. 
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FIGURE 10. Plot of average layer thickness versus the number oj 
layers as the layer thickness approaches its final steady state 
value. 

This calculation was made for a = 10 ergs/em:!, 0"{' = 60 ergs!cm 2, <p = O. tl:T= 13. The 
original subs trate thic kness was 133.1 A and corresponds to an undercooling of 10 deg. 
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5. Conclusions 

We have s hown that the LDP theory for the kinetics 
of the growth of chains in multicomponent systems 
may successfully be applied to the problem of the 
growth of c hain-folded polymer crystals_ In this prob
lem each of the possible folded segment lengths de
posited at the end of the growing strip is considered a 
component and the strip itself is the chain. Over most 
of th e te mperature range of interest, it is necessary to 
take the number of components so defined to be of the 
order of 50. 

The most difficult aspect of this application of the 
LDP theory is its adaptation to the two-dimensional 
character of crystal growth , but it should be pointed 
out that this same problem arises in all previous 
theories of polymer crystallization. In the present in
stance , this adaptation was accomplished by appro
priate modification of the rate constants , using as a 
criterion the fact that crystallization, given some type 
of nucleus, should occur at small undercoolings. 

The problem of the apportionment to forward and 
backward rate constants of the free energy changes 
occurring in the process of accretion of elements at 
the end of the growing strip has not been solved. In
stead, calcu lations were carried out for various 
arbitrary apportionments, with significant differences 
in the results. In our views, this is an outstanding 
theoretical problem in the treatment, but is not one 
likely to be solved without detailed knowledge (or 
at best a detailed model, which is a different thing) 
of the microscopic process by which it polymer chain 
adds to the growing crystal. 

Perhaps the most intriguing result of this treat
ment is the roughness of the crystal surface as grown. 
This produces a standard deviation in the thickness of 
some 8 A at the melting point and increases to more 
than ten angstroms at normal undercoolings, the ex
act amount depending strongly on the exact apportion
ment of the free energy changes. There are some 
experiments , notably density [15 J and heat of fusion 
measurements [16J, which have as one interpretation 
such a rough surface, but it should be borne in mind 
that the roughness calculated here is that occurring 
during the kinetic processes of growth and not neces
sarily the equilibrium roughness appropriate to the 
temperature in question. Nevertheless, unless a 
smooth surface is energetically favored over a rough 
surface (which could be theoretically accomplished, 
for example , by incorporating into the theory what 
might be called a "loc k-in" energy, that is, an energy 
that would favor adjacent segments in the growing 
layer being of the same thickness and the same thick
ness as the substrate) such smooth crystallographic 
surfaces as are seen in isolated polyethylene lozenges 
[17] are likely to remain inexplicable on the basis of 
this theory, and probably any other statistical me
chanical theory. 

Over the range . of undercoolings of usual experi
mental interest, the thickness grown as a function of 
temperature and the total rate of crystallization (ne
glecting transport or diffusion terms) can be analyzed 

by equations previously derived by others (eqs (1) and 
(18) of the text) provided that the end-surface free 
energy U"e in those theories is rePlaced by an "effec
tive" end surface free energy U"eff' This latter quantity 
is intimately related to the roughness of the surface, 
and is temperature de pendent , the exact amount of 
this dependence depending on the apportionment of 
the free energy to forward and backward rate
constants. Near the melting point , where the results 
are independent of this apportionment , the difference 
between U"e and U"eff is about 24 ergs/cm2 for U"= 10 
ergs/cm2 and independent of ere , with U"eff being 
smaller. This difference becomes smaller as under
cooling is increased, and varies with the value of U". 

At undercoolings approaching U"T/,, / a6.h, the 
grown length approaches a minimum and then be
comes infinite at this undercooling. For all the free
energy in the backward rate constants ('I' =0 in eqs 
(14)) the distribution also becomes infinitely broad, 
while for all the energy in the forward or equally di
vided between forward and backward rate constants 
the distribution remains finite, and the approach to 
the infinite length is logarithmic, as was found also 
by Fran k and Tosi, although at twice the undercooling. 
The distribution for 'I' = 0 is thus very different from 
the equilibrium distribution and in a sense represents a 
very inefficient mode of crystallization. Indeed, for 
crystals with such very rough surfaces, the use of 
the LDP theory can be questioned, for nonnearest
neighbor interaction should most likely be taken into 
account. 

At the same temperatures where the grown thick
ness reaches a minimum, the growth rate, or total 
flux, reaches a maximum and then falls off, even in 
the absence of transport terms. Again this effect is 
most pronounced for 'I' = 0, and again the relevance 
of these results to re'llity in this region may be ques
tioned for under conditions of such rapid growth, 
steady state may never be reached. The same criti
cism, however, applies to all other theories and this 
situation is likely to remain , for to solve the kinetic 
equation under non steady-state conditions is a truly 
formidable task. 
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tional Bureau of Standards for the large amount of 
time they spent discussing with us the various aspects 
of this problem and these results. Particular thanks 
are due to E. A. DiMarzio and 10hn D. Hoffman in this 
respect. But most of all we wish to thank F. L. Mc
Crackin , for it was only through his help in the com
puter programming that we were able to carry out 
this work. 
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