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The kinetics of crystallization of a binary mixture of n-paraffins is treated using a theory for the 
rate of growth of chains in multicomponent systems. The kinetic chain is considered to be a strip of 
crystalline material composed of molecules of both components that is growing on a substrate of uni· 
form thickness. This substrate is considered to be a close·packed surface step. Using the binary 
mixture of C2.H,. and C2.H •• as an example, the calculations are carried out by an iterative procedure 
so that the mean thickness of the strip equals that of the substrate. This procedure necessitates modi· 
fication of the rate constants that would be used without this requirement. The rate of growth of the 
strips (total flux) is calculated as well as their composition over an appropriate range of temperature 
and a complete range of liquid compositions. The pair distribution in the strips is also determined. 
The substrate is assumed to be unkinked in the calculations, whereas the substrate is probably highly 
kinked in the actual system. For this reason the calculated total flux is probably not representative of 
the actual crystal growth rate in a binary mixture of C,.H,o and C,.HM . It is believed that the cal· 
culated compositions are reasonably accurate. For a binary mixture of longer n·paraffins (e.g., C,oH lo, 
C"H I .. ) the substrate should have many fewer kinks, and the total flux calculated by this theory will 
be more closely related to actual crystal growth rate studies. However, no data exist for such systems. 

Key Words: Crystal growth, multicomponent systems, kinetics, n·paraffins, phase diagrams, 
pair distributions. 

1. Introduction 

In a recent paper (subsequently abbreviated LDP) 
[1]1 we presented a theory by which the rate of growth 
and composition of a chain growing in a multicom· 
ponent system may be calculated. There are several 
kinetic problems which may be treated by the method 
developed in LDP. In particular the chain may be 
regarded as a layer (or strip) of atoms or molecules 
at a step on a growing crystal surface, the beginning 
and end of the chain, or strip, being kinks. The 
initiation and growth of such strips is one of the 
processes operative in crystal growth. In fact, in 
theories of polymer crystallization [2,3 ,4] it is gen
erally considered that formation of such strips is the 
rate controlling step in the growth of polymer crystals, 
and hence the calculation of their rate of growth 
amounts to the calculation of the rate of growth of 
these crystals. In polymer crystals the growing step 
(or lamellar edge) is not expected to be very highly 
kinked, and this approach appears valid. We treat 
this problem in the following paper. In atomic systems, 
the situation is more complicated [5]. The rate
controlling step is almost certainly not the InItiation 
and growth of these strips, since the step is highly 

I Figures in brackets indicate the literature references at the end of this paper. 

kinked [5], and the problem of the calculation of the 
rate of growth of a crystal becomes essentially a 
diffusion problem. In systems of intermediate com
plexity, such as those treated here, the relevance of 
the kinetics of formation of these strips to the problem 
of crystal growth is somewhat harder to assess. 
However, in multicomponent systems, such as we are 
treating, it seems relatively clear that the elementary 
processes we treat in calculating the rate of growth 
and composition of these chains must be important in 
determining the composition of the crystal, for it 
must in large measure be the neighbor interaction 
energies that determine the composition. We thus 
present an application of the LDP theory to the 
problem of crystal growth of binary mixtures of 
n-paraffins. The pure normal paraffins are known to 
grow, at least from solution, by a screw-dislocation 
mechanism [6], and hence a surface step is present. 
It is expected that the composition of the chains 
calculated by this method will be a more accurate 
representation of the composition of the crystal than 
the calculated kinetics will be of the rate of crystal 
growth. However, it is expected that as the length of 
paraffin molecule increases, the calculated kinetics 
become a more adequate representation of the rate 
of crystal growth, for the growing step becomes less 
and less kinked. 
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Although concerned with a specific system, our aim 
will be less to account for the behavior of this specific 
system than to illustrate the general behavior of binary 
systems insofar as this can be done by the LDP 
theory. Considerable accurate data on the phase
diagrams of n-paraffin systems are available [7,8] 
although, to our knowledge , no data are available on 
the kinetics of crystal growth in such mixtures. The 
homogeneous nucleation rate has been studied in 
pure n-paraffins [9], but not the crystal growth rate. 
However, many of the energy considerations relevant 
to crystal growth are well known [10]. The solid
phase behavior of the n-paraffins is also well known 
[10], and, since the LDP theory is applicable only to 
solid solutions, we will concentrate on a system in 
which solid-solutions are found at all concentrations. 
In particular, we will be concerned with the solidi
fication to the hexagonal rotator phase in the system 
C24H50 - C26H 54 , which meets these requirements. 
We will ignore any solid-solid phase transitions, and 
our task will be to calculate the rate of growth of the 
strips discussed above and their composition as a 
function of temperature and liquid composition. In 
what follows we use the words "chain" and "strip" 
interchangeably. 

In order to describe the method of calculation, we 
will have to describe those aspects of the LDP theory 
necessary to make the subsequent exposition clear. 
The LDP theory begins by assuming only nearest 
neighbor interactions, with rate constants a ij and 
f3ij, for, respectively, adding species j to a chain ending 
in species i, and removing species j from a chain 
whose terminal elements are originally i and j. These 
rate constants are assumed to be independent of the 
length of the chain. However , the rate constants for the 
initiation of the chain (i.e., the first step in the chain) 
are different, and are called a~ and f3{. That is, al, 
gives the rate of initiation of new chains from the 
melt or solution , and f3 ·i gives the rate of dissolution 
of thi s first s te p back to melt or solution. 

Although there is no limit to the number of com
ponents or order of distribution which may be handled 
by the LDP theory, in this paper we will be con
cerned only with binary systems and pair distributions. 
Thus, we defin e N! and p~J as being, res pectively , 
the number of c hain s in th e sys tem v units long with 
species j in th e vth position , and i and j in (v -1)th and 
vth positions. In this application, of course, i and j 
can take on only the values 1 and 2, with 1 repre
senting C26H54 and 2 representing C24H50• Clearly, 
we must have 

. , 
NJv = 2: P~ (1) 

i = 1 

and 

N~' = 2: NJ" = 2: PI!, (2) 
J i. J 

where N;,' is the total number of chains v units long. 
We call these quantities, N{, and P~, "occupation num-

bers." Kinetic equations for the growth of chains may j 

be formulated [1] in terms of these and more complex 
quantities. These may be solved at steady state under 
certain fairly broad conditions. For thi s purpose we 
define fluxes S{ and 5Y as being the net rate of growth 
of chains (at s teady state) from v -1 to v units by, re
spectively, adding species j to any chain, and to a chain 
whose terminal (v -1)th ele me nt is i. We obviously 
have 

S1"= 2: 5J,,= 2: S~, (3) 
i, J 

where 51" is the total flux. Thus, we may consider that 
the flux S~ is associated with the occupation number 
NJ", and the flux sy with Pi 

Under certain and quite unrestrictive conditions on 
the rate constants, it is shown by LDP that the ratio 
of flux to its associated occupation number is inde
pendent of chain length (for sufficiently long chains) 
and dependent only on the terminal s pecies in the 
chain. That is, 

(4) 

where the ratio is denoted AJ. This 'in turn is given by 
the equations 

(5) 

Moreover, it is also shown in LDP that 

a iJNi 
NJ = "'<\.' v- I 

v f f3ij + AJ (6) 

For sufficiently large v, this rec urs.lOn relation IS 

shown to become [1] 

(7) 

Thus for sufficiently long chains, the occupation num
bers become independent of chain length, and be
cause of eq (4) the flux also does. "Sufficiently long" 
in this context is of the order of ten, and thus if the 
average number of lattice positions between kinks is 
of this order, this equation will be valid . 

Equation (6) is a recursion relation for the N v • When 
combined with the equation for the first step in the 
chain 

N · aJNd J=---
I f3{ + ,,.} (8) 

it is entirely possible to build up the chain on a high
speed computer and thus get the initial v-dependent 
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solution as well as the v-independent limit. (In eq (8) 
a~N6 is th e ra te ufi niti ation of new chain s from th e 
me lt or solution.) 

Now, having the lJ independent limit of Nj either by 
direct solution of eq (7) or iteration of eq (8), the flux 
is easily obtainable from eq (4): 

(9) 
a nd 

(10) 

It is shown by LDP that the total flu x is conserved. 
He nce , we also have 

5 - L 'N' - L aI,N{A..i -'1' - },..J J_ 

. 1 . a i+ 'A..i 
J J fJr 

(11) 

In general we will not know the exact numeric'al value 
of aVVi or fYt a nd h ence will not be able to predict the 
magnitude of the flux. We hope , however , to be able 
to predict correctly its de pende nce on te mperature. 

Now, the fr ac tion of the jth species in the c ha in , Ii, 
is given by 

(12) 

a nd is thus easily obtained. The pair di stributions are 
also easily obtained. It is shown by LDP that 

~ijNi 
P .. ..... v I) = __ _ 

v+ 1 f3ij + 'A) (13) 

and for chains tha t are sufficiently long that the occ u
pation numbers become 'independent of lJ, 

.. aijNi 
P')=---

f3 ij + },j (14) 

Now, clearl y the frac tion fij of i, j pairs in the chain 
is give n by 

. Sij AWi.i 1 aijA jNi 
j .. =-=--=---

I) Sr Sr Sr f3i j + Aj 
(15) 

The ste ps in the solution are as follows : (a) Having 
the rate constants aii a nd f3 ij, compute the t,) from 
eq (5). (b) Havi ng th e 'A), co mput e the N;! by it e ration 
of eq (6) beginnin g with eq (8) until the NJ arrive at a 
cons tant value Nj. (c) Compute Sj by eq (9), and 
Sf' by eq (10). (d ) Compute the composition of the 
c hain by eq (12) and the pair di stributions by eqs 
(14) and (15). The ac tual methods used for these com
putations will be di scussed in greater detail below. 

2 . The Rate Constants 

2.1 . Preliminary Considerations 

It is shown by LDP that the ratio of the r ate co n
sta nts is give n by 

and 

a ij 
- .. = exp [(lLj - eiJ /kll 
f3 11 

(16) 

(16a) 

where IL j is the chemi cal pote ntial of the jth species, 
E ij is the change in free e nergy of the growing chain 
when j is added to a chain e nd ing in species i, and 
E3 is the change in free e nergy for the initial eleme nt of 
the chain. There are two things to be noted about 
eq (16) and (16a) . Fir st, they were derive d from con
sideration of an appropriate grand-canonic al ensemble, 
under the princ iple of detailed balance and as a result 
kineti c factors suc h as interfacial trans port terms do 
not appear. Secondly , eqs (16) and (16a) give only 
the ratio of the forward and bac kward ra te cons tants 
in terms of the free energy c ha nges involved in the 
process. Without more detailed knowledge of the 
de tails of the process we do not know how to a pportion 
these free energy changes to the forward and bac k
ward rate cons ta nts. Rather than try to solve the 
proble m of the detailed process, as has been at
tempted by Frank and Tosi for c hain-folded polymer 
crystallization [3], we shall ta ke a more e mpirical 
approac h and solve the proble m for various arbitrary 
apportionme nts . At equilibriu m the res ults will , of 
course, be inde pe nde nt of thi s , and our hope is that 
thi s will also be the case under kine tic conditions. 
As will be seen , our hope is largely fulfilled. 

2.2 . Evaluation of ILJ and E ij 

The quantity ClLj - Eij) is the change in free energy 
of the system in removing species j from the liquid 
and placing it on the end of a chain whose terminal 
element is species i , and (lLj - E~) has the analogous 
interpretation. In order to do this we need both a 
model of the liquid and a model of the growing crystaL 
Our philosophy in this is to assume the simplest model 
possible for both; considering the adequacy of the 
theory and the state of our knowledge of the kinetics 
of crystallization in these syste ms, to as sume more 
detailed models at this state would be pre sumptuous. 

Accordingly, we assume that the liquid is an ideal 
solution of the two species. For the syste m considered 
here (C24 Hso and C26 Hs4) this is not a completely 
adequate description [11] but neither is it very far 
wrong. Indeed , for our purposes, it is completely 
sufficient. We may therefore write the free e nergy 

247 



Gl (T, P) of a liquid mixture of NI molecules of 'C26H54 

and N 2 molecules of C24H50 as 
pure crystal at the same temperature 
we may write 

(19) 

where g{ and gj are the free e ne rgies per molec ule of where 
the pure liquid components at the same temperature 

U(X)=X 

=0 

X~o and pressure, and XI and X2 their mole fractions. We 
thus have immediately 

fLl = g~ + kT In Xl 

fL2 = g~ + kT In x~ (18) 

To obtain the Eij and Ei~ we adopt a model illus· 
trated schematically in figure 1. We assume a uniform 
substrate, or crystal flake, that has already grown with 
a thickness intermediate between the extended 
lengths of the molecules, II and i 2 • (Note that we do 
not allow any roughness in the substrate. This is dis
cussed more fully below.) Since the solid phase has 
an hexagonal crystal structure, we assume for sim
plicity that each molecule in the chain is an hexagonal 
prism as shown. We now adopt a procedure similar 
to that used by Price [4] to calculate the energies. 
Each molecule may be considered to act as a rigid 
hexagonal prism with a surface free-energy er per 
unit area. For the difference in length under considera
tion, this is not a bad assumption. Then, if gj repre
sents the average free energy per molecule in the 

/, 
a 

FIGURE 1. Schematic diagram of a model for crystal growth of a 
binary mixture of n·paraffins. 

The growing st rip is the kinetic chain of the LDP theory [1 ]. The lengths of the two 
paraffin components in extended configuration are 1\ and 12 • The cross section of the two 
components in the crystal are taken to be hexagonal since the solid solution is in the hex
agonal rotator phase. The strip is growing on a substrate of uniform thickness, I,. 

X~o 

and a is the length of the hexagon edge. Note that we 
have not included a term for the end-surface with free 
energy ere. This merely makes the melting point that 
of the macroscopic crystal rather than a single lamellar 
sheet and corresponds to the case of the substrate 
being a surface step. Hence we obtain for fLj - E ij 

where I.1gj is the free energy of fusion (considered as 1 

a positive quantity) for species j at the temperature 
in question. For the first step we obtain 

fLj - E~ = I.1gj - 4aerU (lj - ls) - 2aerlj + kT In Xj. (20a) 

Equation (20) indicates that if a molecule with length 
ij > ls > li is added to a chain ending in species i, 
corrections to the free energy of fusion must b~ made 
because of the newly exposed surface area, but if 
ij < ls < ii, no such corrections need be made. As usual 
for small supercoolings we assume 

where I.1h j is th e heat, of fu sion and TIll is the niehing 
point appropriate to the species in question and obtain 
finally 

I.1hl.1T 
fLj - Eij = fj } - 4aerU(lj - ls) 

m 

- 2aerU(lj - I;) + kT In Xj (21) 

where I.1Tj = TIII- T, with an analogous expression for 
the first eleme nt. 

2.3 . The Effect of the Substrate and the Two
Dimensional Character of the Crystallization Problem 

If we were interested in the strictly one·dimen
sional probl~m of the rate of growth and composition 
of a strip growing on a substrate of fixed length, then 
the free energies given by eq (20) and the ratios of 
rate constants calculated from them by eq (16) would 
be completely appropriate. It would be necessary only 
to carry out the computations as outlined at the end 
of the Introduction. This would lead to correct results 
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for a one-dimensional problem, for the LDP theory, 
within the limits of the assumptions, is rigorously 
correct. 

Crystallization, however, presents a problem of a 
two-dimensional character. What is required as a 
minimum is that the strip have the same composition 
as the substrate . In this particular case, this is the 
same as requiring that the average thickness of the 
growing strip, defined as 

(22) 

be the same as the average thickness of the substrate. 
It would appear that this problem could easily be 

solved by this procedure: (a) Choose a substrate of 
some convenient thickness. (b) Calculate, by the 
methods outlined, the composition of a strip growing on 
this substrate. Its average thickness will in general 
be different from that of the substrate. (c) Use this 
strip as a substrate for another .strip. (d) Continue 
this process until the average thickness of the grown 
strip is the same as that of the substrate. This pro
cedure clearly gives a first and reasonable approxima
tion to the true state of affairs in a growing crystal. 

If this is done with the free-energies given by eq (20) 
and the rate constants calculated from them by eq (16), 
no matter how the energies are apportioned between 
the forward and backward reactions, results which 
are incorrec t and aphysicaJ are obtained. If, for ex
ample, a phase diagram is calculated by this formalism 
at equilibrium (total flux , S1'=O), a minimum in the 
liquidus-composition curve occurs at a different com
position from that in the solidus-composition curve. 
While such a situation could be conceived off equi
librium (ST> 0) it is clearly impossible at equilibrium. 
This situation does not occur if the computations are 
carried out at fixed substrate thickness for all compo
sitions of the liquid, but is caused by the varying 
thickness of the substrate and the resulting two di· 
mensional character of the problem. We must, ac
cordingly, modify the procedure in some manner. 

One way of proceeding would be to construct a 
two-dimensional kinetic theory. This would obviously 
be a formidable problem, and rather than attack it 
with very small probability of success, we attempt a 
more tractable problem. W.e seek to modify the rate
constant ratio (eq 16) so that at least at equilibrium 
(S-r= 0) physical results are obtained. We then assume 
that the same form of this ratio will be appropriate 
under kinetic conditions (S1' > 0). 

The method used for this is outlined here and de
veloped more fully in the appendix. An ensemble of 
strips of various lengths and various average thick
nesses growing on substrates of various thicknesses 
is considered. The system is considered to have mole
cules of two lengths, L, and L2 , with L, > L2 • The aver
age thickness of the substrate is assumed to be 

where Is is the fraction of species 1 in the substrate. 
Pair or higher order dis tributions are neglected in the 
substrate. The average free energy of a strip of length 
v in this ensemble is given by 

2 

Gv= 2>11'. , [EJ - J.tj + kT In til', ,] 
j~ l 

v 2 2 

+ ~ ~~ qij [Ei·- II ·+kT lnpij ] (24) L. L. L. v, 11 J (""') v. 11 
lJ~2 i. ~l j~ l 

where qL, is the fraction of strips v units long with 
species j in the first position, q}/lI is the fract ion of 
strips v units long with species t in the 17th position 
and species i in (17 -1)th position, and P~. '1 is the prob
ability that if species i is in the (17 - l)th position in a 
strip v units long, then species j is in the 17th position, 
Denoting the number of chains in the ensemble by 
NT, the total free energy is given by 

v = 1 v=O 

The fraction I of species 1 in the strip is clearly 
given by 

1'0 v 

2: N v 2: q1v.1I 

v ~ , 1I ~ 1 

f=--v,,--- (26) 

2: vN" 
v= l 

For given J.tj, EJ , and Eij , the free energy given by 
eq (2;» is a fun ction of q!,." q!/ '1, N", j, and the fraction 
f of species 1 in the strip, 

By variational methods using Lagrange multi
pliers, a minimum in this free-energy may be sought 
with respect to these variables, and this will give 
their values at equilibrium, This analysis is carried 
out in the appendix, 

It is shown that the proper rate constant ratios to 
obtain the correct dis tribution at equilibrium are 
given by 

exj 

~ = Xj exp [flhjl;l TJiH, kT - 2auLdkT (27) 
(3/ 

(23) 
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where the quantities have the following meaning: 

and Oi,j is the Kronecker delta, 
At equilibrium we know that Is = f. Moreover, as 

shown in the appendix, J.~ = w, and under these condi
tions physical solutions to the problem are obtained. 
Hence, without further justification we choose the 
aij/ f3 ij given by eqs (27) and (28) to be the proper 
rate constant ratios. 

2.4. The Apportionment of the Energy 

As previously mentioned, without detailed knowl
edge of the microscopic processes involved, it is not 
possible to make a decision of how to apportion the 
free energy between the forward and backward re
actions. Since we have no such knowledge we adopt a 
much more empirical approach and carry out calcula
tions for various arbitrary apportionments . Thus, if 
we let the argument of the exponential in eq (28) 
be A, then we take 

a ii = Xi exp (<pA) (29a) 

(29b) 

and carry out calculations for <p = 0, 1/2 and 1. It 
will be noticed that the concentration term Xj is 
placed only in the forward reaction. This seems proper 
in that the probability of adding species j to a growing 
chain ought to be proportional to the "availability" 
of that species in the liquid. 

For the initial step, if we let the argument of the 
exponent in eq (27) be A', we take 

a io = Xj exp (A ') (30a) 

tions, do not involve any transport (or diffusion) terms. 
The inclusion of such terms in eqs (29) and (30) poses 
difficult problems, for in general these terms are not 
known. If these transport terms depend upon both 
the species at the end of the chain and the species 
coming on or going off (i.e., depend upon both i and 
j) then their omission can lead to serious problems. 
Thus, if a'ii and f3'ii are the rate constants including 
transport terms, the most general relation to the 
a ii and f3 ii are 

a'ii = a ii a ii (31a) 

and 

f3'ii = bii f3 ii (31b) 

where aii and bii represent the transport terms. At 
equilibrium, of course, we must have aii/b ii = 1. 
These new rate constants determine new Ai by eq (5) 
and hence new compositions and fluxes. These co
efficients are, of course, unknown, and indeed in such ' 
theories as this are usually left as undetermined 
parameters. 

In the present case however, the similarity of the 
two species in question is such that a reasonable 
approximation to the true state of affairs may be 
obtained with a much more restrictive condition than 
eq (31). In the particular case under consideration 
here we could adopt these relations 

a'ij = aa ij 

f3'i j = bf3 ii . 

(32a) 

(32b) 

Now, as long as 5r = 0, we know the ratio alb is unity 
from eq (16), and we note that this statement is not 
restricted to the melting temperature. At the melting 
point, of course, 51'= 0, and a = b. For finite currents 
not too far below the melting point this latter equality 
is expected to be an excellent approximation, if not 
indeed a rigorous fact. 

Thus, taking a= b, and calculating the A'i corres
ponding to a'ii and f3'ii we have 

aaiil\'i 
A'i - 2: - f3-'-' +-,-,. a 1) ,,) 

j 

(33) 

f3i = 1. (30b) whence 

That is, for the initial step, we put all the energy into 
the forward reaction and take the backward reaction 
to be a constant. This affects only the magnitude of 
the flux, which, as previously mentioned, we cannot in 

(34) 

any case expect to predict exactly. and 

2.5. The Transport Term 

Equations (16), (27), and (28) for the rate constant 
ratios, being the result of equilibrium considera-

A'i = aAi. 

Inspection of eq (6), (12), and (15) shows that the 
transport term as represented by the quantity a has 
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no effect on the occupation numbers and the composi
tion, but inspection of eq (10) shows that the flux 
calculated without the transport term must be multi
plied by the factor a to obtain the flux when the 
transport term is included. In the calculations carried 
out here we take a to be unity, for, as previously 
stated, we cannot expect to get the true magnitude of 
flux in any case. In addition, however, the tempera
ture dependence of the flux we calculate will be 
slightly wrong, and should be multiplied by an Arr
henius type term. For the undercoolings involved in 
this work (at most several degrees) this causes a 
negligible error in the temperature dependence. 

3. Method of Calculation 

The energies and molecular le ngth s chosen for the 
calc ulation were tak e n from a paper by Broadhurs t 
[101. The late ral molecular dim e ns ions were co mputed 
to give th e c ross-sectional area pe r molec ul e give n by 
Vand [12 1. Th e data and con dition s are su m marized 
in table 1. Of' particular importan ce in the tab le are 
th e valu es 0(' s urface free e ne rgy, 0-, whi c h were 
chose n to be 3, 4, and 8 e rgs/cm ~ . Thi s is lowe r th a n 
the 8 - 12 ergs/cm2 obtained from the data of Turnbull 
and Cormia [91. Since we are consid ering the tran s i
tion from liquid to hexagonal rotator phase we expec t 
0- to be lowe r, and indeed, comparison with the data 
of Mazee [71 s hows th at it most probably is. 

The calculation s we re carri ed out on an IBM 7094 
computer as folJows . 

(a) For a given value of <p and a give n conce ntration 
X I and x~(= 1- XI) in th e liquid , a s ta rtin g value of' 
j , = XI was chose n and rate cons tants calculated by 
eqs (29), (30), (27), a nd (28). 

(b) From these rate con sta nt s , th e A were dete r
min ed by eq (5). Th ese were solved by an ite ration 
procedure outlined in LDP. Start ing with 

(35) 

we calc ulate s uccessively 

(36) 

TABLE 1. Data and cOl/ditiol/s IIsed lor co/cli/oliOI/S 

Co mpound Len:!I" . A !J,.hJi k 

C,., 1-1 .>11 3:2.46 6590 

C,,;l-I :,, 35.00 7150 

a = 2 795 A 
cr/k,A - 2= 2. 172, 2.896 , 5.792 
'1' = 0.1 /2. 1 
TCl11pcra lure: 315 OK 10 l11 e ilin ~ poilli. 

Till, OK C once ntration 
in tiquid 

323 .8 0- 1 

329. 5 0- 1 

until convergence is obtained. It is shown by LDP 
th at thi s series converges to Aj. Thi s is eas ie r than 
solving eq (5) for the Aj direc tly. Moreove r, f'or 
n > 2 such direct solution is us ually imposs ible. 
Iteration was carried out until B~ was within 1 part in 
10 7 of B~ _ I' Convergence took only a few hundred 
s teps except near the melting point (Aj = 0 , 5T = 0) 
where convergence was slow (10 4 steps). The series 
does not converge for T above the melting point for 
that particular composition (A < 0, 57' < 0). 

(c) Having the t.), the N{ were obta ined by successive 
iteration of eq (6) starting with eq (8) until convergence 
to 1 part in 107 was obtained. N6 was chosen to be 
10 6. 

(d) The quantities Sj, ST, ,{j , and lij were calculated 
by eqs (9), (10), (12), and (15), respectively. 

(e) Having calculated jj we of course have the co m
position of the grown strip. We now c hoose J~= f 
(the fraction of species 1 in the s trip) and repeat 
the procedure, and continue thi s until the calculated 
f is equal to Is to one part in 10 6. 

The range of parameters given in table 1 takes a bout 
five minutes of computation time. 

4. Results 

What we wis h to know from the computations are 
(a) The rate of growth (total flux , Sr) as a function 

of te mperature and liquid composition. 
(b) The composition of the crystal, J~ crystallizing 

from a liquid of composition X I as a function of X I 

and temperature. 
(c) The pair distribution s III, ;;2, and hz. 
To achieve these aims, computations were carried 

out for the values of the parameters li s ted in table 1. 
Calculations were carried out at liquid composi
tions X I from 0 to 1 by increments of 0.1 For each 
composition calculations were carried out for all the 
integer values of temperature from 315 OK up to the 
closest integer value to the temperature at which 
S'{' = O. For each of the quantities of interest we are 
particularly interested in determining the effect of 
0- and <p. 

4.1. The Total Flux 

Representative results for the total flux (5'1') are 
given in figure 2. We have illustrated its behavior 
with temperature by giving plots of it against tempera
ture for 0- =4 and 8 and <p=0 and 1. The c urves fo r 
the other values of the parame te rs are very s imilar. 

In all cases the total flux is essentially linear with 
temperature, but perhaps more striking is the fact 
that the slope of these curves is almost independent 
of composition. This means that the total flux is de
pendent essentially only on the undercooling ap
propriate to that composition. This is not a totally 
unexpected result, for the c hange in crystal free 
energy with composition (aside from entropy of mix
ing effects) is small considering the similarity of the 
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FIGURE 2. Plots of total flux of crystallization versus temperature in binary mixtures of 
C24H5o and C2.H54. 

Each of the four figures have plots for six values of liquid concentration of C26H.S4 ranging from 0 to L Figures 2(a) and 2(b) are calc ulated 
for (7 = 4 ergs/cm 2 and for rp = O and 'P= 1, respec tively. Figures 2(c) and 2(d) are calculated for a= 8 ergs/cm2 and for .p=O and I{J= 1, 
respectively. All plots are Quite linear . When u=4 ergs/cm2 the curves are displaced uniformly to higher temperatures with increasing 
liquid concentration of C26Hs4 ; when (7 = 8 ergs/cm2 the curves are first displaced to lower and then to higher temperatures with increasing 
liquid concentration of C26HM • This behavior results from the minimum that exists in the liquidus and solidus curves for the higher value 
of 0". 

dimensions of the molecules. To the extent that these 
curves can be interpreted as rates of crystallization, 
they imply that this rate is dependent almost entirely 
on the undercooling appropriate to that composition. 

over the illustrated temperature interval is indicated 
by m(cp,O") then the following approximate relations 
hold: 

A detailed analysis of these curves shows that their 
slopes are related systematically. If the average slope 
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m~cp , 0-) = f(cp) 
m(O,o-) 

(37) 



and 

m(cp,(J") = g((J") 
m(cp,(J"o) 

(38) 

where f(cp} and g((J") are functions only of cp and (J", 

respectively. This means that the variation of these 
slopes with cp for any given (J" is independent of (J" 

and the variation with (J" for any given cp is independent 
of cpo 

As previously discussed under the section on the 
transport terms, these slopes are not correct, for they 
do not contain the effect of this term. They should be 
multiplied by the factor a which is expected to be of 
the form 

a = ao exp [- tlH/kTJ. (39) 

However, unless the preexponential factor ao and t~e 
activation energy tlH are inordinately large, thI s 
will have only a negligible effect on the slopes over the 
eight degree range of undercoolings considered. 

4 .2. The Crystal Composition 

The composition f of a strip crystallizing from a 
liquid with composition XI for various values of the 
parameter (J" is shown in figures 3 and 4. Figure 3 is 
computed for Sr = 0 at all compositions and thus is a 
true phase diagram. The effect of the parameter cp 
is indistinguishable on the scale of these figures . 

Figure 3 indicates that as the surface energy of the 
material is increased, a minimum in the phase diagram 
occurs, and the maximum separation between liquidus 
and solidus increases. Since (J" is a measure of the 
interaction energy between the two species in the 
solid phase, this behavior is normal. Detailed cal
culations indicate that the liquidus and solidus curves 
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FIGURE 3. Phase diagrams oj the binary mixture oJC"H50 and 
C Z/iH54 Jor three values oj a. 

XI is the molar concentration of C26H ~~. This diagram represents the composition of the 
solid at equilibrium (ST= 0) with a given liquid composition. The solidus curve fall~ ~elow 
or touches the liquidus curve. As u increases above 4.018 ergs/cm 2 a temperature minimum 
occurs in the phase diagram. 

approach the temperature axis horizontally for a (J" 

value of 4.018 ergs/cm2 • The experimental curves 
given by Mazee [7] for this system indicate that th~ 
liquidus and solidus curves do not have such a hon
zontal portion, and we conclude that (J" for the hexag
onal rotator phase of the normal paraffins is somewhat 
less than 4 ergs/cm~. This is to be compared with 
the value of about 12 ergs/cm2 deduced from the data 
of Turnbull and Cormia [9] for the nonrotator phases. 

Figure 4 looks superficially like the phase diagram, 
figure 3, but is not, for it is for kinetic conditions 
and hence the phase rule, which is derived for equi
librium, cannot be applied to it. This diagram gives 
the composition of the solid separating from a given 
liquid composition at constant total flux Sr and we 
call it a "kinetic phase-diagram," and even use the 
terms "liquidus" and "solidus," even though not 
entirely appropriately. The constant total flux was 
chosen by choosing the crystallization temperature 
for the pure X2 case to be 321.0 oK (undercooling of 
2.8 °C). The composition of crystal separating from a 
liquid of composition XI was then computed for this 
same flux as well as the temperature at which this 
occurred. 'By the remarks made about the behavior 
of the total flux with temperature and composition, 
this gives almost a constant amount of undercooling 
throughout the diagram, but not quite, as is apparent 
from the XI = 1 e nd of the diagram. 

The curves of figure 4 are superficially very similar 
to those of figure 3, and indeed it would take extremely 
careful experiments to be able to distinguish between 
the two. This indicates that even if conditions of 
exact equilibrium do not obtain when determining 
phase diagrams for this system, very little error will 
be made. 

A more detailed analysis shows, however, that 
there are differences between these kinetic phase 
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diagrams and the equilibrium phase diagram. The 
most striking difference is shown in figure 5 which is 
an enlargement of the region of the minimum for the 
curve calculated for <p = 1 and U" = 8 for the same total 
flux as in figure 4. This figure indicates that the 
minimum in the temperature-liquidus curve occurs 
at a different composition from that in the tempera· 
ture-solidus curve. This could not, of course, occur 
in an equilibrium phase diagram, but there is nothing 
to preclude it happening in these kinetic diagrams. 
To the right of the vertical arrow the composition of 
the crystallizing solid is higher in species one than 
that of the liquid if> X I) while to the left it is lower 
if < XI)' This is denoted by the horizontal arrows. 
At the point denoted by the vertical arrow the com
position of the solid is the same as that of the liquid. 
This "equal-composition" point, which we denote by 
Xe, for an equilibrium phase diagram must, of course, 
occur at the minimum of the liquidus and solidus 
c urves , but no such restriction occurs here. 

It is to be noted that although the minimum in the 
liquidus and solidus curves occur at different com· 
positions, the temperatures at the minima are the 
same. For this not to be true would require a double 
valuedness in the relation between f and X I. But our 
a ii , (jii, and Ai and the quantities calculated directly 
from them are continuous and single valued. Hence, 
this double-valuedness cannot exist, and the tempera
ture at the minimum in both the solidus and liquidus 
curves must be the same. It is also clear on physical 
grounds, that any point on the liquidus curve must 
correspond to a point on the solidus curve, and vice 
versa. Thus the minimum in the two curves must be 
at the same temperature. _ 

It is interesting to consider the effect of super
cooling on the composition Xe. As the undercooling 
is increased, Xe decreases , and this is illustrated 
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FIGURE 5. An enlargement about the minimum of the "kinetic 
phase diagram" of figure 4 for (T = 8 ergs/em" and cp = J. 

0.33 

Here the minima of the temperature-solidus (solid line) and the temperature.liquidus 
(dashed line) curves do not occur at the same composition. This could not occur in an 
equilibrium phase diagram. To the right of the vertical aTrow the composition of the cr ys tal. 
lizing solid is higher in C26H,H than that of the liquid, while to the left it is lower. This is 
indicated by the horizontal arrows. The vert ical arrow indicates the " equal composition" 
point. 

schematically in figure 6. In this figure we show the 
equilibrium phase diagram and one of the family of 
kinetic phase diagrams. On this figure there are shown 
three curves intersecting the kinetic phase diagram. 
These represent schematically the locus of Xe(T), 
the locus of the minimum in the liquidus curve, 
Xm(T), and the locus of points on the liquidus con
jugate (i.e., at the same temperature) to Xe. This 
last locus we denote by X~ . The form of these curves 
is difficult to develop analytically. This much, how
ever, can be said. The slope of Xe(T) and Xm(T) at 
the equilibrium diagram is negative. It does, however, 
depend upon <p and the U" involved, and this sign of 
the slope is not a general rule. The slope at the point 
where these curves cross the XI = 0 axis is positive, 
and also depends upon <p. 

\ , , , 
" , , 
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T~ ________ '::_"'_=--".~ ...... =_-=_o . ___ ____________ _ 
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X, 

FIGURE 6. Schematic presentation of the equilibrium phase diagram 
and one of the family of "kinetic phase diagrams" of a binary 
mixture of n-paraffins. 

Three curves intersect the " kineti c phase diagram." These curves represent schemati
call y the locus of the equal composition point, Xe( T), the locus of the minimum in the 
liquidus curve , X",(1) , and the locus of th e points conjugate to X e(T) (i.e ., at the same 

temperature on the liquidu s curve), X~(n . The temperature minimum of the equilibrium 

phase diagram is Tm. The supercooled area beneath the equilibrium phase diagram can be 
divided into 7 regio;s d es ignated by Roman numerals and two points. a and h. In these 7 
regions and at these two points the time dependen ce of the total flux are qualitatively 
different. 

Moreover, the temperature T at which Xe= 0 can 
be determined analytically. This can be shown to be 

T= I1hl - I1h~ - 6aU"(l1 -l~) . 
I1h I m - I1h1 /T~ 

(40) 

For the parameters for the curves in figures 4 and 5, 
T= 232.5 OK which is a completely unattainable under-
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cooling. For (T = 4.05 ergs/cm2 and ~l other parameters 
the same as for the above curves, T= 322.90 which is 
an undercooling of only 0.9 deg, and hence in principle 
observable. However, in this case the minimum is 
very slight. For the system C3oH62 - C35H 72 , for 
which experimental data are available and a minimum 
exists, T= 191 oK, and hence also completely un
attainable. We thus conclude that the existence of 
T is a prediction of the LDP theory which is likely to 
remain academic. 

The kinetic phase-diagrams in figures 4 and 5 give 
the composition of solid crystallizing at a given rate 
from a given composition of liquid. In other words, 
in a real system this gives the composition of the very 
first crystal formed. As time proceeds, however, the 
composition of the liquid changes, and it is interesting 
to deduce what happens to the total flux as time 
proceeds. 

The most interesting case is that in which the 
phase diagram has a minimum , and the behavior in 
this case can be described with reference to figures 
6 and 7. Figure 6 shows the equilibrium phase diagram 
and one of the family of constant flux kinetic phase 
diagrams. Those with smaller fluxes are above the 
illustrated kinetic phase diagram, and those with 

0 0 
t 

IS[ 

ST ST 

larger below. It is convenient to divide the tempera
ture-composition space into seven areas , as shown , 
and two points, a, and h. 

What happens to the total flux when a liquid of a 
given composition is brought to a temperature below 
the melting point and held at the temperature is 
shown for each of the seven regions and the two 
points in figure 7. The diagrams are almost self 
explanatory, but we will describe them briefly. 

In regions I and II, as the liquid crystallizes, its 
composition changes such that the point describing 
it moves into areas where the crystallization rate is 
lower, finally reaching a point on the equilibrium 
liquidus curve at which time the flux drops to zero 
and crystallization cease's. 

In regions IV and V, the flux initially decreases, 
but because the point representing the liquid com
position crosses the curve, XmCT), the flux begins to 
increase again, eventually leveling off where the 
point reaches the XeCn curve at, respectively, lower 
and higher values. If the initial liquid composition 
and temperatures are such that the initial liquidus 
point is on the X ~C n curve (point b), the flux first 
drops , but then increases back to its original value 

II 

t 

y. 
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t t t 
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FIGURE 7. Schematic plots oJtotalflux. ST. versus timefor a binary mixture of 
n-paraffins that is represented in figure 6. 

Each plot represents schematically the time dependence of the total flux when crystallization begins in the indicated 
regions or at the indicated points of fi gure 6. In regions I and II crystalli zation does not proceed to completion. 

255 



when the liquid point reaches Xe(T) and remains 
constant thereafter. 

In region VI the flux increases monotonically since 
all points in this region are to the left of X II1(T) even
tually becoming constant when the liquid point reaches 
Xe(T)- In region III, the flux decreases monotonically 
until the liquidus point reaches Xe(1') after which it 
becomes constant. 

If the initial composition and temperature are such 
that the liquid point is on the curve Xe(T) (point a), 
the composition and hence the flux are independent of 
time_ This is clearly a generalization of the behavior 
at the minimum in the equilibril!...m curve_ 

In region VII (all points below T) the flux decreases 
monotonically in time and reaches a constant value 
only when the species 1 is completely depleted from 
the liquid_ 

It should be pointed out again that although this 
behavior is a direct consequence of the LDP treat
ment, its experimental verification is likely to be very 
difficult, and its experimental importance relatively 
slight. In any real system the curves Xe(T), Xm(T) 
and X~(T) are almost certain to be practically coinci
dent and vertical, and region VII will be unattainable_ 
Thus, regions V, VI, and VII will practically disappear, 
and the behavior in all attainable regions will be such 
that the flux will decrease monotonically - to zero if 
the liquid point is above the minimum melting tem
perature but below the liquidus curve, and to a constant 
value if the liquid point is below the minimum melting 
temperature_ 

The last question we have to investigate is the 
occurrence of a eutectic_ It is clear from what has been 
said about the continuous single-valued nature of our 
(Xii, {Pi and N with respect to x, and /, that we will 
never obtain a eutectic unless we include its possibility 
in a more or less ad hoc manner_ To do this it would 
be necessary to investigate the free-energy of the solid 
phase with respect to composition and determine if 
in some composition range the free energy of the solid 
is lower when expressed as a linear combination of 
two fixed solid compositions in standard ways [13]. 
For the values of the interaction parameter (0-) chosen 
here, this does not occur and no eutectic is formed. 
A simple calculation indicates that a value of 0- greater 
than approximately 22 ergs/cm2 is necessary before 
eutectic formation occurs at any reasonable under
cooling. This is an unreasonably high value of surface 
energy for n-paraffins. 

5. The Pair Distribution 

As indicated in the introduction the pair distribu
tion is easily calculated by the formalism of LDP. 
In order best to present typical results, in figure 8 we 
show plotted against composition / the difference 
between the observed /12 and the random mixing 
case, where /12 is given by /(1-f). These are com

'puted along the solidus line in figure 4 for 0- = 4 and 
8 ergs/cm2 • This curve gives all the possible informa-
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FIGURE 8. Plot of the difference between the pair distribution 
fIl and the random mixing pair distribution (fl )2 versus the singlet 
distribution fl for various indicated values of a and ",. 

These curves are calculated along the solidus curve in figure 4. The deviations from 
random mixing are very small. 

tion about the pair distributions, for the following 
identities hold: 

/{1-/)-/12=/II-P 

/11-p= /22-(1-/)2. 

First to be noticed in figure 8 is the small deviation 
of /12 from the random distribution. In the worst case 
this amounts to only about 6 percent at the / = 1/2 

point. This near equivalence is to be expected from 
the small magnitude of the interaction energy as ex
pressed by 6ao-(l1 -[2) in comparison to the entropy 
of mixing terms. 

The effect of 0- is such as to increase the deviation 
from randomness, as is to be expected, and the 
deviation is essentially proportional to 0- for a given 
value of rp. The latter parameter causes a not incon
siderable effect, but we have no explanation for it. 

The curves show an apparent symmetry about the 
point /= 0.5. If this symmetry were indeed present, 
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it would mean that /12 is symmetric about /= 0.5 
since clearly the random case is. However, this 
symmetry is only apparent. Detailed investigation 
near x = 0 and x = 1 indicate that /12 is not symmetric 
about /=0.5. This is what would be expected con· 
sidering the form of Equation 28, but the point is too 
recondite to pursue. 

6. Conclusions 

We have shown that by relatively routine calcula
tions using the LDP method, it is possible to calculate 
the kinetics of growth and composition of new layers 
growing at a surface step on a growing crystal in a 
binary mixture when the solid phase forms a solid 
solution. This procedure is expected to be an adequate 
representation of one of the processes occurring in 
crystal growth when the average distance between 
kinks is of the order of ten or more lattice spacings. 
If this distance is very large then this calculation 
would give the kinetics of crystal growth, but it is 
expected that in the present application the results 
will be more accurate for the composition. If the cal
culations were made for a binary mixture of longer 
hydrocarbons (e.g., C50HI02- C52H'06) it may be ex
pected that the distance between kinks would be large, 
and the flux calculated would have relevance to the 
crystal growth rates. 

What it is necessary to know for the calculation in 
this paper are the rate constants for the addition and 
subtraction of a given species in the mixture to and 
from the growing strip. It is possible by equilibrium 
considerations to evaluate the free energy change in 
the system and relate this change to ratios of the rate 
constants for addition and subtraction, but it is not 
possible in general to evaluate the rate constants 
themselves. However, in this problem, various ap
portionments of this free energy change to the addition 
and subtraction rate constants have only minor effects 
on the results. 

In the process of carrying out these calculations, 
specific account had to be taken of the two-dimen
sional nature of crystallization. This necessitated 
adapting the LDP theory, which is an exact theory 
for one-dimensional kinetic problems, to this two
dimensional problem. This was accomplished in an 
approximate, but in our view adequate, manner by 
appropriate modification of the rate constants. 

Although these calculations were carried out on the 
rather simple binary system C24H50 and C26H54, there 
is in principle no reason why it could not be carried 
out on more complex mixtures, provided only that the 
interaction energy in the solid is not so great as to 
cause eutectic formation. Indeed, in th~ following 
paper we apply the LDP method to a system where as 
many as 50 components must be considered. 

7. Appendix 

In this appendix we derive expressions for ((Xij/f3ij) 
that are suitable for our model and our treatment. 

The physical model and the concepts are emphasized, 
while many mathematical steps are omitted. 

We calculate these ratios from an ensemble that 
consists of a "mother liquor" formed by two hydro
carbon components that surrounds a large number of 
crystals. The crystals present N r substrates to the 
"mother liquor" upon which strips can be formed. 
The length of a strip (the number of molecules crys
tallized from the "mother liquor") is designated by 
v and v can take on the values 0, 1, 2, ... , Vo. 

We assume that all substrates have a uniform thick
ness, l". This uniform thickness is taken as the average 
thickness of the substrate, and is given by eq (23) of 
the text. The assumption of uniform thickness is nec
essary in order that we can apply our two component 
one-dimensional rate theory to the problem. This 
assumption is clearly an approximation, because the 
substrates will be of uneven rather than of uniform 
height. We shall see below that this assum ption causes 
a modification of the rate constants. 

The strips will be deposited upon the substrates in 
such a way that the free energy of the ensemble will 
be minimized. We shall determine the occupation 
numbers that characterize the strips such that the 
total free energy is minimized. These occupation num
bers can be used to evaluate the ratio ((Xu/f3 U) by the 
principle of detailed balance. This is analogous to the 
method used in single component rate theory. In the 
present case this leads to rll 

(XU (PU) _ = --2:±..!. 
f3u N~ e 

(lA) 

[n the pres en t instance the ratio ((Xu / f3U) is independent 
of v, and we have anticipated this result in writing 
eq (lA). It should be noted that the occupation num
bers on the right-hand side of eq (IA) are not the 
steady state occupation numbers obtained elsewhere 
in this paper. The total free energy of our ensemble is 

, "0, /1 0 N,l 
Gr = L NvC+ kT L Nv In - . (2A) 

v~ 1 v~ 41 Nr 

The reference state for this free energy expression 
is the state where no strips are deposited on the sub
strates. The average free energy of a strip of length v 
is given by 

2 

Cv=L qj, [EJ-f-tj+kT'ln qiv. J 
j~ 1 

/J 2 2 

+ L L L q~. 7)[E;j- f-t+ kT In pj. 7)]' (3A) 
Y/ = :! i= t j = 1 J 

The quantItIes appearing in eqs (2A) and (3A) have 
all been defined in the text. The quantities appearing 
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in these equations are not independent but must 
satisfy the following relations: 

"0 

2: N" =N/' , (4A) 
v=O 

The quantity r in this equation is a Lagrange multi
plier associated with the variation of eq (9A). 

We also define th e row veCtor 

(IlA) 

where 

. _ {t::.gj 2aCTlj 
(5A) wd - Xj exp kT-1?i' 

2 2 2 

q j - "" qji ,/ .1 - LJ II.:! q i,. 1) = 2: q{i 1)+1 = 2: q~, 1)' (6A) 
i= 1 i= l i = l 

In addition the conditional probabilities in Equation 
(3A) satisfy the relations 

(7A) 

2 

"" pij = 1 L.J v. T} • (SA) 
j=1 

The fraction of component one III the strips IS W 

and is given by 

W= 
11 = 1 17 = 1 

(9A) 

We discuss below the relationship between Is and w
the fractions of component one in the substrate and 
strips respectively. 

We have written down the total free energy of the 
ensemble. In order to determine the occupation num
bers that minimize this free energy, we calculate the 
variation of CT , allowing the N" , q{, I, qiJ. 1), Is, and w to 
vary, and equate 8CT to zero. Since these quantities 
are not all independent, but instead are related by 
eq (4A), (5A), (6A), and (9A), we introduce Lagrange 
multipliers with these equations. Then the coefficients 
of 8N" , oqi", I ' and 8q~. 1) are equated to zero. 
This leads to quite complicated expressions, but the 
algebra is re la tively s traightforward. 

The procedure followed here is s imilar to that em
ployed by Mullins [141 for Markov c hains, except that 
in our case the chains have finite lengths and the 
matrices involved are not symmetric. We shall not 
write down the equations involved but merely write 
down the solutions which are most easily expressed 
in matrix notation. Let us define the W matrix 

4aCT(l1 - [.,) .} 
- kT - [(l-ls- f)8{ + fw] (lOA) 

- 4aCT~~- U [(I-Is - f)8i + fw]} (12A) 

With these quantities we can write down our solu
tions as 

w:1 (W)IL - ~ ~.~ Wij (o~, 8~) (W) V - 1){~) 
q:J1)= ~~(W)"- IG) , (l3A) 

. _ w:I(W) 1)- 1 ~~ (a i,8i)(W)V-1JG) 

qt. 1J - w:l ( W) v-1G) , (14A) 

and 

N v _ I (W) "_1(1) 
N O - WII 1 (15A) 

These solutions allow us to evaluate the occupation 
numbers and evaluate the ratio of the rate constants. 

(16A) 

We therefore have an expreSSIOJl for the ratio of the 
rate constants. 

Our solution is not complete, for the elements of 
the (W) matrix contain the quantities rand w, which 
as yet have not been determined. We can obtain two 
further relationships. From eqs (9A), (14A), and (15A) 
it can be shown that for Vo very large 

1= Z- W 22 

2Z-WII -W22 
(17A) 

where z is the largest eigenvalue of the W matrix. 
This equation provides a relationship between w 
and r. 

A further relation is obtained by considering the 
variation of the ensemble total free energy. Using 
Equations (13A), (14A), and (15A) this becomes 

(ISA) 

This equation relates the variation of the total free 
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energy of the ensemble to the variation in the composi· 
tion of the substrates and strips. 

The two dimensional character of our problem must 
be kept in mind in our treatment of this equation. 
This can be illustrated by considering a truly one di· 
mensional problem as an example: Let the mother 
liquor and strips be the two component system of 
hydrocarbons under consideration, but suppose the 
substrate consists of a third component, say still 
another hydrocarbon. Then we need consider no 
variation in fs i.e., o!s = O. In this case in order that 
oC'/' = 0, we set f= O. The ratios of the rate constants 
become the usual Boltzmann factors that were derived 
in [1]. These rate constants are the proper ones for 
the one dimensional problem. However, if we follow 
this procedure in the present problem (i. e., set 
oF., = 0, f = 0), the resulting rate constants are not 
the proper ones. This is most clearly seen when the 
equilibrium phase diagram has minima in the liquidus 
and solidus curves. These minima do not occur at the 
same value of the concentration, which would imply 
a region of concentrations where no stable equilib· 
rium exists. 

We must therefore treat eq (18A) more carefully. 
Suppose we have a particular liquid concentration at 
a particular temperature. There will exist a crystal 
concentration, j",Ax"T), that is most stable. That is, 
if we vary the concentration of the crystal (oj = ols) 

( 
vO ) 

oCr = 4a(T J~I vNv (f - f e)oj, = 0 

so that 

f = f "(X,, T) = w =!s. (l9A) 

This property must hold at equilibrium (i.e., where 
x"T fall on the equilibrium liquidus curve) , but it 
also will hold at other concentrations and tempera· 
tures. This result does not solve our problem, however, 
except at particular values. We wish a value of r 
that holds for any values of (Xl, T, fs) , while eq (19A) 
yields a value of f that holds for (x, T, fs = fe). When 
the kinetics of the crystallization process leads to 
valu es of j , ~ f,., it cannot be expected that oCr 
vani shes. 

A more critical analysis would be required to obtain 
valu es of r for general va lues of (XI, T, f~ )· Suc h an 
analysis does not seem worthwhile, because we have 
already introduced the approximation that the sub· 
strate height is uniform. Instead we shall assume 

f =!s. (20A) 

This assumption satisfies eq (19A) when j~= f e, and 
should be reasonably accurate at other values of 
!so At thermal equilibrium it satisfies our requirements. 

We therefore have 

ai.:i _. { Agj _ 2a<rU(Lj-/ j ) 

f3ij - Xl exp kT kT 

(21A) 

In this equation w is the value that must satisfy eq 
(17 A). This can be expressed as 

2w - 1 = r======"g~-==l=+=x~l======
(g-l + XI) 2+ 4(1- XI) g expea(T~T -11)} 

where (22A) 

I: - fb.gl b.g1 4a(T(/, -/2)(1- 2!s)} 
!, - Xl exp kT - kT 1- kT . 

(23A) 

Then we see that for any values of (Xl, T, Is) we can 
obtain w from eqs (22A) and (23A). Then the ratios 
(aiil f3ij) are obtained from eq (21A). Equation (21A) 
is the same as eq (28) of the text. 
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