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Variational wavefunctions have been computed for the 11S, 2138, 2L.3P, 31.3P_and 313D terms

of ions in the helium isoelectronic sequence from He through Ne +8.

The trial functions are Hylleraas

type expansions, explicitly involving ri,, and with expansion lengths of around 50 terms, differing

slightly for the different states.
by both the dipole length and velocity formulas.

Oscillator strengths have been computed for all the allowed transitions
Agreement between these forms, comparisons with

very accurate data for neutral helium, and the accuracy of the computed energies all point to con-
siderable reliability of the results for the entire sequence, probably around 5 percent, if not better.
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1. Introduction

While the spectra of neutral helium and singly
ionized lithium have been studied quite thoroughly
[1, 2],! the data available for the rest of this isoelec-
tronic sequence leaves much to be desired. Be 111,
for in#tance, is the last ion for which the 2!S level has
even been observed, and it is common for only a dozen
or so levels to be known for any given ion [3]. The
situation for oscillator strengths, of course, is no better,
and with the exception of helium, where some accurate
calculations have recently been made [4, 5], there is
practically no reliable f-value data available. With
the observational possibilities opened up by high
energy plasma devices, accelerators, and astronomical
spectroscopy in the ultraviolet, this gap in basic atomic
data could assume considerable importance.

On the other hand, two-electron atomic systems are
well-known for the relative ease with which one can
make accurate variational calculations of wavefunc-
tions and energies. The pioneering work of Hylleraas
[6] showed that a linear expansion trial function with
terms explicitly containing the interelectronic coordi-
nate, ri2, would converge rapidly, and that the matrix
elements could be given in a closed form amenable to
numerical computation. Since then, helium, and
to a lesser extent, the helium-like ions have been a
favorite target for accurate variational calculations,
primarily on the ground state. The most definitive
calculations have recently been made by Pekeris and
co-workers [7], who have also done extensive calcula-
tions on the helium excited states [8]; they have also

*Work supported in part by Project DEFENDER, sponsored by the Advanced Research
Projects Agency, Department of Defense, through the Office of Naval Research.
! Figures in brackets indicate the literature references at the end of this paper.

done some work on the Lit excited states [9]. Re-
cently, also, configuration interaction expansions,
which do not explicitly involve ry», have yielded good
results for the helium term values [10] and oscillator
strengths [5].

In view of these observations, it seems clear that a
systematic calculation of oscillator strengths for the
isoelectronic sequence is not only desirable, but long
overdue. With electronic computers, it is almost
trivial to make calculaiions of relatively modest ex-
pansion lengths, which should still be sufficient to
yield fairly definitive results. This paper reports the
results of such calculations, employing of the order
of 50 terms, for transitions among the 1'S, 21-3S, 21, 3P,
3L3P, and 3% 3D terms of the helium sequence through
Ne+8,

2. Description of the Calculations

The Rayleigh-Ritz variational procedure is employed
to calculate energies and wavefunctions, using the
usual non-relativistic, spin-independent Hamiltonian,
which in atomic units,? is given by,

A A

%”=f———Z/r1—Z/r2+L' (1)

2 2 ri2
It is clear that all magnetic splittings and relativistic
shifts are ignored, which can have a noticeable effect
on the energy levels of the higher ions. The trial
functions are taken to be linear expansions of the
form,

Y= ;c,,cp,,. 2)

?In atomic units, me=h=1. The unit of length is the Bohr radius, 0.52917 A, and the
energy unit is 2Ry, where Ry is the appropriate reduced mass Rydberg.
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The ¢, are linear variational parameters, and the two-
electron basis functions, ®,, are of the usual Hylleraas
variety,

Dy = e*/nd'ﬂzp,"pélpli“z,Y,'"(oz, ®2)
Sidea 0o -I'Plpgp(fp Ym(els ‘Pl) (3)

with p=(r,

and where { and x are additional nonlinear parameters,
Y is the spherical harmonic appropriate for the de-
sued angular momentum state, and the + and — signs
refer to the singlet and triplet states, respectively.
Since the spin functions factor out in the two-electron
problem, all spin dependence has been suppressed.

Requiring the variation of the total energy,

_ Wl
E=lw)

to be stationary with respect to variations of the co-
efficients leads to the matrix eigenvalue equation.

2 HCi=E 3 SyC;
J) J

(4)

(5)

Hij= (| #|®;), Siy= (Di| D). (6)
By selecting the nth eigenvalue, one has an upper
bound to the energy of the corresponding excited state
and, with appropriate nonlinear parameters in (3),
an approximation to its wavefunction [11].

The oscillator strength for an electric dipole tran-
sition is given by

z AEy
o [Clelg) 2. W)

where i and j refer to the initial and final states re-
spectively, AE;; is the energy difference in atomic
units, and g; is the statistical weight of the initial state.
It is further supposed that the squared matrix element
has been summed over any degeneracies in either or
both states. An alternative form is the dipole velocity
form of the oscillator strength,

2
=3 w2 |IT I @

which should be identical in value with the dipole
length form, although for approximate wavefunctions
it may, and often does, disagree.

For sake of future reference,
standard approximation schemes should probably
be sketched here. The configuration interaction
method follows the same general procedure outlined
above, choosing the trial function to be a linear ex-
pansion as in (2). The two-electron basis, however,
consists of products of one-electron functions (orbitals),
of the general form

some of the other

Dpe= @u1)ed2) £ @pl(2)e 1) 3")

The Hartree-Fock model follows by choosing the trial
function to be only the first term of a configuration
interaction expansion with the orbitals occupied
according to the aufbau principle, and adjusting the
form of the orbitals to minimize the total energy.

3. Results and Discussion

The total energies computed for neutral helium are
given in table 1 and compared with some other cal-
culations. With the exception of the 43P levels,
all of the present calculations used expansion lengths
of 52-54 terms. Positive powers of ry, r:, and r
through degree 5 were used, but with some selection,
omitting some of the higher degree terms which made
little difference in the total energy. For the 4p levels,
expansions of only 25 terms were used, because of
difficulties encountered in getting the diagonalization
to converge on the appropriate root for the longer
expansions. It can be seen that, with the possible
exception of the ground state, the configuration inter-
action calculation of Green et al. [5], is quite compar-
able to the ones reported here, and both compare quite
well with the still more accurate calculations. The
sole exception to this might be the 4p levels calculated
here, and for the reasons indicated above.

Tables 2 and 3 contain a similar comparison of
oscillator strength calculations for neutral helium,
including, in addition, the results of the Coulomb
approximation of Bates and Damgaard [12]. The
Hartree-Fock values reported here are not quite the
same as in Trefftz et al. [13], due to the fact that the
exact energy differences AE, were used in eqs (7) and
(8). This was done throughout this paper, since it
throws the burden of any discrepancies entirely on the
calculated transition moment, which is the theoretically
more critical quantity.

Probably the most obvious comment one can make
about these results is that all the approximations dis-

TABLE 1. Computed total energies (in a.u.) for neutral helium
Term | Hartree- | Configuration | This paper Accurate ¢
Fock # interactior. "
11S —2.86168 —2.90338 —2.90372 —2.90372
21S —2.14347 —2.1459%4 —2.14597 —2.14597
315 —2.06126 —2.06126 — 2006127
21P | —2.12246 —2.12378 —2.12384 —2.12384
Sk —2.05474 —2.05513 S22 055113 — 245515
4P | —2.03090 —2.03106 —2.03095 —2.03107
SIDIES2205555 —2.05561 —2.05562 (—2.05562)
235 —2.17425 —2.17521 S 523 = 21523
335 —2.06849 —2.06868 —2.06869 —2.06869
2SPaNIES281 3143 2818313 —2.13316 23316
33P | —2.05750 —2.05807 —2.05807 —2.05808
43P | —2.03213 —2.03232 —2.03220 —2.03232
33D | —2.05557 —2.05563 —2.05564 (—2.05564)

4 See reference [13].

"See reference [10].

¢ Except for the 3D terms, see references [8] and [9] These
terms were obtained from the observed levels —reference [2].
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TABLE 2. Comparison of oscillator strength calculations for neutral helium —
the singlet transitions
Cou- [Hartree-| Config- | This Accu-
Transition | AE(a.u.) | Type | lomb | Fock® [ uration | paper | rate?
approx.? inter-
action®
1'S— 2'P | 0.77988 | len. 0.259 | 0.258 | 0.2754 |0.2759 | 0.2762
vel. .239 2759 | .2761 .2762
IISESIB IR .84858 | len. 0713 | .0707 | .0729 | .0734 | .0736
vel. .0646 L0730 .0730 0734
1'S — 4'P .87265 | len. .0312 | .0312 [ .0296 | .0302
vel. .0266 .0296 .0303
21S— 21P | 0.02213 len. 0.390 0.390 0.3773 | 0.3764 | 0.3764
vel. .340 .3950 3774 3764
215 — 3P .09083 | len. 160 .160 1513 | 1478 | .1514
vel. 154 1540 | L1506 | .1514
21S —>41P 11490 | len. .051 L0513 | .0493 | .0508
vel. .0498 | .0506 | .0506
3'1S— 2'P | 0.06257 | len. 0.1458 | 0.1425
vel. 1446 1462
3'S— 3P | .00612 | len. .628 .625
vel. .645 .634
3'S— 41p 03020 | len. 1429 | 134
vel. 1433 | 145
2P — 3'D | 0.06822 | len. 0.738 | 0.738 | 0.7106 | 0.7064
vel. 711 7095 | .7148
3'P—3'D | .00048 | len. .021 .021 .022 .021
vel. .064 .021 .026
4'P— 3D | .02454 | len. 0152 | .0142
vel. .0152 .0144

aSee reference [12].
b See reference [13].
¢ See reference [5].
dSee reference [4].

TABLE 3. Comparison of oscillator strength calculations for neutral helium—
the triplet transitions

Cou- |Hartree-| Config- | This Accu-
Transition | AE)a.u.) Type | lomb | Fock® |uration | paper | rate¢
approx.® inter-
action®
235—23P 1 0.04207 | len. | 0.538 | 0.558 |0.5398 [0.5391 | 0.5391
vel. 611 .5487 | .5401 | .5391
25— 3P | .11715 | len. .063 L0569 | .0644 | .0641 [ .0645
vel. .0503 | .0668 | .0634 [ .0645
285 — 4P .14288 | len. .026 0234 | .0259 | .0240
vel. .0204 | .0271 | .0222
338 — 23P | .06446 | len. .209 .207
vel. .206 .209
335 — 3%P | .01061 | len. .892 .891
| vel. 911 .898
338— 43P | .03637 | len. .0499 | .0433
vel. .0491 | .0425
23P— 33D | .07753 | len. .620 .637 6105 [ .6084
vel. .610 6269 | .6121
33P—3%D | .00245 | len. 112 112 1130 | L1121
vel. 074 1216 | .1097
43P—>3°D | .02329 | len. .0372 | .0340
vel. .0378 .0344

a See reference [12].
Y See reference [13].
¢ See reference [5].
4 See reference [4].

played here are good. A straight average of the pre-
sumably most sophisticated calculations (both length
and velocity) of the last three columns provides a value
with which any one of these individual calculations
agrees to within 5 to 10 percent, and often much better.

Even the Coulomb approximation agrees very well with
such a “recommended” value. It is obvious that the
helium spectrum is quite Coulombic with the transi-
tions corresponding either to a lone electron jumping
around outside a very compact core, or to a single elec-
tron jumping out of a very compact ground state to a
very diffuse orbital. Clearly, calculations of the degree
of sophistication of the ri; or configuration interaction
approximations amount to using an elephant gun to
kill a gnat.

However, the elephant gun will continue to be used
for the rest of the isoelectronic sequence. One reason
for doing so is the fact that the energy level data
needed for the Coulomb approximation rapidly be-
comes quite sparse along the sequence. Variational
calculations such as the present ones generate their
own energy levels and, as a byproduct, make some
term value predictions of some interest in their own
right. Secondly, and most importantly, the degree of
“overkill” attained by such calculations, as indicated
by neutral He, provides a valuable accuracy cushion
for the prediction of these unknown oscillator strengths.

The total energies computed for the isoelectronic
sequence through Ne*® are shown in table 4. A com-
parison with some more accurate values for Li* [7,8, 9],
indicates agreement in the total energy always within
1X10-% a.u. The ground state energies agree better
than this with the calculations of Pekeris [7] for the
entire sequence. Probably the most interesting fea-
ture of these calculations is the prediction that the
21S and 23P levels interchange their positions as one
moves along the isoelectronic sequence, with the cross-
ing taking place between C** and N*+5. It can also
be seen that the 3'P level remains the highest of the
n=23 levels for the entire sequence, at least through
Net+8., It is well-known for neutral helium that,
among all the levels arising from the same principal
quantum numbers, e.g., 43S, 43P, . . . | the 'P is
always the highest, at least through n=7. These
results suggest that this remains the case for the iso-
electronic positive ions, certainly for n=3.

It should be emphasized that all of these calculations
are purely nonrelativistic and, hence, include none of
the shift or splitting due to relativistic or radiative
corrections. While these nonrelativistic values are
probably quite accurate, such corrections can become
large for the higher ions. The point of the present
calculations has been to obtain wavefunctions with
which to compute the oscillator strengths and not to
accurately predict observable energies. Also, al-
though the energy corrections are large, the non-
relativistic calculations still give a fairly detailed and
accurate representation of the spectrum. This is
illustrated by table 5, where the calculated and ob-
served [3] term values of O vil are compared. The
relativistic and Lamb shifts in the ground state have
been calculated [7] to be 3550 ¢cm~! and —380 ¢m 1,
respectively, which compares well with the error here
of 3020 cm~-!'. The experimental ground state term
value is uncertain by 600 cm~-1. For Li*, the rela-
tivistic shifts in the 1S, 21S, 23S, 2P levels have
been calculated [9] as 19.7, 6.5, 16.9, 5.6 cm ~! respec-
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TABLE 4. Computed total energies, —E, (in a.u.) for the helium isoelectronic sequence

<

o

B\ 27
Term\ % % 2 3 4 5 6 7 8 9 10
1'S [ 53 | 290372 | 7.27991 |13.65557 | 22.03097 | 32.40624 | 44.78144 | 50.15660 | 75.53171 | 93.90680
23S | 54 | 217523 | 511073 | 9.29717 | 14.73390 | 21.42076 | 29.35768 | 38.54464 | 48.98164 | 60.66865
21S | 54 | 214597 | 5.04087 | 9.18487 | 14.57852 | 21.22198 | 29.11540 | 38.25875 | 48.65204 | 60.29530
25P | 52 | 213316 | 5.02771 | 9.17497 | 14.57313 | 21.22171 | 29.12050 | 38.26942 | 48.66842 | 60.31748
2'P | 52 | 2.12384 | 4.99335 | 9.11077 | 14.47728 | 21.09333 | 28.95911 | 38.07473 | 48.44024 | 60.05567
3P | 52 | 2.05806 | 4.73045 | 8.51460 | 13.41003 | 19.41672 | 26.53455 | 34.76352 | 44.10361 | 54.55484
33D | 52 | 2.05564 | 4.72253 | 8.50058 | 13.38977 | 19.39008 | 26.50151 | 34.72405 | 44.05771 | 54.50248
3'D | 52 | 205562 | 4.72237 |-8.50020 | 13.38906 | 19.38901 | 26.50006 | 34.72218 | 44.05542 | 54.49974
3'P | 52| 2.05513 | 4.72018 | 8.49594 | 13.38268 | 19.38049 | 26.48943 | 34.70935 | 44.04044 | 54.48266

TABLE 5. Computed and observed term values relative to the
tonization limit (in cm~=") for O vi1

Term | Computed | Observed? Error
&S 5959980 5963000 3020
288 1436330 1437730 1400

23P,. 1375930 1376140 460 (ave.)

3Py, 690

3Py, 750

2ES 1373590 —

2P 1333200 1333800 600

SIB 606500 606700 200

33D 597840 597930 90

3D 597430 =

S 594610 594450 160

2See reference [3].

tively, so the excited state errors here are, at least, not
unreasonable. The unobserved 2!S level is here
predicted to lie about 1600 cm —! above the 23P center
of gravity.
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FIGURE 1. Singlet oscillator strengths for the helium isoelectronic

sequence versus 1/Z.

The oscillator strengths, finally, are given in tables

6 and 7, and they are plotted as a function of 1/Z in
figures 1 and 2. As has been pointed out earlier [14],
the oscillator strength for an isoelectronic sequence has
a descending power of Z expansion of the form
f=ao+a1/Z+a2/Z2+ o o (9)

where ao is just the oscillator strength computed in a
purely hydrogenic approximation (if there are no zeroth
order degeneracies). Also, ao vanishes for transitions
involving no change in the principal quantum number.
Thus, the infinite Z limit is either the hydrogenic value
or zero, depending on whether n— n’ or n— n, and it
can be seen that all the plotted f-values (mean of length

and velocity) behave very nicely in accordance with
these limiting situations.

4. Conclusions

In general, it seems reasonable to recommend the
mean of the length and velocity values for any given
transition of the sequence with an uncertainty of about

I/ ed==

FIGURE 2. Triplet oscillator strengths for the helium isoelectronic

sequence versus 1/Z.
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TABLE 6. Oscillator strengths for the helium isoelectronic sequence —singlet transitions

Transition % 2 3 4 6 7 8 9 10

. 0.2761 0.4566 0.5515 0.6089 0.6470 0.6742 0.6944 0.7101 0.7226

A 2759 .4565 5515 .6089 .6470 6742 .6944 7101 7226
1ESI=5 040

AE 0.77988 2.28657 4.54480 7.55369 | 11.31291 | 15.82233 | 21.08187 | 27.09147 33.85113

. .0730 0.1103 0.1267 0.1352 0.1404 0.1438 0.1461 0.1478 0.1492

l. 0734 1107 1269 1355 .1406 .1439 1462 .1479 .1492
1'S— 3P

AE 0.84859 2.55973 5.15963 8.64829 | 13.02575 | 18.29201 | 24.44725 | 31.49127 39.42414

v. 3774 0.2129 0.1487 0.1145 0.0932 0.0786 0.0679 0.0599 0.0535

l. .3764 .2126 .1485 1144 .0930 .0785 .0679 .0598 .0534
DISEI IR

AE 0.02213 0.04753 0.07410 0.10124 0.12865 0.15629 0.18402 0.21180 0.23963

v. 1506 .2568 .3061 .3340 3524 .3647 .3736 .3807 .3869

l. 1478 2551 .3046 .3326 .3495 .3627 3728 3791 .3841
21— 31P

AE 0.09083 0.32069 0.68892 1.19584 1.84149 2.62597 3.54940 4.61160 5.81264

v. .7148 7173 7139 0.7121 0.7096 0.7078 0.7065 0.7050 0.7042

I .7064 .7108 7084 7065 7046 7034 7024 7016 .7009
2P — 3D

AE 0.06822 0.27097 0.61057 1.08822 1.70432 2.45906 3.35254 4.38482 5.55593

v. .0249 .0288 .0242 0.0221 0.0188 0.6165 0.0147 0.0131 0.0118

L. 0212 .0244 0211 .0178 .0152 0132 0117 .0105 .0095
3P — 31D

AE 0.00048 0.00219 0.00426 0.00638 0.00852 0.01063 0.01283 0.01498 0.01708

5 percent. The length-velocity agreement is usually strengths, at least the non-relativistic values, can be

much better than this, and the experience with helium
indicates that it should be a safe margin of uncertainty.
The sole exception is the 3'"P-3!D transition, where
the length-velocity disagreement is somewhat larger,
and this transition should probably be regarded with
some skepticism for the entire sequence, although the
length value is probably to be preferred. The energy
differences here are small, indicating a very small
velocity transition moment, which is thus apt to be
unreliable, as suggested by the comparisons of table 2.
For the higher members of the sequence, the oscillator

read directly off the curves of figures 1 and 2.

For very highly ionized species, intersystem transi-
tions become strong and eventually will begin to steal
oscillator strength from the allowed transitions. This
probably does not become too serious for the ions
computed here. The spin interactions are still rather
weak compared to the electrostatic, e.g., the 3P spin
splitting in O vII is about 600 cm~! while the 3P—1P
separation is of the order of 40,000 cm~!. However,
the precise effect of the intersystem transitions will
have to await further calculations.
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TABLE 7. Oscillator strengihs for the helium isoelectronic sequence—triplet transitions
Transition 73
v. 0.5401 0.3086 0.2135 0.1627 0.1315 0.1102 0.0949 0.0832 0.0742
L. .5391 .3080 2131 .1626 1314 1102 .0948 .0833 .0742
23§ — 23P |
AE 0.04207 » 0.08301 0.12220 0.16077 0.19905 0.23718 0.27522 0.31322 0.35117
v. .0634 1857 .2523 .2908 3163 .3343 .3476 3576 .3656
s .0641 .1872 .2526 .2910 .3163 3341 .3470 3572 .3651
23S — 33P
AE 0.11717 0.38028 0.78157 1.32387 2.00404 2.82313 3.78112 4.87803 6.11381
v. .6121 .6263 .6404 .6504 .6575 .6626 .6667 .6696 0.6723
L. .6084 .6243 .6390 .6493 .6565 .6618 .6659 .6691 6717
23P — 33D
AE 0.07753 0.30519 0.67439 1.18336 1.83163 2.61899 3.54537 4.61071 5.81500
v. .1097 .0901 0712 .0578 .0485 .0420 .0368 .0328 .0294.
L. 1121 .0906 0711 L0577 .0485 .0417 .0365 .0325 .0293
33P — 33D
AE .00243 .00792 .01402 .02026 .02664 .03304 .03947 .04590 .05236
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