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In this paper we discuss a technique for calculating moments of polydisperse materials in terms of 
concentration readings along the cell. The proposed method minimizes dependence on data from the 
en'd points ·where they may be unreliable'. An analysis is given of the errors involved in the use of the 
proposed method when the underlying molecular weight distribution is the Schulz distribution or the 
lognormal. 
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One of the primary functions of a sedimentation 
equilibrium experiment is to measure the molecular 
weight of the solute, and in the case of a polydisperse 
solute, obtain information about the molecular weight 
di stribution. In the latter case, the information is in 
the form of the first several mome nts of the dis tribu· 
tion. The commonly used methods of data analysis 
derive these moments from the values of the concentra­
tion and its spatial derivatives evaluated at the end 
points of the solution column [1).3 Methods of eval­
uating the moments using a point nearer the center of 
the solution column have been described byiFujita [2] 
and Adams [3]. However , these techniques require 
data over the entire range from zero to infinite centrif· 
ugal field. Thus far, no practical test of these latter 
methods has appeared in the literature. 

Recently it has been suggested [4] that improved 
accuracy could be obtained for the moments and hence 
the molecular weight averages if measurements were 
made as a function of centrifugal fi eld as the field 
approaches zero. This latter method again requires 
some data to be obtained by extrapolation to the menis· 
c us and other data to be obtained by extrapolation to 
the cell bottom or from a point near the center of the 
cell. The purpose of this paper is to present a general 
me thod of analyzing experimental data in whic h the 
end points playa less important role and advantage is 
taken of the more accurate data obtainable elsewhere 
in the cell. It will also be shown that the treatment of 
Osterhoudt and Williams [4] represents a special case 
of the general treatment presented below. In addition 
to presenting the method we shall analyze possible 
errors in the method when the underlying molecular 
weight distribution is the Schulz [5] distribution or the 
lognormal distribution [1]. 
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Method of analysis. In the case of an ideal, non­
compressible solution the radial concentration distribu­
tion of a single solute species CiW of molecular weight 
Mi, is given by [2] 

C;{Q _ Wi exp (- AMi~) 

-;;f- l-exp (- AMi) , (1) 

where c?is the original concentration before sedimenta­
tion and where ~ is the reduced radial variable given by 

b2 -~ 
~=b-2 "­-a- (2) 

The distance of the meniscus and bottom of the solu­
tion column from the center of rotation are given by 
a and b respectively, and r is any arbitrary intermediate 
position . The quantity A, is de fined by 

(1 - vp)(b2 - a2)w2 

2RT 
(3) 

where the other symbols have their usual definitions [2]. 
For a solute which is not monodisperse but has a 

continuous distribution of molecular weights given by 
some function f(M), the radial distribution of the con­
centration at sedimentation equilibrium is given by 

C(~) _ _ fXWf(M)e- AM(dM 
-O(~)- 1 - AM ' 

Co 0 -e 
(4) 

where ~~) is defined by this equation_ 
One observes that the form of the function given by 

the right-hand side of eq (1) and contained in the 
integrand of eq (4) is the same as that of the generating 
function for the Bernoulli polynomials [6], provided 



that AM ~ 27T. Thus eq (4) can be rewritten 

or. (-1)" JZ AMe- icll'1(M)dM 
8( r) = '" -,- B ,/ QA"V~ + '" L..J l- e- icll 

11 = 11 n. ~rr/ " 

(5) 

where v~ is the truncated moment 

(6) 

M;t , the truncated weight average molecular weight 
and so on. Some properties of the polynomials BII(~) 
are given in reference 6. 

The basis for the method suggested by Osterhoudt 
and Williams is the replacement of OW by O*W, 
defined by 

O*W = i (- ~)II B"WA"V~, 
I/ = () n .. 

(7) 

i.e., the integral in eq (5) is assumed to be negligible. 
With this definition , the identity d BIIW/d~=n B II - 1W , 
and the particular values Bo(O) = 1, B 1(0) = -1/2, 
BjO)=1/6, BAO)=O, B-I(0)=-1/30, B;;(O) = 0, ... 
we readily obtain the result of Osterhoudt and Williams 

d8(QI -_\ *_! \t *_~ \ :1 *+ _1_ \-1 *+ 
d~ ~= o - "Vt 2" V~ 12" V;I 1201\ V-l .•• 

(8) 

The remaining formulas in reference 4 for ~ = 1/2 and 
1 are derived in similar fashion . However , we can 
also derive other identities that allow us to use any 
~ values between zero and one thus permitting the use 
of points that obviate extrapolation and are therefore 
more reliable. For example, we have 

+ 4_0'- +_ ~+O(AfiV*) ( ., 7)A4 * 
0' 2 120 12 h • 

(9) 

where 0' can be chosen arbitrarily. By choosing 0'= 1f4 
we find 

0* (!) - 0* (~) = 'Avi - 1.. 'A3V* + 
4 4 2 64 3 

(10) 

or choosing 0' = 0, 

0* - = 1---2 +-- 'A4v*+ G) 'A2V* 7 
2 24 1440 4 

(11) 

Values of the moments are derived from these relations 
by taking measurements at several values of A and 
extrapolating to the dependence at A = 0. 

It is possible to extend these considerations so that 
a series is obtained, the first term of which is propor· 
tional to 'Arvr, and in which any number of terms in 
vi, vi, , vi-t, v;!'+t, v;!'+m have zero coeffi· 
cients, by properly choosing points ~t , ~2, ••• ,~r +m, 
and coefficients 0'10 0'2, ••. O'r+m, in linear com· 
bination: 
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Gi ven the set of points ~ 10 ~2' . . • , ~r + II> the 0'; are 
chosen so that 

r+m L O'jBk(/;!)=O, k=l, 2, .. . , r-l, r+l, ... r+m. 
j= t 

(13) 

One of the constants, 0'10 can be set equal to 1 and the 
ratios O'j/O'Io are determined from eq (13). The points 
/;! can be chosen arbitrarily except for the condition 

r+m 

L O'jB,.(/;!) "" 0 (14) 
j=t 

in order that the coefficient of ArVf. be nonzero. As an 
example we can calculate a formula in which the first 
nonzero is proportional to 'A 3V~, and the second A 5V~, 
by choosing 

Using the procedure outlined above we find that 

- 0* (i) + 38* (~) - 30* (~) + O*(~) 



Error analysis. So far we have made the tacit 
assumption that the observed value O(~) is identical to 
O*W so that v~ can be identified with the desired value 
VII· It clearly is not, so that some error analysis is 
required to set bounds on the validity of the method. 
Two types of error require investigation. The first 
is the error in using the observed OW rather than the 
required O*W, and the second is in the calculation of 
values of v~ rather than v". 

Let us denote by E(~) the difference 

fOO 'AMe - AM{ 
E(~)= O(~)-O*W= 1 - AM f(M)dM. (16) 

27T/A - e 

The absoulte error incurred by using values of O*W 
rather than OW can be bounded as follows: 

r + m 
",; (I-e - 27T)-I'A(vl-vr) 2: lc~jle - 27T{j, (17) 

j = 1 

so that the difference between the observed F and the 
desired F* is proportional to 'A(VI -vi). Theoretically 
one can decrease this bound by choosing the ~j close 
to 1 but this method is limited by observational errors 
the meniscus. It is interesting to note that if the 
moments are to be calculated in terms of parameters 
relating to the derivative O'(~), as is the case in Oster· 
houdt and Williams' paper, the bound corresponding 
to eq (17) contains 'A(V2 - vt) in place of 'A(VI - vi) and 
is therefore larger. 

For the purpose of illustrating errors in terms of 
physical quantities we will derive explicitly the for­
mulas for 'A(VI -vr) and JII = 1- (V~/Vn) for two com­
mon polymer distributions; the Schulz [5] and the 
lognormal [1]. We consider first the Schulz distribution 

(18) 

where the two adjustable parameters a and p can be 
expressed in terms of Mw and Mz, the weight and z 
average molecular weights as 

p (19) 

For this distribution 'A(VI - vi) can be written 

'( - *)- 'A foo P+ I -udu 
1\ v I V I - r(p 1) u e . 

a + 27Ta/A 
(20) 

236-431 0-67-2 
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We therefore see that the difference depends on the 
parameters p and 'A/a where 

(21) 

Experiments of the type discussed here can be ar­
ranged so that 'AMw = 1. Furthermore, the Schulz 
distribution is a sensible one for polymers only for 
p positive or 2> Mz/Mw hence 'AMz "'; 2 and 'A/a is 
at most equal to 2. For p'A/(27Ta) a small number we 
can approximate the integral in eq (20) by 

uP + Ie - udu ~ -- e - -x-f 00 (27Ta)p + I 21Ta 

21Tu/A 'A 

[1 + (P+ 1) (2~a) + .. . J (22) 

so that 

'(V - v *) ~ (27T)P + I (~)P e - 2m,/A. 
1\ I I r(p+ 1) 'A (23) 

In figure 1 we have plotted some representative 
values of -loglO'A(vl -vi) as a function of 'AMw. As 
can be seen from the figure O(~) and O*W are experi­
mentally indistinguishable when 'AMw is less than 1 
except when Mz/Mw is greater than 1.75. Even in 
that case if 'AMw can be set less than 0.5, OW and O*W 
are experimentally indistinguishable. 

To estimate the accuracy with which v~ apprOXI­
mates to v" we calculate the ratios 

I = 1 - V1l = uP + "e - udu * 1 f oo 
• II v" r(n + p + 1) 21T1I/ A 

~ (27Ta)P+n 1 e - 27TU/A. (24) 
'A f(p + n + I) 

In figure 2 we have plotted -loglOJ I and -IOgIOJ2 
as a function of 'AMw for Mz/Mw=1.75. It is to be 
noted that both VI and V2 can theoretically be deter­
mined to within an error of about 1% with the present 
method, provided that 'AMw is less than 1. 

Another distribution useful in polymer work is the 
lognormal [1] 

f(M) o-M~ exp {- 2~2 In 2 (~)}. (25) 

The two adjustable parameters Mo and 0-, are related 
to Mw and Mz by 

Mo = Mw(Mw/Mz) 1/2 

0-2 = ln (Mz/Mw) . 
(26) 

A straightforward calculation suffices to show that 
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FIGURE 1. Graphs of -logJU -'(VI - vi) as a function of AMw f or 
different values o/MJMwfor a Schulz distribution. 
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FIGURE 2 . Graphs of -logJ(} J I and --: loglO J 2 as a function of -,Mw 
for Schulz distribution. 
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(AM )nCTn -1 f "" 2 
A"(v" - v~)= 0 u" - Ie - U /2du. 

~ 27T 
'AM;j7 (27) 

For odd n these can be written in terms of complemen­
tary error functions and exponentials, while for even 
n they can be written in terms of exponentials. The 
In defined in eq (24) are expressible in the form 

(28) 

Specifically, the first three J's are 

JI = 2 erfc (A~:CT) 

(29) 

where erfc(x) = (217)-1/2 L~xp (- u 2/2) duo 

These formulas can be simplified by noting that 
practical values of AMOCT are ()f the order of 1 or less. 
As we have already noted, AMw can be made of the 
order of 1, and Mw/Mz < 1 so that AMO < AMw. Fur­
ther, for the cases where the ratios (Mz/Mw) are less 

than approximately 10 and CT < '1.6, the ratio A~~CT is 

greater than 3 and we can approximate the complemen­
tary error function by 

(30) 

which can be inserted in the expressions for A(V1 - vi) 
and lh J2, l3. This procedure yields 

(31) 
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FIGURE 3. Graphs oj - log", I..(v,- vi) as a Junction oj M)M w 

for lognormal distribution. 

Figure 3 shows curves of - logloA(VI - vi) as a function 
of M z/ M w for 'AM w = 3 and 4. It can be seen that 
AVI is very close to Avi for AM w = 3 and all M z/ M W · 
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Since AMw can be kept in the neighborhood of 1 the 
present technique of deriving moments from the con­
centration can be justified theoretically for all M z/ M w 

provided that the lognormal distribution is a suitable 
representation of the weight distribution. Calculation 
of the J' s serves only to confirm this observation. It 
is of some interest to note that in contrast to the results 
for the Schulz distribution , the J" decrease when 
Mz/Mw increases. 

The two distributions assumed here are for illustra­
tive purposes only. It is probably safe to say that if 
AMw"';: 1 the errors made in the mathematical assump­
tions are negligible compared to the experimental 
errors. 
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