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A 6·c hoice s imple c ubic latti ce model of ad sorptio n of an isolated polymer c ha in a t a so luti on 
surface is inves ti gated. T he mean square co mpone nts (x2(N) and (Z2(N) of th e end· to·e nd di s· 
tance a re compu ted as a fun c tion of the adsorption e ne rgy pe r monomer unit in the limit of a ve ry 
long polymer c ha in . In the c alc ul at ion, one end of th e po lymer c ha in cons is ting of N monom er unit s 
is cons tra ined to li e in the surface ; and (x2(N) and (Z2(N) a re , respec ti ve ly, the mea n square di s· 
p lace me nt of the free end of Ith e cha in para ll e l to the solution s urface in one of th e latt ice direc tio ns 
and normal to the sol ut ion surface. The limiting va lue of (x 2(N» /N as N ---> 00 is a co ntinuou s fun c· 
ti on of 8 , the d ime ns io nless adsorpt ion ene rgy pe r monom er unit , a nd is equa l to 1/3 fo r 8 .;; In (6/5) 
and (1/2) (i + (1/4) (eO - 1)- 1] - 1/Z for II ;;;. In (6/5). The limiting vaJu e of (zZ(N) /N as N ---> 00 is a d is· 
con tinuous fun c tion of 8 a nd is equal to 2/3 for 8 < In (6/5), 1/3 for 8 = In (6/5) , and 0 for 0 > In (6/5) . 
The re latio n of these res ults to earli e r investigat ions and the gene ra lization of these results to othe r 
cubic lattice mode ls is di sc ussed. 

Key Words : Ad sorplio n, chain po lymer, c riti ca l ene rgy, ge ne ra ting fun c tion , latti ce mode l, parti ­
ti on func tion , rando m wa lk . 

1. Introduction 

In thi s paper we extend the investigation of a random walk lattice model of polymer chain 
adsorption at a solution s urface [1 , 2]' by computing the components of the mean square end-to-end 
distance in an adsorbed polymer chain. The random walk lattice model used is a generalization 
of the models introduced by Silberberg [3] and DiMarzio and McCrackin [4]. The physical proper­
ties of the model reRect the compe tition between (1) the e nergy gained by the polymer chain occ up y­
ing as many surface si tes as possible, a nd (2) the configurational entropy lost by the polymer chain 
remaining near the confining solution surface. In I and II the average fraction of monome r units 
which lie in the solution surface v(e, N) was computed as a function of the reduced energy of 
adsorption per monomer unit e = E/ kT. In the calc ulation one end of the polym er c hain was 
cons trained to lie in the surface, and the self-excluded volum e of the polymer chain was neglected. 
In the limit in which the number of monomer units N is large , it was de termined that there is a 
criti cal value of the reduced energy of adsorption per monomer unit ee s uch that for () > ee, the 
molecule exis ts in an adsorbed state. For example, lim v (e, N), the limiting average fraction 

N _ oo 

of monomer units lying in the surface , is a positive constant ind e pendent of N indicating that a 
finite fraction of all monom er units li e in the solution s urface . For e < ec this limiting fraction 
IS zero. 

The purpose of thi s paper is to calculate (x2(N)) , (y-(N)), and (Z2(N)), the components of the 
mean square di spl ace ment of the free end of the polymer chain as a function of e for N ~ 1 for the 
6-choice simple cubic lattice model. It was shown in I that the mean di stance of the free end of 
the chain from the solution surface (z(N)) has the following di scontinuous form for the 6-choice 

I Figures in bracke ts indica te the lite rature references a t the end of thi s paper. 
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simple cubic lattice model 

o ~ 8 < In (6/5) 

8=ln (6/5) 

8 > In (6/5). 

It is s hown in sec tion 4 that there is a corresponding discontinuity in lim (z2(N)/N whereas for 
N~oo 

the oth er components, lim (x2(N)/N= Jim (y2(N)/N is a continuous function of 8. The recur-
N~ ,\ __ 00 

rence equations for the probability distribution of the free end of the polymer chain are formulated 
in section 2 and are solved formally in section 3. Explicit expressions for the second moments 
are evaluated in the limit N ~ 00 in section 4. The results are summarized in section 5 and the 
qualitative behavior for the 2-choice and 4-choice si mple cubic models is deduced. 

2. Recurrence Equations for the Probability Distribution of the 
Free End of the Polymer Chain 

We consider a simple·c ubi c latti ce model of the solution-surface sys te m in which the so luti on 
surface correspon ds to the x-y la tti ce plane throu gh the point z = O. Successive latti ce planes 
through z= 1, 2, ... represent th e so lution phase of the sys te m. Polymer chain configura tion s 
in the so lution correspond to paths generated in a random walk on the lattice be tween neares t­
neighbor sites . The physical prese nce of th e surface is introduced by consid erin g only random 
walks in the latti ce planes through z= O. 1. 2 .. .. whic h neve r e nter the latti ce plane through 
z = - 1. In the absence of a solution s urface, all random walk configurations of a given length are 
equally likely . However, we are primarily interes ted in the influence of an adsorbing solution sur­
face on the average conformation of a polymer c hain. In our lattice model, all random walk paths of 
N s teps with n steps lyin g in the surface layer z = 0 have the same a priori probabilit y. Relative 
to a r andom walk configuration of N ste ps with n - 1 steps lying in the surface, th e a priori proba­
bility of a walk with n s te ps in the s urface layer is grea ter by the factor eO where 8= E/kT and E is 
th e adsor ption e nergy of a monomer unit. 

For convenience, we use a random walk terminology. Consider the problem of computing, 
for a r andom walk originating in the surface layer, the unnormalized or re lative probability 
P(x, y, z; N + 1) that at the N + lth s te p the random walker is located at lattice point (x, y, z), where 
z ~ O. The relative probability P (x. y , z; N + 1') is related to the relative probabilities at the 
Nth step by the relations 

1 (1) 
P(x, y, z; N+ 1) = 6 {Ei+ E-; +Et+ E-y+ Ei +Ez }P(x, y, z; N) , z ~ 1 

and 
1 

P(x, y, 0; N + 1) = 6 eO{Ei + E; + E; + Ey + Et}P(x, y, 0; N) (2) 

where E."'i are operators defined by the relation 

EiP(x , y, z; N) = P(x ± 1, y, z; N). (3) 

The opera tors E~ and E~ have similar definitions. Equation (1) describes the relation between 

the relative probability of being at lattice site x, y, z with z ~ 1 at the N + lth step and the relative 
probabilities of being at neighboring sites at the Nth s tep. The factor eO in eq (2) accounts for 
the fact that relative to those configurations where z ~ 1 at the N + lth step, the relative probabil­
ities for those configurations where z = 0 at the N + lth step are greater by the fac tor eO. The 
abse nce of E-z in eq (2) is related to the fac t that the random walker enters the z = 0 layer only 
from one direction. Equations (1) a nd (2) will be solved in section 3 for the initial co ndition 
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{
eO, x = O, y = 0, z = ° 

P(x , y, z; 0) = 

0, for aU other lattice points . 
(4) 

From the solution, the mean sq uare end·to-e nd di sta nce after N s teps can be computed from the 
expreSSIOn 

:0 :0 :0 

R,~ = (x2(N)) + (T(JY)) + (Z2(N)) = L L L (x2 + T + Z2)P(X, y, z; N)/0(8, N) (5) 
;r,:=- x y = - 00 z= O 

where :0 X :0 

0 (8, N) = L L L P(x, y , z; N). (6) 
:r= - oo Y= - XI z = O 

3. Solution of Recurrence Equations 

Th e recurrence eqs (1) and (2) can be solved for the s tarting condition eq (4) by introducing 
a ge nerating func tion as in I and II. It is conve nie nt fir st to rewrite eq (2) as 

[1 - (1 - eO)] P(x, y , 0; N + 1) = (1/6)[£; + E;: + E~ + E~ + £ ; ] P(x, y, 0; N). (7) 

Multip ly eqs (1) and (7) for P(x, y, z; N + 1) by (27T) - 3/2 exp {ix'; + iy7) + izO and sum over all integer 
values of x a nd y and all z ~ 0. The res ult is 

x X 'X 

where C('; , 7) , ~ ; N) = (27T)- 3/2 L L L P(x, y, z; N) exp (ix'; + iY'Y) + iz~) (9) 
X =- oe,; y = -x z= o 

x x 

and p(';, 7) ; z; N) = (27T)- 1 L L P(x, y, z; N) exp (ix';+iy7)) · (10) 
:1'=- x y =- x 

Next multiply eq (8) by Wl'+ l and sum over aU values of N to obtain 

'" where f(';, 7) , ~ ; w) = L w"C(';, 7) , ~ ; N) (12) 
N = D 

and 
x 

p(';, 7); z; w)= L u/vp(';, 7); z; N). (13) 
N=O 
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1--

In eq (11) the quantities G(~, T/, ~; 0) and p(~, T/ ; 0 ; 0) are simply 

(14) 

and (15) 

Subs tituting eq (4) and (15) in eq (11) and solvin g for f(~, T/ , ~; w), one obtains 

(27T) - 3/2+(27T)- 1/2 [1 -e- 6_iwe- i (]p(~, YJ ; 0; w) 

f(~,YJ,~;w) = 1 . 
1 -,3w [cos ~+cos T/ +cos~ ] 

(16) 

Equation (16) is an implicit e quation for p(~ , YJ ; 0; w) beca use according to the de finition s of 
f(~, YJ, ~; w), C(~ , YJ , ~; N), p(~, YJ ; z; w), an d p(~ , YJ ; z; N) in eqs (9), (10), (2). and (13) 

x x x x 

I '(~, T/ , ~; w) = (27T) - 3/2 2: 2: 2: 2: j)(x . y, z; N)w" exp (ix~ + iYYJ + iz~) 
.1'=- x; y=- x z=o 1\'= 0 

(17) 

x 

= (27T) - 1/2 2: eiz(p(~, T/ ; z; w). 
z = () 

The following; re lation for de terminin g p(~, YJ ; 0; w) ca n be obt ain ed by multiplying eq (16) by (:27T) - 1/2 
and integrating with respect to s from - 7T to 7T 

where 

1T 

J eik(d~ 
Jd~,T/;w) = (27T) - 1 1 ( l:+ + 1)/3 - w cos ~ cos YJ cos ~ 

-1T 

[ J- I [( w/3 ) 2] - 1/2 
= l- w(cos~+cos T/)/3 1 - l -w(cos~+cos T/)/3 _ 

1 
[ ( w/3 ) 2]1 /2l ll.- l 

1- 1- l-w(cos ~ + cos YJ)/3 . 
X w/3 

l-w(cos ~ + cos YJ) /3 

(19) 
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Solving eq (18) for peg, Y} ; 0; w) and substituting the result in eq (16), we obtain an explicit solutio n 
of the recurrence eqs (1) and (2) for the initial co ndition (4) 

(27T) - 3/2 . !1 + (W/6HIM" Y} ; w) - e- i{jo(g, Y} ; w)] ) 
r(g, Y},~; w) = l - w(cos g+cos Y} +cos W3 1+ (w/6) / 1(g, y} ;w)- (1-e-8)Io(g, Y}; w) 

(20) 

The mean square e nd-to -end dis ta nce (5) can be expressed in terms of the generating function 
r(g , 1/ , ~ ; w). Firs t note that the normalizing sum 0(8, N), defined in eq (6), is proportional to 
the coefficient of wN in the expansion of frO, 0, 0; w) [see eq (17)] 

x x x x 

qo, O. 0; w) = (2 7T)- :1/2 L uf" L L L P(x. y - z; N) = (27T) - :1/22: IIl"Q(8 , IV) (21) 
.\'= 0 X= - oo Y=- -x; z =o .1'= 0 

Us in g Ca uc hy's fo rmul a and eq (20). we obtain th e foll ow in g exp li c it express ion for Q(f) , N) 

(27T)'l/2 1 rlw ] f 
0(8 , N) = - 2- '- r(o. 0, 0: w) -----;::;J=-2 . 

1 + [(1 - w/3)/(I - w) ] 1/2 dw (22) 
[(1 - w)( l - w/3) ] 1/2 - 1 - (2w/3) + 2e- o '-u;N+I ' 7T1. C" W 7Tt Co 

whe re Co is a co unte rc lockw ise co nt our of integra ti on a round w = O. It a lso fo llows from e q (17) 
and th e sy mm etr y in th e x and y coo rdin a tes th a t th e num era tor in eq (5) is proportional tu th e 
coe ffi cie nt of wN in 

The expli c it ex pression for the numerator in eq (5) is 

or 

dw 
WN+1 ' 

Y' 3,' N = _ l_ J { (W/3)2 1 + w/3 1 
( ) 27Ti Co (1-w/3)1/2(l - w)3/2 D(8, w) l -w D2(8, w) 

[ ( 1 - w )1 /2J } dw X 1+ -- [1-(2w/3)+ (l -w/3)1 /2(I-w)I /2] - , -
l-w/3 W" + 1 

and Y'z (N) =~J 1/3 ((I - W/3) 1/2) dw 
2m coD(8, w) (l-w)3/2 wN 
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where D( e, w) = [(1- w)(l- W/3)J1 /2 -1- (2w/3) + 2e- o. (27) 

In eq (24) Y x (N) and Y z (N) are, respectively, the unnormaJjzed mean square ,x and z components 
of! the position of the free end of the chain. The explicit expressions (25) and (26) for Y x (N) and 
Yz {N) are evaluated in the limit N ~ 00 in the next section. 

") 

4. Evaluation of R;\I for N ~ 1 

We now co nsider the problem of obtaining asymptotic formulas in the limit N ~ 1 for the 
x and z components of Rl in eq (5). The explicit expressions which must be evaluated are 

and 

where Y x{N) , Yz(N), and Q{(} , N) are given in eqs (25), (26), and (22). The details of the evalua­
tion of these contour integrals in the limit N ~ 1 are straightforward but lengthy and depend as in 
I upon whether () > (}e, () = (} e , or () < (} e where (} e = In (6/5). All three integrands have branch 
points at w = 1 and w = 3. As in I, we introduce a cut in the w·plane between these branch points 
as shown in figure 1. In addition to the branch points, when 00 > () > (}e, there is a zero of D«(), w) 

on the real axis between w = 0 and w = 1. Details are given in I where it is shown that the expres­
sion for this zero is 

(28) 

It is also shown that w+ approaches 0 as () ~ 00 and it approaches 1 as () ~ (}e = In (6/5). Thus when 
() = (} e, the pole of the integrands at w+ coincides with the branch point at w = 1. In the remainder 
of this sec tion we obtain asymptotic formulas for the contour integrals (25), (26), and (22) in the 
limit N ~ 1 for the three cases () > (}e, ()= (}e, and () < e e . 

6> 6e. For () > (}e the contour integrals Y x(N), YiN), and Q«(}, N) all satisfy the relation 

f: r R(w)dw=--21 ·f R(w)dw+ 2
1 .f R(w)dw 

1n Jco 7rL c ) 7rL C2 
(29) 

where the integral on the left-hand side of eq (29) stands for Y AN), Y z (N), or Q (e, N) and the 
contours are shown in figure 1. In the limit N ~ 1, the second integral on the right-hand side of 
eq (29) is negligible compared to the first integral. Therefore, the asymptotic values of Y x (N), 
Y zCN), and Q(e, N) are given by the residues of the appropriate integrand at w +- The values are 

Yz (N) == -~w+ - N(l-w+/3) J/2/(l-W+)3/2D' (e, w+) 
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FIG UHE 1. Integration contours CII , C" and C, in the complex w·plane. 
The contour C~ is inde nted aroun d the left end of the cui terminat ing at w = I . 

and 

wh e re D '( f) , w+) de notes (dldw)D (f), w) l lC=u'+ and whe re term s proportional to N° in eq (32) have 

been neglec ted. Eq uati on (30) is a s pec ial case of eq (37) in I. Combinin g eqs (30) and (3 1), 
we ob ta in for th e mea n squ a re z-co mponent of ( R ,~, ) 

Thus, it is seen that if f) > In (6/5), th e n w+ < 1; and the limitin g value of (z2(N)IN is 

(34) 

Co mbinin g eqs (30) a nd (32), we ob tain for th e mean square x-component of ( R~, ) 

(35) 



In obtaining eq (35) we used the relation 

D '( O w) = 1:.[ -2+w+ 
• + 3 (I - w +) 1/ 2 (1- W+/3)1 /2 (36) 

and eq (28) for w+. Th e limiting valu e of (x2(N)/N is 

bm (xZ(N)/N =-:- 1 +---_- . . I [ 1 e- fI ] - 1/2 

N~ '" 2 41-e lj 
(37) 

,=,C' For O=8('=ln (6/5) the factor [D(O. W)] - I appearing in the inte~rands ofQ(8. N). 
f .r.(N). and ..!/z(N) can be written as 

<) [(1-W!3)'/2 2] [D(8 c • W) J- I =-- --- --:-, ' 
5+w l -w 3 (38) 

When [D(8c, W)]-l is replaced by eq (38), the expressions for Q(O, N), Yz(N), and Yx(N) beco me 

Q(8.N)=~J _<)_ [1-W/3+.l (1-w/3)'/2 -~ ] (~~I' 
27r~ (,5 + w l -w 3 l -w 3 w 

(39) 

1 { 3 [1-W/3 2 (l-W/3)!/2] dw 
..9z(N) =27rilco 5+w (1-w)Z-3 (l-wrl/2 w" (40) 

and 

Y (N) =_1 J [~ [ 1 _ 2/3 ] 
x 27ri Co 5+w (l-W)2 (l-W/3) 1/2(l-W)3/2 

27w [1-W/3 4 (l-W/3 )1/2 4/9] 
+ (5 + w) 2 (l - w)2 - :3 (l - w) 3/2 + 1 - w 

The three con tour integrals now satisfy the relation 

2 1 . J R (w ) dw = -21 . J R (w ) dw. 
7r~ Co 7r~ C2 

(42) 
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It is readily verified that in eac h case the dominant c ontribution to the integrals (40) to (42) around 
the contour C 2 comes from the most singular term s in (I - w). In (40) to (42) these singularities 
are simple poles. Evaluating the residu es a t th ese poles and retaining terms proportional to the 
highest power of N only , on e obtains 

and 

QW,. , N) == 1, 

.fAN) == N/3, 

y:riN) == N/3. 

The limiting values of (z2(N)/N and (x 2(N)/N are 

lim 
N --> 00 

and 

I (z2(N)/N = -
3 

(43) 

(44) 

(45) 

(46) 

(47) 

, < 'c. For 8 < 8e, the cont our int egral s (22), (26) , and (25) sati sfy the re lation (42) . Th e 
dominant contribution to th e contour integra ls for QW, N), ..Y'z(N), a nd y A N) around C com es from 
the mos t s ingular term s in (I - w) in th e imm ediate vi c inity of w = 1. The express ion s for th ese 
dominant contribution s a re 

=_'_ 111(I - w/3)1/2 I clw 
Q(8, N) - 27Ti (} l - w D(8, w) WN+1' (48) 

(49) 

and 
I (II 1/9 (1) clw 

f J (N)== 27Ti)Q (l - W/3)1 /2(I-w)3/2 D(8,w) u;N+! (50) 

where the point s Q and R are s hown in figure 1. It is possibl e to avoid th e expli c it e valuation of 
the contour integrals in (48) to (50) because we are interes ted onl y in obtainin g as ymptoti c formula s 
for Y.x(N)/Q(8, N) and .fz (N)/Q(8, N) . To de mons trat e thi s fa c t , int egrat e by parts in (50) to re du ce 
th e ord e r of the sin gularity in (1 - w). The res ult for y AN) is 

1 il? 2N/9 1 clw Y J.(N) == - . . --;-::---:-:--:-=--
2m Q (1 - W)I /2 (1- W/3)! /2D(8, w) vf 

(51) 

wh e re we have neglec ted contribution s of lower order in N. We also remark that the singularities 
in 1 - w in (49) and (50) are id enti cal , as are the singularities in (1- w) in (48) and (51). Conse· 
que ntly , the asymptoti c formula for y iN) can be deduced from that of Y AN) by multiplying f AN) 
by the factor 

lim3(l- w/3) = 2; 
w ~l 
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and the asymptoti c formula for fix(N) can be deduced from 0 (0, N) by multipl ying 0 (0, N) by the 

factor 

Thu s we have the relations 

a nd 

lim 
w---'" I 

2N 1 
9 1 - w/3 

N 
3 

fi AN) = NO(O, N) /3 

for N ~ 1. The limiting values of (x2(N)I/N a nd (z2(N)I/N are then 

lim (x2(N)I/N= 1/3 
N~ x 

and lim (z2(N)I/N= 2/3. 
!V_ x 

s. Summary and Remarks 

(52) 

(53) 

(54) 

The limitin g mean squ are co mponent s of th e end-to-end di s pl ace me nt parall e l to th e solution 
surface a re equal and have the va lue 

lim (x2(N)I/N = lim Cf(N)I/N 
N---+ x !V_ x 

1 o :0:; 0 < In (6/5) 3' 

1 
O= ln (6/5) 3' 

(55) 

0 > In (6/5). 

Thus lim (x2(N)I/N is a continuous function of the reduced adsorption ene rgy per monomer 
unit ;hi~h increases monotonically from 1f3 to 1/2 in the O-inte rval [In (6/5),00). The limiting mean 
square component of the end-to-e nd displacement normal to the solution surface is 

2 
0 :0:; 0 < In (6/5) 3' 

lim i(z2(N)I /N= 
1 0 = In (6/5) (56) 

N-- x 3' 

0, o > In (6/5). 

It is see n in (55) and (56) that a t 0 = Oc th e limiting mean square components of the end-to-end 
di s ta nce are equ a l to 1/3, th e valu e which wo uld be obt ained in the absence of the solution s urface. 
Thi s be havior at the criti cal energy was ded uced by DiMarzi o and McC rackin [4]. DiMarzio [5] 
has ob tained our res ult in the special case 0= 0, but for a general lattice mode l. In thi s case 
(0=0), the mean squ are norma l co mponent is twice the mean squ are late ral components which 
are in turn equ al to the valu e obtained in th e absence of th e solution surface. It is seen in (55) 
and (56) th at as O ~ 00 and the molecule becomes confin ed to the solut ion surface , the mean square 
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e 
FIGURE 2. Limiting form of the mean square end-to-end 

distance per step versus the adsorption energy (J _ 

TABLE 1 

Values of mean square components of the end-to-end displace­
ment in the 6-choice. 4-choice. and 2-choice simple cubic 
lattice models 

o ~ 8 < 0(, 
8 = 8, 
8 = x 

(x~N) /N 

1/3 
1/3 
1/2 

(z' IN) /N 

2/3 
1/3 
o 

lateral compon e nts approach th e valu e which would be obtained for a random walk on a 4-choice 
plan a r square latti ce_ Co mbinin g the limitin g form s for th e mean square co mponents of the end-to­
end di stan ce, we obtain finall y for the mean square end-to-e nd di s tan ce per s te p 

4 
3' 

lim R,~/N = 1, 
N~ '" 

0 ::;; 8 < In {6/S) 

8=ln (6/S) 

Thi s function is plotted versus fJ in fi gure 2_ 

(S7) 

8 > In (6/S)_ 

We now consider th e ques tion of de termining qualita tively the co mponents of the mean square 
di s placement in the 4-choice and the 2-choice s impl e c ubic latti ce models_ These models have 
been s tudied [1,2] and the criti cal e nergies fJe= ln (SI / ~ - 1) a nd (1/3) In 2, respectively , have been 
obtained_ We expec t that analogous to the result in ,.he 6-choice simple cubic lattice model, the 
mean square components of th e e nd-to-end di s ta nce in .the adsorption energy range 0 < 8 < 8e are 
equal to the values obtained at fJ = 0 by DiMarzio [S]_ We also expect that at fJ = fJe, the mean 
square co mponents of th e end-to-e nd di s tan ce are equal to th eir free space values_ As fJ~ 00, 

the mean square components parallel to the surface approach the values for the corres pondin g 
planar lattice_ In table 1 we list the limiting values of the mean square components of the end-to­
end distance which are obtained on the basis of the foregoing arguments and note that values listed 
are the same in the 2-, 4- , and 6-choice simple cubic latti ce model s_ Onl y the criti cal e nergies 
and th e rates of approach to the 8 = 00 values are diff~renL The results for the 4-choice sim pIe 
cubic lattice model are useful as reference values in McCrackin' s Monte Carlo calculations of 
Rl taking into a ccount the se lf-excluded volume of the polymer chain [61-
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