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A 6-choice simple cubic lattice model of adsorption of an isolated polymer chain at a solution
surface is investigated. The mean square components (x*(N)) and (z*N)) of the end-to-end dis-
tance are computed as a function of the adsorption energy per monomer unit in the limit of a very
long polymer chain. In the calculation, one end of the polymer chain consisting of N monomer units
is constrained to lie in the surface; and (x*(V)) and (z%(N)) are, respectively, the mean square dis-
placement of the free end of ithe chain parallel to the solution surface in one of the lattice directions
and normal to the solution surface. The limiting value of (x*N))/N as N— = is a continuous func-
tion of 6, the dimensionless adsorption energy per monomer unit, and is equal to 1/3 for 6 < In (6/5)
and (1/2) [1+(1/4) (e?—1)~1]-2 for 6 =1n (6/5). The limiting value of (z*N))/N as N — = is a dis-
continuous function of @ and is equal to 2/3 for 6 < In (6/5), 1/3 for 6= In (6/5), and 0 for § > In (6/5).
The relation of these results to earlier investigations and the generalization of these results to other
cubic lattice models is discussed.

Key Words: Adsorption, chain polymer, critical energy, generating function, lattice model, parti-
tion function, random walk.

1. Introduction

In this paper we extend the investigation of a random walk lattice model of polymer chain
adsorption at a solution surface [1, 2]! by computing the components of the mean square end-to-end
distance in an adsorbed polymer chain. The random walk lattice model used is a generalization
of the models introduced by Silberberg [3| and DiMarzio and McCrackin [4]. The physical proper-
ties of the model reflect the competition between (1) the energy gained by the polymer chain occupy-
ing as many surface sites as possible, and (2) the configurational entropy lost by the polymer chain
remaining near the confining solution surface. In I and II the average fraction of monomer units
which lie in the solution surface v(6, N) was computed as a function of the reduced energy of
adsorption per monomer unit §=¢€/kT. In the calculation one end of the polymer chain was
constrained to lie in the surface, and the self-excluded volume of the polymer chain was neglected.
In the limit in which the number of monomer units N is large, it was determined that there is a
critical value of the reduced energy of adsorption per monomer unit 6. such that for 6 > 6., the
molecule exists in an adsorbed state. For example, ’\!I_I)I;lc v(6, N), the limiting average fraction
of monomer units lying in the surface, is a positive constant independent of N indicating that a
finite fraction of all monomer units lie in the solution surface. For 6 < 6. this limiting fraction
is zero.

The purpose of this paper is to calculate (x*(NV)), (y*(N)), and (z*N)), the components of the
mean square displacement of the free end of the polymer chain as a function of 6 for N > 1 for the
6-choice simple cubic lattice model. It was shown in I that the mean distance of the free end of
the chain from the solution surface (z(N)) has the following discontinuous form for the 6-choice

! Figures in brackets indicate the literature references at the end of this paper.
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simple cubic lattice model

(7/6)"/2, 0<6<1In (6/5)
lim (z(N)y/N'V2= {(2/3m)'2, 6=1n (6/5)
N—ox

0, 6 > In (6/5).

It is shown in section 4 that there is a corresponding discontinuity in llm (z%(N))/N whereas for
the other components, l\lm (x( M)/’\/—hm (¥*(N))IN is a continuous functlon of 6. The recur-
rence equations for the probability dlstrlbutlon of the free end of the polymer chain are formulated
in section 2 and are solved formally in section 3. Explicit expressions for the second moments
are evaluated in the limit N— o in section 4. The results are summarized in section 5 and the
qualitative behavior for the 2-choice and 4-choice simple cubic models is deduced.

2. Recurrence Equations for the Probability Distribution of the
Free End of the Polymer Chain

We consider a simple-cubic lattice model of the solution-surface system in which the solution
surface corresponds to the x-y lattice plane through the point z=0. Successive lattice planes
through z=1. 2. . . . represent the solution phase of the system. Polymer chain configurations
in the solution correspond to paths generated in a random walk on the lattice between nearest-
neighbor sites. The physical presence of the surface is introduced by considering only random

walks in the lattice planes through z=0. 1. 2. . . . which never enter the lattice plane through
z=—1. In the absence of a solution surface, all random walk configurations of a given length are

equally likely. However, we are primarily interested in the influence of an adsorbing solution sur-
face on the average conformation of a polymer chain. In our lattice model, all random walk paths of
N steps with n steps lying in the surface layer z= 0 have the same a priori probability. Relative
to a random walk configuration of N steps with n— 1 steps lying in the surface. the a priori proba-
bility of a walk with n steps in the surface layer is greater by the factor e? where 6= ¢€/AT and € is
the adsorption energy of a monomer unit.

For convenience, we use a random walk terminology. Consider the problem of computing,
for a random walk originating in the surface layer, the unnormalized or relative probability
P(x,y,z: N+1) that at the N+ 1th step the random walker is located at lattice point (x, y, z), where
z=0. The relative probability P(x. y, zzN+1) is related to the relative probabilities at the
Nth step by the relations

(1)
P(x, vy, zz N+1) —{E*+E tEj+E;+E:+E;}P(x,y,z;N), z=1

and P(x, y, 0; N+ I)Zée"{E;—%E; +E;+E,+E;}P(x, y, 0; N) 2)

where E7 are operators defined by the relation

E:P(x, v, z; NN=P(x=*1, vy, z; N). (3)
The operators £ and E; have similar definitions. Equation (1) describes the relation between
the relative probability of being at lattice site x, y, z with z= 1 at the N+ 1th step and the relative
probabilities of being at neighboring sites at the Nth step. The factor ef in eq (2) accounts for
the fact that relative to those configurations where z =1 at the N+ 1th step, the relative probabil-
ities for those configurations where z=0 at the N+ 1th step are greater by the factor ¢. The
absence of E: in eq (2) is related to the fact that the random walker enters the z=0 layer only
from one direction. Equations (1) and (2) will be solved in section 3 for the initial condition
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e, x=0,y=0,z=0
P(x, vy, z: 0)= (4)

0, for all other lattice points.

From the solution, the mean square end-to-end distance after N steps can be computed from the
expression

R2=(23N)) + (3AN)) + (22N)) = i i i(x2+y2+z2)P(x,y,z;N)/Q(0,N) (5)
where 00, =S 3 3 Py, z ). (6)
S Y= 220

3. Solution of Recurrence Equations

The recurrence eqs (1) and (2) can be solved for the starting condition eq (4) by introducing
a generating function as in | and II. It is convenient first to rewrite eq (2) as

[1—-1—e%)]P(x, y, 0; N+ ]):(1/6)[E4;+E;+E;+E;+E;]P(x, vy, 0; N). (7)

Multiply eqs (1) and (7) for P(x, v, z; N+ 1) by 2m)32 exp {ixé+ iyn + iz} and sum over all integer
values of x and y and all z=0. The result is

—(1—e2m) 2p(E, 1: 0; N+ D) +GE, m, & N+1)

:% [cos €+ cos m+cos L|G(E, m, & N)—%e""é(Qﬂ)*‘/zp(f, n; 0; N) 8)

where G, m, {; N)=(2m) 32 2 2 2 P(x, y, z; N) exp (ix¢ + iym +izd) )

X=—x Yy=—x 2=0

and p(&, m; z; N)=(2m)~ E 2 P(x. y, z; N) exp (ixé + iym). (10)

X=—x Yy=—x

Next multiply eq (8) by w"*! and sum over all values of N to obtain

(¢, m, & w—GE, m, & 0)— 1 —e2m)2[p&, n; 0; w)—p(&, m: 0; 0)]

1 )
:gw[cos &+ cos m+cos L&, m, ¢ w)—%e”@(Zﬂ)"/zp(g, n; 0; w) (11)

where I'(¢, m, & w) ZM ‘G, m, & N) (12)
and P&, M 2 w)= i w'p(€, m: z: N). (13)
N=0
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In eq (11) the quantities G(£, n, ¢: 0) and p(¢, n: 0; 0) are simply

G(E, m, L 0)=(2m) 2" (14)

and P&, m: 0; 0)=(2m)'e". 15)

Substituting eq (14) and (15) in eq (11) and solving for I'(¢, m. ; w). one obtains

1 :
(2m) =32+ (27r) =112 {l —e’”—gwe"{] p&. m: 0; w)
I'(¢.m, & w= ] (16)
1 —3 wlcos €+ cos n+cos (]

Equation (16) is an implicit equation for p(¢, m: 0; w) because according to the definitions of
(&, m, & w). GE, m, & N). plé, m: z; w), and p(é, m: z: N) in eqs (9), (10), (12). and (13)

['(&, m, & w)=Q2m) 32 2 2 2 2 P(x. y. zz NV exp (ixé + iyn+ izl
L=—2C N=0

—x Yy=—x 2=0

(17)

=(2m) 12 2 eFp(€, m: 2 w).

=0

w

The following relation for determining p(&, m: 0: w) can be obtained by multiplying eq (16) by (27)~1/2
and integrating with respect to { from — to 7

1
P&, m: 0; w=Q2m) U, m; w)+ [(1 —e NI|E, n: 10)—6 wl (&, m: w)] p(&, m: 0; w) (18)

where

ikLdL
1) : =(27)"! 2
k(&> m: w)=(2m) ] 1 —w(cos &+ cos n+cos )3

—m

) [1 Cleon g n)/S]_l [1 - (1 = w(cosw{g*g%- cos ’f))/3> 2]_1/2

- [1 _<1~W(cos uf]/icos 77)/3)2]1/2 'H .

w/3
1—w(cos &+ cos n)/3

X

(19)
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Solving eq (18) for p(£, n: 0: w) and substituting the result in eq (16), we obtain an explicit solution
of the recurrence eqs (1) and (2) for the initial condition (4)

(277)~3/2 1+@/6) [1(€, m: w)— e Uy(&, n: w)]

I 6= 2
& n, & w) 1 —wlcos &+ cos n+cos O3 | 1+w/6)1 (€. n: w)— (1 —e=o(&, M: w) 20)

The mean square end-to-end distance (5) can be expressed in terms of the generating function
(&, m, & w). First note that the normalizing sum Q(6, N), defined in eq (6), is proportional to
the coefhicient of w" in the expansion of 1(0, 0, 0; w) [see eq (17)]

170, 0, 0; w)=(2mw)~3/2

3 Plx. y. z; N)=(2m) 3‘"32 w¥Q(H, N) (21)

0 N=0

Ms

w ;/: ;y:

N=0 r=— =

Using Cauchy’s formula and eq (20). we obtain the following explicit expression for Q(6. N)

6, N)=

(277)3/2 dw ] 14+ [A—w/3)/(1 —w)]!? dw
0.0, 0; ; 292
27 J;\,I( “)1‘” 2mi Jey [AQ—w) (1 —w/3)]"V2—1—(2uw/3)+ 2e=¢ wN*+’ 24

where C, is a counterclockwise contour of integration around w=0. It also follows from eq (17)
and the symmetry in the x and y coordinates that the numerator in eq (5) is proportional to the

coefficient of " in

— (2m)-312 2,( z E 24\—+\ +2%) P(x, y. z: N). (23)

£=0,(=0" Ir=—x y=—x 2=0

—[z(ff C]F(g 0, & w

The explicit expression for the numerator in eq (5) is

s 2= [ |2 g -
2+ SN =" f( zafz L I'(¢, 0. & w) N (24)
£€=0,=0
or
5 (N) =—— 1 { w/3 1 w3 .
2mi . (1—w/3)012 (1 — )32 D(0, w)  1—w DXO, w)
0
\1/2
X [1+<1 173) }[l—(2w/3)+(l—w/3)1/2(1_ 1/2]} dul 25)
e ' o 1/3 (l—w/?))”l)dw
y:(N) 27Tl,[ D(O’ lU) (1 _ )3/2 u}\ (26)
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where D(6, w) =[(1—w)(1 —w/3)]2— 1 — (2uw/3) + 2e-. 27)

In eq (24) #,.(N) and .#.(N) are, respectively, the unnormalized mean square x and z components
of'the position of the free end of the chain. The explicit expressions (25) and (26) for .# .(N) and
4 .(N) are evaluated in the limit N— « in the next section.

4. Evaluation of R() for N> 1

We now consider the problem of obtaining asymptotic formulas in the limit N> 1 for the
x and z components of R} in eq (5). The explicit expressions which must be evaluated are

(*(N)) =7 +(N)/Q(8, V)

and

(2% (N)) = J:(N)[Q(6. N)

where J.(N), #.(N), and Q(8, N) are given in eqs (25), (26), and (22). The details of the evalua-
tion of these contour integrals in the limit N > 1 are straightforward but lengthy and depend as in
I upon whether 6> 6., 6=20., or 6 < 6. where 6.=In (6/5). All three integrands have branch
points at w=1 and w=3. As in I, we introduce a cut in the w-plane between these branch points
as shown in figure 1. In addition to the branch points, when © > 6> ., there is a zero of D(0, w)
on the real axis between w=0 and w=1. Details are given in I where it is shown that the expres-
sion for this zero is

we=6{—2(1—e~0) + [d(1—e0)2+e—?(1—e0)]1i2}, (28)

It is also shown that w, approaches 0 as § — o and it approaches 1 as 8 = 6.=1n (6/5). Thus when
0= 6., the pole of the integrands at w, coincides with the branch point at w=1. In the remainder
of this section we obtain asymptotic formulas for the contour integrals (25), (26), and (22) in the
limit N > 1 for the three cases 6 > 6., 6=0., and 6 < 6..

6> 6. For 6> 6. the contour integrals .Z,(N), .£.(N), and Q(6, N) all satisfy the relation

f R( w)dw——— R(u;)dw+i R (w)dw (29)

2mi @ 2mi ) c,

where the integral on the left-hand side of eq (29) stands for .7 .(N), #.(N), or Q(6, N) and the
contours are shown in figure 1. In the limit N> 1, the second integral on the right-hand side of
eq (29) is negligible compared to the first integral. Therefore, the asymptotic values of .% .(N),
J:(N), and Q(6, N) are given by the residues of the appropriate integrand at w,. The values are

Q(6, N) =—w,~ ¥+ V{1+ [(1—w/3)[(1—w+)]¥2}/D' (6, w+) (30)
Z.(N) z—%w;”(l—u)+/3)‘/2/(1~w+)3/2D’(0, w+) (31)
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(DN

FIGURE 1. Integration contours Co, C,, and Cs in the complex w-plane.
The contour C, is indented around the left end of the cut terminating at w=1.

and

Io(N) =2 M[H(-—l_w* )”2]

a2 |l =g L=l

X [1— (2w4/3) + (1 —w4/3)Y2(1 —w,) 2] [D' (0, wy)]~2 (32)

where D'(0, w.) denotes (d/dw)D(0, u'}},(-:.,p+ and where terms proportional to N° in eq (32) have
been neglected. Equation (30) is a special case of eq (37) in 1. Combining eqs (30) and (31),
we obtain for the mean square z-component of (R3)

2 :“i(l—wwt/?))l/z/[ (1_w+/3>1/2.]p_vﬂ 1—w/3 1/2[<1_w+/3>1/27 ] (33)
(#(N) = (1 —wy)32 1+ 1 —w, T2 ( F="t0% ) L= 7. o

Thus, it is seen that if @ > In (6/5), then w; < 1; and the limiting value of (zAN))/N is
Jl_)n}c (zZ(N))IN=0. (34)

Combining eqs (30) and (32). we obtain for the mean square x-component of (R?)

vy N
(PN = 3[”(

1 — (2w+/3)
1—w) (1 —w,/3)1
243
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In obtaining eq (35) we used the relation

1 = DAk 1 1 1] 4d—e ) t+wi/3
PO )= §[<1~u+ 2 )1/2_2]!‘7[ ]

= 1+ 200/3)— 2 ° (36)
and eq (28) for wy. The limiting value of (x%(N))/N is

y ) L[, 1 et ]

i OIS 1T 7

=6 For 6=06.=In (6/5) the factor [D(6. w)] ! appearing in the integrands of Q(6. N
S +(N), and .Z.(N) can be written as

9 1—w/3\"* 2
i =2 (1= 2]
(DO, w) ' =22 N\ T 3

w)]~ ! is replaced by eq (38), the expressions for Q(6,

(38)
When [D(6,,

N), Z.(N), and .Z,(N) become

1 9 1—w/3 (l—w/S) _é] dw )
Q(6.N) = 2 ("‘5+1L‘|: = +3 e 3 | Nt (39)

1—w/3 2 (1—w/3)"] dw
fz(N)——f 53 [1—w/ (1—w/3) ]u,"

21l +wl Q- wP 3 (1—w)32 (40)
and
1 w? 1 2/3
el = 2mi f {§+w[(l—w)2 (l—w/3)1/2(1—w)3/2]
" 27w [l—w/3 4 (1—w/3)">  4/9 ]
GFw)2|(1—w)? 3 (1—w)3 1—w
=g dw
X 1+< u/3> [1— (2w/3) + (1 —w/3)Y2(1 —w)V?] T (41)
The three contour integrals now satisfy the relation
1 1
——f R(w)¢1w=f—.f R(w)dw. (42)
2mi Jc, 2mi Jc,
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It is readily verified that in each case the dominant contribution to the integrals (40) to (42) around
the contour C» comes from the most singular terms in (1 —w). In (40) to (42) these singularities
are simple poles. Evaluating the residues at these poles and retaining terms proportional to the
highest power of N only, one obtains

Q0. N)=1. (43)
JAN) = NJ3, (44)
and S dN) = N/3. (45)

The limiting values of (z%(V))/N and (x2(N))/N are

. 1
;\ELHL (zZ(N))/N:E (46)
. , 1
and lim (x)‘(N))/N:g' (47)
Nowx

<6 For 0<0. the contour integrals (22), (26), and (25) satisfy the relation (42). The
dominant contribution to the contour integrals for Q(6. N), .Z.N). and .# «(N) around C. comes from
the most singular terms in (1 —w) in the immediate vicinity of w=1. The expressions for these
dominant contributions are

1 [B(1—w/3\"? 1 dw
A0, N) = 27 L ( 1—w ) DO, w) N1 {50
o1 B —w/3)12 1/3  dw
F4AN) = 27 J’Q (I—wp2 DO, w) w" ()

L 1/9 1\ dw
2id LAN) =55 L (1 —10/3)1/2(1 — )72 (D(a, w))w”“ (50)

where the points ) and R are shown in ficure 1. It is possible to avoid the explicit evaluation of
the contour integrals in (48) to (50) because we are interested only in obtaining asymptotic formulas
for ZAN)/Q(O, N) and Z=(N)/Q(6. N). To demonstrate this fact, integrate by parts in (50) to reduce
the order of the singularity in (I —w). The result for .ZN) is

R ON/9 1 .
SN = 1 f N/ dw

=2mi Jo A—w) (1—w/3)2D(0, w) w" (1)

where we have neglected contributions of lower order in N.  We also remark that the singularities
in 1 —w in (49) and (50) are identical, as are the singularities in (1 —w) in (48) and (51). Conse-
quently, the asymptotic formula for .Z,(N) can be deduced from that of .# ,(N) by multiplying .7 .(N)
by the factor

lim 301 —w/3)=2;

w—>1
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and the asymptotic formula for .#,(N) can be deduced from Q(6, N) by multiplying Q(6, N) by the
factor

2N 1 N
lim & ————=2.

w—=1 9 1—w/3 3
Thus we have the relations

and F«(N) = NQ(6, N)/3 (52)

for N>1. The limiting values of (x*N))/N and (zN))/N are then

lim (x*(N))/N=1/3 (53)
N—> x

and lim (ZAN))/N=2/3. (54)
N— x

5. Summary and Remarks

The limiting mean square components of the end-to-end displacement parallel to the solution
surface are equal and have the value

lim <x2(M>/N=\l£r11 (»*(N))IN

N—>x
%. 0<6<lIn (6/5)
. (55)
= 3" 0=In (6/5)
4 [1 L er— 1)—1]_”2 6> In (6/5)
2 4 \¢ 2 :

Thus 11m (x%N))/N is a continuous function of the reduced adsorption energy per monomer
unit Wthh increases monotonically from 3 to Y2 in the 6-interval [In (6/5), %). The limiting mean
square component of the end-to-end displacement normal to the solution surface is

é. 0<6<In(6/5)
lim (22(V))/N= % 9=1n (6/5) (56)
N— x <

0, 6> 1n (6/5).

It is seen in (55) and (56) that at #= 6. the limiting mean square components of the end-to-end
distance are equal to 1/3, the value which would be obtained in the absence of the solution surface.
This behavior at the critical energy was deduced by DiMarzio and McCrackin [4]. DiMarzio [5]
has obtained our result in the special case =0, but for a general lattice model. In this case
(6=0), the mean square normal component is twice the mean square lateral components which
are in turn equal to the value obtained in the absence of the solution surface. It is seen in (55)
and (56) that as # — o and the molecule becomes confined to the solution surface, the mean square
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15
TABLE 1
10 .
Values of mean square p of the end-to-end displ
ment in the 6-choice, 4-choice, and 2-choice simple cubic
= lattice models
S
e 2 AV N Y
(N))/N *(N))IN
[as sF (HN))/ (AN))/
8 .
b 0<6<6. 1/3 2/3
== 0=0. 1/3 1/3
v=e 1/2 0
L L SL ) ) L L
) 2 3 a s 6 7

FIGURE 2. Limiting form of the mean square end-to-end
distance per step versus the adsorption energy 6.

lateral components approach the value which would be obtained for a random walk on a 4-choice
planar square lattice. Combining the limiting forms for the mean square components of the end-to-
end distance, we obtain finally for the mean square end-to-end distance per step

SIS

. 0<6<In(6/5)

vlim RZN= {1, 0=1In (6/5) (57)

] —1/2
[|+a(€ﬂ_1)~l] X 0 > In (6/5).

This function is plotted versus 6 in figure 2.

We now consider the question of determining qualitatively the components of the mean square
displacement in the 4-choice and the 2-choice simple cubic lattice models. These models have
been studied [1, 2] and the critical energies 6.=1In (5'2—1) and (1/3) In 2, respectively, have been
obtained. We expect that analogous to the result in the 6-choice simple cubic lattice model, the
mean square components of the end-to-end distance in the adsorption energy range 0 < 6 < 6, are
equal to the values obtained at #=0 by DiMarzio [5] We also expect that at = 6., the mean
square components of the end-to-end distance are equal to their free space values. As 6— oo,
the mean square components parallel to the surface approach the values for the corresponding
planar lattice. In table 1 we list the limiting values of the mean square components of the end-to-
end distance which are obtained on the basis of the foregoing arguments and note that values listed
are the same in the 2-, 4-, and 6-choice simple cubic lattice models. Only the critical energies
and the rates of approach to the §== values are different. The results for the 4-choice simple
cubic lattice model are useful as reference values in McCrackin’s Monte Carlo calculations of
R#taking into account the self-excluded volume of the polymer chain [6].
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