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Bassali’s general theory for the flexure of the thin circular elastic plate supported at an arbitrary
number of points and subjected to transverse load over an eccentric circle is specialized to the case
of a centrally loaded plate supported at points equally spaced on a circle concentric with the center.
Simplified methods for approximating the results predicted by the more complicated theoretical ex-
pressions for deflection are presented along with the experimental results from 138 tests. Both the
experimental results and the simplified equations are compared with the theory and agreement is
found to be good.
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1. Introduction

The determination of the deflection of a centrally loaded circular plate supported at points
equally spaced on a circle concentric with the center has long been an important structural analysis
problem. In the past the analysis of this problem was usually limited by the assumption that the
point supports were numerous enough to constitute a simple continuous line support. Nadai [1]!
presented a theory for the deformation of a circular plate supported at several points with central
point load or uniform load which was an improvement in that it recognized the errors involved in
the aforementioned assumption. Unfortunately, Nadai’s point supports were located along the
circumference of the plate. To some extent this limited the utility of the theory, as this method
of support is unusually difficult to realize in practical structures.

More recently, Bassali [2] has given the solution of the problem of flexure of a thin circular
elastic plate supported at an arbitrary number of points which may be located anywhere within
the plate periphery, and loaded over a circular area lying anywhere within the boundary of the
plate. Implicit in the work of Bassali is the solution of the problem of the centrally loaded plate
supported at points equally spaced on a circle concentric with a central load. It may be noted.
that the theory accounts for the constraining effect of an annular region of the plate which overhangs
the support circle and is otherwise free from restraint.

This paper deals with the specialization of that part of the Bassali theory necessary to solve
the particular problem described above, and presents the rather tedious theoretical expressions
for the deflection at the center of the plate and at a point midway between supports located along
the support circle. Since these expressions require considerable effort to evaluate, simplified
methods of approximating the center deflection may be desirable for design purposes. Therefore
simplified expressions for center deflection, based on the results of the exact theory, are given.
Experimental results are then compared with those obtained analytically, and good agreement
between the two is found for the range of geometries tested.

*Present address: National Science Foundation, Room 305, Washington, D.C.
! Figures in brackets indicate the literature references "at the end of this paper.
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1.1. List of Symbols

rectangular Cartesian coordinates

= Vx2+ y2, radial polar coordinate

arctan (y/x), polar coordinate angle

=re!? = x+ 1y, complex coordinate of point (r, 6) or (x, y)

=x— 1y, conjugate complex coordinate

radius of the plate

radius of transversely loaded area of plate

span radius, of circle on which support points lie
thickness of the plate

number of support points (m = 3)

= 27/m, polar angle between support points

=sa, polar angle subtended by the sth support point (s=1,2, . . ., m)

=0—0;

— i5%

inverse of z; with respect to C : zZ; = ¢?

=z—z

=zl—z

= por"~2, transverse load intensity over 0 <r =<1
(n=2, produces unifermly distributed load)

=(), transverse load intensity over b<r<¢

= 2mpob"/n, total load on the plate

= Py/m, reaction at z

=bVn/(n+2)

=rfc

= |Z|, distance from z to z

=1|Z;|, distance from z to z{

=z/c=pel®

= zs/c = te's

=te s, complex conjugate of s

= zr/c = tetke

Poisson’s ratio

=3+v)/v—1)

modulus of elasticity

= Eh3/12(1 —1?), the flexural rigidity

deflection due to load, eq (1.01)

deflection due to point load P;

deflection of the plate within |z| <&

deflection of the plate within b < |z| < ¢
=w;(0), deflection at the center of the plate
deflection at any point on support circle (r=q)
deflection at (r=a) and ¢s=(1—2s)7/m, s=1, 2
= wo(o)

the edge of the plate: the circle r=c
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Co the boundary of the loaded area of the plate: the circle r=45

Be dimensionless deflection function defined by eq (4.02)

B. dimensionless deflection function defined by eqs (4.16) and (4.18)
Ba dimensionless deflection function defined by eq (4.04)

1/} dimensionless parameter defined by eq (4.17).

2. Survey of Bassali’s Procedure

No extensive recapitulation of Bassali’s paper [2] need be given here. Indeed, the theory is
of such complexity that the mere presentation of the expressions for deflection is itself a lengthy
process. It suffices to summarize the method used by Bassali and to note that his results were
obtained through the use of the well-known theory of Muskhelishvili [3].

The center of a circular plate of radius c is taken to be at the origin of a Cartesian coordinate
system, and the central plane of the plate to lie in the xy plane. The plate is assumed to carry a
transverse load over the region? 0 <r =< 5. The intensity of this load is

pP=pi1=por" 2 (n=2) (1.01)

(n=2 produces uniform load). The transverse load intensity is p=p.=0 over the remainder of
the plate. The total load on the plate is Py=2mpob"/n. The plate is taken to be supported at
points equally spaced along the circle r=a (b = a < ). viz, at zg=ae™* (s=1.,2.. . . .m). From
conditions of static equilibrium and symmetry the reactive force is the same at each support point
zs, and is Ps=Py/m.

To obtain the deflection it is necessary to find the particular solutions for the plate equation,
for eq (1.01), and for the point loads Py/m. The former is easily seen by inspection to be

o4
1)

—@_(2020)-

' n2n+2)2D e
It is well known from the theory of plates [4] that for the isolated point load Py at z
P os .
Ws_mR.\- In R;. (1.03)

Bassali considers the plate to be comprised of two separate plates. One of these is defined
by the loaded circular area (0 < r < b), and the other is the annular plate (b < r < ¢) with the point
loads P;. The solution of the equation for the plate deflection with the load p; is then the sum of
eq (1.02) and the solution of the biharmonic equation; the solution for the annular plate is eq (1.03),
summed over all of the point supports, plus the solution of the biharmonic equation. Boundary
conditions for the free edge r=rc, together with kinematic and dynamic conditions of continuity
along r=~5 [5] then make it possible to obtain the deflection, w, for any point on the plate.

3. Deflection of the Circular Plate

The deflection of the plate within the loaded region, |z| < b, obtained from Bassali’s work is

_ Po 2 - _l m ) E‘. ( _l> Sl 4(rn+2_bn+2)]
w=wnt g o ng—y S R S (1= Do -+ MR e

s=1

?Bassali’s solution is more general, in that, the loaded area and supports may be arbitrarily located anywhere within the plate periphery.

3For the reader’s convenience a list of symbols is given in section 1.1.
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while in the region b <|z|<c it is

Py Il R;
S 2 I2 =L 2 e
wo w0+8 D[(r +b'2)In p m;Rgln c] (2.02)
where
B R! (1—p? (a*+kbd"™)
wWo=g—"0 [2 R? In, -+(K —1)c? Re {Ln.(0)} e 1 ]+71x+'y2y+y3
(2.03)
and
2
R¥(p, )=a? (1 +%—2"‘;’ cos <ps> (2.04)
Rz
p?—2pt cos @5+ t* (2.05)
R’2
=1—2pt cos s+ p3t3. (2.06)

\S

The quantity L,,({) which appears in eq (2.03) plays an important role in the deflection, and is
defined by

m(€)— j (1—&&w) In (1— Lolu) ——_—i PO+ L+ (1 —L) In(1—LD]  (2.07)
and where <p(zs§) is defined as the dilogarithm [6, 7, 8]

0

_ L _
dto=—["ma-—n%, < (2.08)

This function possesses the absolutely and uniformly convergent expansion [8]

i Gl"  zg<1. (2.09)

Since Zs§=pte’¢s, eq (2.09) can be written as

(L= 2 (’; D" gine, (2.10)

n=1

and if (=, k=1, 2,. . ., m, eq (2.10) becomes

S @l == pleom). 2.11)

From eqs (2.07) and (2.10) the real part of L,,({) can be written

- e N _ 22
Re {L.(0)} ?::1 pr 2 cos nes+ P> (1—pt cos @s) In (1 —2pt cos @s+ p*e?)
— ot = on t _ptsings (2.12)
p ; @s arctan = priosive .
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When = .= teik?, eq (2.12) becomes

Re {Ln(Zk)} . go(t“‘)%—% i (1—¢2 cos sa) In (1—2¢2 cos sa+1t?)
m

s=1

t2 sin s«
1—1¢2 cos s

m .

— 2 2 sin s« arctan (2.13)
s=1

For the purposes of this investigation it suffices to consider the case in which the support

points lie outside the loaded area, i.e., g <t¢. Since the central plane of the undeformed plate

is taken to lie in the xy plane, y;=v>=0 in eq (2.03). Further, if the deflection is taken to vanish

at a support point zx, then
w(zk) = wolzx) = 0. (2.14)

This, along with eqs (2.02) and (2.03) serve to determine 7s;:

_Po [_ iy KB e Ry
B=g—D [ k(a4 b") In H_m 2“1 R(a, 60r) In . (a, Or)
m ! . — 2 )
= 5 Rita, 091n T & 8~ (i~ et Re {La(@)} ——— 2L 15
m &~ rs (a, ) m k+1
It is a notational convenience to define A,(t) and B,(t) as
. & R R (a, 91:)]
2 — 2 =18 N Tfy 228
a?An(t) = - ; R%(a, 0r) [K In p, (a, 6x)—1In (. 0

and
mtzBm(t) = Re {Lm(Ck)}

Using eqs (2.04), (2.05), (2.06), and (2.13) the definitions of A, (t) and B,,(t) may be written as follows:

m

mAp(t)= E (1 —cos sa)[k In 2¢%(1 —cos sa) —In (1 — 22 cos sa+t4)] (2.16)
=1
thBm(t):%é (I1—2¢% cos sa) In (1 —2¢% cos sa+t%)
-_rlr_t o(t2™m) — t2 ;:znl sin s arctan 1%2;%- (2.17)
Using these definitions, eq (2.15) can be rewritten as *
=it [az{Am(t) + (1= KB} — wa+ b In = E=ELEL "brz)]- (2.18)

The deflection of the plate is given by eqs (2.01) and (2.02), where w, of eq (2.03) is obtained by
inserting y; =7, =0 and the value of y; given by eq (2.18).

The deflections at the center of the plate and along the support circle are of particular interest.
At the center r=p=0, so that Ry=a, Ry/c=t, and R}/r;=1, hence eq (2.01) yields

4Bassali’s equation for y; is in error in that he has + k(a? — ") In ¢ where eq (2.18) has — k(a2+ ") In ¢t. His expression for Anx(t) is also in error, since the first
t* as well as the s in both logarithmic terms of eq (2.16) are absent in Bassali’s work.
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P = i 2 M z__41)2_:|
We wop—{———g D[b Ing—a?Int (l n)b n+ 2y (2.19)

where

+ a2 {An()+ (1 — KDB(t)} — k(a2 +b") In ¢ — L=V (@ "b")] (2.20)

Woe =

Py [a2 + kb
Kk+1

8mkD | k+1

This latter results from noting that eq (2.07) gives L;,(0) =0 and substituting this, and y; from eq
(2.18) in eq (2.03). The replacement of wo. in eq (2.19) by the right-hand member of eq (2.20)
gives

We =
8k

P"D [aZ{Am(z)+(l —K)Bu(t)} — k(2a2+b?) Int

S ’2(“:;‘6'2)— Kb iZigz);] 2.21)

On the support circle p=¢ (or r=a), so that eqs (2.04) and (2.06) yield
R(t, 6)=2a*(1—cos ¢y) (2%22)
%%Z 1—2#* cos s+ t* (2.23)

from which it follows that on the support circle egs (2.02) and (2.03) become

P rz m
wo(t, 0)=wot, OH- O‘ll)m {mK (1 +qt—2> Int—« ; (1—cos ¢s) In [262(1 —cos <ps)]}

and

P [ 92 4 _(__t_)< '“1) (k2—1) o .
wo(t, )= SDm [El cos @s) In (1 — 22 cos s+ t*) + 1 1+ + 0 Re {L,(te'%}

s=1

The value of 3 in the latter is

__ P [ q” _m(l—s)
Y3 87TKDm[ mK<1+t2)1nt P <

which is a slightly different form of eq (2.18). These expressions combine to yield

Poa? m
ﬁl} {2 (1 —cos ¢) In (1 —2#2 cos ¢9+14)+(

il ) + m{An(t)+ (1 — Kz)Bm(t)}]

ws(t, 0)= Re {Ln(tei®)}

—K E (1 —=cos @) In [26%(1 —cos ¢5)] +m[An(t)+(1 —KZ)B,,,(t)]}' (2.24)

s=1

It is of interest to note that ¢’ does not appear in eq (2.24), so that the deflection along the support
circle is independent of the radius of the central loaded area as long as b < a.
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3.1. The Concentrated Central Load

In this particularly important case the relevant form of wis w» of eq (2.02), and b=5b"=q¢=¢q'=0
must be inserted in this and in eq (2.03) to produce the expression for the deflection. The final

result is
1 - R,
— 0 2 S D oy
Wt gD (r el c) (3.01)
where
Py L o 1\ e m(l—pz)az}
Wo= g kD [El S G L O+ [T (3.02)
and
e OB — _<1—t2>] .
’y:iﬁ87TKD I:Alll(t)+(l K )Bm([) K ln t K+l (303)

For comparison with experiment it is necessary to have the deflection at the center of the plate.
In this instance p =0, so that eqs (2.04), (2.06), and (2.12) yield

Ri=a, %21, and Re {L(0)} =0.

Combining eqs (3.01), (3.02), and (3.03) for this case gives

2 2
— P Y . .
|:Am([)+(1 K?)B(t) + P 2k In t] (3.04)

The configuration for which the supports are at the edge of the centrally loaded plate is also
of interest. The expression for center deflection is obtained by setting t=1 in eq (3.04). The

result is

Wer :8[;:?0 [A,,,<1)+(1 - KZ)B,N(IHK—JIFJ (3.05)
where

mAn(1)=4(x— 1) 21 sin? %X In (2 sin SZ“) (3.06)

mB,,,u):;’:f"jll))—%é (=500 sin sa— (3.07)
The last term in eq (3.07) comes from the fact that go(l)=%2 [6].

The case represented by eq (3.05) was considered by Nadai. In order to compare results
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with Nadai’s work Bassali calculated wer for m= 3 (using v =Y4) and obtained

P 2
wer =0.754 E"}; (3.08)

which coincides with the value obtained by Nadai.?

4. Simplified Approximation of the Deflection Formulas

The deflection equations presented in the preceding section are of such complexity that it
is a lengthy process to write the expressions for deflection at any point on the plate. Therefore,
a more simple and direct way of presenting the theoretical equations is devised. To illustrate
this, attention is directed to the expressions for deflections at two points: the center of the plate
and the point on the support circle midway between adjacent supports.

Inspection of eqs (3.01), (3.02), and (3.03) shows that by the substitution of D= Eh3/12(1 — v?)
the deflection for concentrated central loading can be written in the form w = Pya?/Eh? times a
dimensionless function of p, 6, t, v, and m. In particular, for the center deflection eq (3.04)
gives

Poa?
we=Be T (4.01)
where the center deflection function is
=M[ 2 _r ]
Be G- An(t)+ (1 — k2)By(t)+ P 2k In ¢t (4.02)

Similarly, the deflection at the point on the support circle midway between consecutive
support points may be written

Poa?
wa=Ba s (4.03)
where the deflection function is
_3(1—y2)[ o, ( 1) =
,8,1——27”( m(t) + (1 — k2)Bp(t) +——=—= Re {Ln(teiZ )}

%g {1—005—(1—23)} {1—2t2 cos%(]—2s)+t4}

_% i {l—cos % (1—2s)} In 2¢2 {1 —cos %‘(1 —28)}]‘ (4.04)

s=1

This is obtained by inserting # =27/m in eq (2.24), i.e., the angular coordinate of the point on the
support circle midway between =0 and 6= 27/m.

51t should be noted that the erroneous term obtained by Bassali in y; will have no effect on eq (3.05) since both that term and the correct one given ineq(2.18)
vanish when t=1. Even though it is beyond the scope of interest of this paper, it is noted here that an error also exists in Bassali’s expression for y; for the case
q=t. Asin the case ¢ < t above, the erroneous term vanishes when t=1. Further, there is evidence that the error noted in Bassali’s expression for Ax(t) is merely
typographical, since he gives the correct result in eqs (3.06) and (3.07).
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THEORETICAL DEFLECTION FUNCTIONS
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FIGURE 1. Relationship of theoretical deflection func- m

tions to number of supports.
FIGURE 2. Approximation of B. when m—> .

In figure 1 B. and B4 given by eqs (4.02) and (4.04), respectively, are plotted against m, with ¢
as a parameter. The value of v was taken to be 0.3. Examination of this figure shows that the
deflection functions change rapidly with m for m < 6. However, very little change in the deflec-
tion functions for m > 6 was indicated by eqs (4.02) and (4.04). Thus the error involved in assum-
ing (in accord with the practice mentioned earlier) that multiple point supports constitute contin-
uous line support changes rapidly as m becomes smaller than 6, but changes very little for m > 6.
As illustrated in figure 1 B4 approaches zero as m increases. Further, it is expected that when m
becomes sufficiently large the support circle will tend to act as a continuous line support.

Unfortunately the deflection function, B., can not be evaluated directly from eq (4.02) by
inserting m = to represent the case of the simple continuous line support. However, the solu-
tion of eq (4.02) for this case can be approximated in the following manner. Theoretical values
of B. were computed from eq (4.02) for m=3, 4, 5, and 6 with ¢ and v as parameters. Figure 2

presents typical results in the form of a family of curves for v=0.3 with ¢ as a parameter. For
each t these curves are assumed to be of the form
Be=ao+ aim=3+ a;m= (4.05)

where ay, a1, and a; are constants. The method of least squares was used to evaluate the con-
stants. To illustrate, when t=1 and »=0.3 eq (4.05) becomes
Be=0.551+4.172m 3+ 17.493m 5. (4.06)

Equation (4.06) is a mathematical expression of the t=1 curve shown in figure 2. Thus at m =,
Bc=0.551, and from eq (4.01) the center deflection becomes

Poa2

we=0.551 oo

(4.07)
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Comparing these results with those of the well-known expression for deflection [4]

L _ B+vPa 08
max = 1671 + 0)D) 08)

and supplying D= Eh?/12(1 — v?) where v=0.3, the center deflection becomes

Poa2

Wmax = 0-551 Z (4.09)

The agreement of eqs (4.07) and (4.09) lends credence to the assumptions used to develop the
approximate solution illustrated by eq (4.05).

Since it is evident that the evaluation of the theoretical deflection functions presented earlier
requires considerable effort, it follows that the equations may have limited practical usefulness.
It was for this reason that a simplified method of approximating the more important deflection
function, B¢, (center deflection) was devised.

The development of the simplified approximate solution was accomplished through a trial
process of plotting and comparing the theoretical values of B. against functions of the variables
t, m, and v in eq (4.02) and applying the least squares method of fitting curves to the theoretical
results.  Various forms of equations were tried, including the exponential and power forms.
However, the most satisfactory was the consecutive applications of linear least squares in the
following sequence: for each value of m and v an equation was written in the form

Be=ao+ bot? (4.10)

where symbols a and b with subscripts do not refer to the previously defined radii, a, and b; then
equations were written for ay and b, for each value of m in the forms

ap=a;+bi(1—1?

(4.11)
b0:a2+ b_)(l - Vz)
finally, equations were written for the symbols in eq (4.11) in the forms
a;=az+ b;;m""
b] = Ui aF b4m*3
(4.12)
a»=as+ bsm‘:‘
b-_g =ag+ b(,'"l~ ch
Combining this group of linear equations and substituting them into eq (4.10) gave
Be=az+ bsm =3+ (as + bam=3) (1 — v*) + [as + bsm =3+ (as + bem=3) (1 —v?)] 3 (4.13)

or
Be=—0.0642—2.1900m =3+ (0.5687 + 3.2542m?) (1 —v?)
+[—0.3793 4+ 11.0513m 3+ (0.5223 — 7.8535m = 3) (1 — »?)|¢3. (4.14)
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Since the simplified method of computing B. given in eq (4.14) was developed through the
curve fitting process described above, this equation reflects the arbitrarily selected limitations of
the parameters. These limitations were as follows:

0.25<r=<0.33 0.50=1=1.00 m=3,4,5, 6, and .

The largest disparity between the results from eqs (4.14) and (4.02) ¢ computed within the above
stated limitations was 1.26 percent.

It is interesting to compare the expressions for center deflection when the load is applied
uniformly (n=2) to the plate through a centrally located circular area described by radius b and
for center deflection when b is permitted to shrink to zero. Making use of the definition of a de-
flection function, B, eq (2.21) can be written as

P()a‘z
AEM (4.15)
where
:M[ e _KG* K¢S, _Kq* ]
B.. p— An()F= @ — 12 Bn(t) - +1 2(K+1) 57 4 Kk Int 2t’ lnt
(4.16)

we and B for the concentrated load at the center of the plate are given by eqs (4.01) and (4.02),
respectively. By taking the difference between eqs (4.16) and (4.02) all of the terms in eq (4.16)
containing ¢ can be collected into a separate expression and written as

3=y g 2 g_§]
U y—— [ +1In P 4.17)

when b < a. This maneuver makes it possible to express B as
Be=Bct U (4.18)

but what is more important, it presents an opportunity to extend the utility of the simplified ap-
proximate solution for B, given in eq (4.14) to approximate the value of B, within the stated limi-
tations of eq (4.14).

5. Test Specimens

A total of eight thin plate specimens were made for use in the experimental portion of this
investigation. All of these flat circular specimens were made from bare sheets of 7075-T6 alumi-
num alloy. The modulus of elasticity for each sheet of aluminum was determined from tests of
four tensile coupons. In all cases the direction of roll of the sheets was noted and two tensile
specimens were oriented parallel and two perpendicular to the direction of roll. There were only
small random differences between the moduli of elasticity with respect to the direction of roll.
Therefore the average of the moduli parallel and perpendicular to the direction of roll of the sheet
was selected to represent the moduli of elasticity of the plate specimens fabricated from the
sheet. The physical properties of the plates are given in table 1. For computational purposes
the Poisson’s ratio for all of the specimens was assumed to be 0.3.

¢ Computations of deflection for m = were based on the approximation illustrated by eq (4.05).
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TABLE 1. Physical properties of plate specimens

Modulus
Specimen | Thickness Radius of
h C elasticity
in in psi
0.125 5.125 10.0 x 108
125 4.625 10.0 x 108
.125 4.375 10.0 x 108
.161 5.125 10.8 x 10¢
161 4.625 10.8 X 10¢
.161 4.375 10.8 X 108
.250 5.125 9.2 x 108
132 5.125 10.0 X 10

The direction of roll was also noted on the plate specimens, and made to correspond to the
0° to 180° orientation of the plates. The dimensions of the specimens are given in table 1. Fur-
ther examination of table 1 will reveal that Specimens A, B, and C were fabricated from the same
0.125 in. thick sheet, and Specimens D, E, and F were fabricated from a sheet 0.161 in. thick.
Specimens G and H were fabricated from separate sheets of 0.250 in. and 0.132 in. thicknesses,
respectively. '

6. Test Methods

The specimens were supported by Y4 in. diam threaded studs having a machine finished
spherical shape on the end that bore against the specimens. These supports were equipped with
lock nuts and inserted into tapped holes in the steel base block shown in figure 3. This base was
18%s in. square and 5%s in. thick with a 3%4 in. diam center hole. Positioning the support studs
in this base made it possible to orient the supports to close tolerances for the cases of 3, 4, and 5
equally spaced supports at the span radii listed in table 2.

Deflection measurements were made with dial gages having a least division of 0.0001 in.
These gages were mounted on the heavy steel base block described above using it as a datum plane.

Two different methods of applying load to the specimens were used. The diagrammetric
sketches shown in figure 3 depict these methods. The dead weight loading technique was found
to be the most convenient to use. It was necessary to drill and tap a %/4—20 hole in the center of
seven of the eight specimens to facilitate load application. A small eye bolt was screwed into
this hole and locked into position to receive the loading pan. It was felt that this small disconti-
nuity would not seriously effect the load-deflection characteristics of the specimens, and the

TESTING MACHINE FRAME

DIAL GAGES SPECIMEN
\
STEEL = _
BASE Ly = — =l speciven
BLOCK SUPPORT = CELL =
FOR BASE = =
BLOCK = ,, = —STEEL BASE
-HLO?’?*IJ“G = L =1 BLOCK
% 201b WEIGHTS U
DIAL GAGES
(a) (b)

FIGURE 3. Methods used to apply load to test specimens.
3a. Load applied by dead weight.
3b. Load applied by testing machine.
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advantage of conveniently applying known load increments would outweigh the disadvantage of
loading through the screw threads. To verify this assumption Specimen H was made as a com-
panion to Specimens A, D, and G except that it did not have the small tapped center hole and
was loaded in a testing machine frame through a 600-pound capacity elastic load measuring device
as shown in figure 3.

The test procedure in both methods of load application was the same. The load was applied
in 20-pound increments with the center deflection and deflection midway between supports at
r=a being recorded for each increment of load.

TABLE 2. Span radii of equally spaced point supports

Number of supports

Specimen

3 4

in in in
A&DETE 5.00 5.00
4.50
4.25 4.25
3.50 3.50
85
3.00 3.00
2.31

B&E ST 4.50 4.50
4.25 4.25
3.63 3.63
3.50 3.50
2.75 2.75
2.31

C&RETo 4.25
3.50

2.63
2.31

8 a0 5.00 5.00
4.50
4.25 4.25

3.50 3.50 3.
3.25
3.00

=
g8

8

|y ot it 5.00
4.25
3.50
3.00

7. Experimental Results

The experimental deflection data of the plate tests are given in table 3 as the deflection func-
tions, B, and B4, defined by eqs (4.02) and (4.04), respectively. These experimental deflection
functions were computed from eqs (4.01) and (4.03) using the deflection sensitivity, w/P,, as deter-
mined from the test data. Typical load-deflection data are shown in figure 4. The reciprocals
of the slopes of these curves are the deflection sensitivities in inches per pound. As mentioned
previously the plates were tested on 3, 4, and 5 equally spaced point supports with the range of
span radii as shown in table 2. Table 3 is arranged to show the support conditions as well as the
experimental results for all of the plate specimens.

Comparisons of the experimental and theoretical deflection functions are given in figure 5.
This figure presents three coordinate systems representing the cases m=3, 4, and 5. The deflec-
tion functions are shown as the ordinate and t, is the abscissa. The theoretical relationships
between B and ¢ from eqs (4.02) and (4.04) for a Poisson’s ratio of v=0.3 are represented by the
solid lines. As indicated in the figure there was good agreement between the experimental and
theoretical results.
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TABLE 3. Experimental deflection functions, BB,

.and B4

Speci-

men

Span
radii

Ratio of
span to speci-
men radii

t

Number of supports

Ba

Ba

Be

Ba

9730
9730
9189
9189
.7838
.7838
7568
7568
.5946
5946
5000

9714
9714

.8000
6857
6857
6000
6000
.5286
.5286
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TABLE 3. Experimental deflection functions, 3. and B4— Continued

Number of supports
Ratio of o -
Speci- | Span |span to speci-

men radii men radii 3 4 5

a t
Be Ba Be Ba Be Ba

in

G 5.00 9756 .6688 2992 .5548 1181 5376 0739
5.00 9756 L6677 .3078 .5559 1192 5255 .0648
4.50 .8780 6113 2391 |... 4967 0558
4.50 8780 5993 2328 |... 4953 0514
4.25 .8292 .5949 2245 .5021 0769 e
4.25 8292 .5830 2221 .4989 0793 |....
3.50 6829 .5497 1766 .5041 1170 4854 0573
3.50 .6829 .5509 1743 4936 1158 4690 0585
3.25 6341 .5521 1357 |
3.25 6341 .5426

H 5.00 9756 6675
5.00 9756 6644
4.25 .8292 .5800
4.25 8292 5764
3.50 .6829 5478
3.50 .6829 5343
3.00 5854 .5201
3.00 5854 .5199

DEFLECTION MIDWAY BETWEEN
SUPPORTS AT r = 3.50in

CENTER DEFLECTION —f

Loap, P, Ibf

SPECIMEN A
a=3.50in
t=0.6829 —

m= 4

o} 0.0l 0.02 0.03
DEFLECTION, W, in

FIGURE 4. Typical load wversus deflection test data.
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ol F . i
o . ] . J_.T,Q_l——.—/"'/
04 0.5 0.6 0.7 0.8 0.9 1.0

RATIO OF SPAN TO SPECIMEN RADII

FIGURE 5. Comparison of theoretical and experimental deflection functions.

Since the maximum deflection, represented by B, is usually of more interest, a direct com-
parison of the experimental and theoretical B8, values is made in figure 6 with an indication of the
order of magnitude of error involved.

All of the experimental data represented by circular symbols in figure 6 is presented in table 3,
and represents the full range of this experimental investigation for m=3. The solid circular
symbols labeled A and H were identified to show the effect of a tapped center hole in Specimen A
on the load-deflection characteristics as compared with Specimen H which did not have a center
hole and was approximately the same thickness. It can be seen from the data that the effect was
so small that the disparity of experimental points from all of the other specimens was greater
than that for companion Specimens A and H. The triangular symbols in figure 6 represent results
reported by Nadai [1] on three very thin glass plates.

242



S T T T T T
+10 PERCENT /
/o
0.75 |- / -
e )
40
/ 0
/
0.70 8 i
/ A
/ H
o 8
065 |- / % /A
«’ 4 et a
FIGURE 6. Experimental and theoretical center deflection / 8
functions. = Y a Y e ZwramEm
o) o
; 0.60 |- VY gA ° / =
3 o © oA s
5 / o) i,’: /
% % 8° oo "
W 0.55 /GE’@QHG/ _
/ H
oA 8
/ 8 g A J
H @
/ oen /
0.50 | o ?: / _
o /
Ae /
0.46 L 7 1 | 1 1
046 0.50 0.55 0.60 0.65 0.70 0.7%

THEORETICAL B,

8. Discussion

Bassali obtained the solution for the problem of flexure of a thin circular elastic plate supported
at several arbitrarily located points (the boundary of the plate was free), and transversely loaded
over an eccentrically located circular area (the load was symmetrically distributed with respect
to the center of the loaded area). The general solution provided by Bassali was specialized for
this investigation of the problem of the concentrically loaded plate supported at points equally
spaced on a circle concentric with the central load, and located in the unloaded area, i.e., ¢ < t.

As noted previously, two expressions for deflection are required; w; being the deflection of the
plate within the loaded region (r=<b), and w, the deflection in the unloaded region (r = b). The
deflection of the plate obtained from Bassali’'s work is given in eqs (2.01) and (2.02), where w, is
obtained from eq (2.03) by inserting y; =7, =0 and the value of 3 given by eq (2.18). It was noted
that certain errors were apparent in Bassali’s work (see footnotes 4 and 5), but these were of a
minor nature and stand corrected in eqs (2.16) and (2.18) of this paper for the case g < t.

Bassali’s work was specialized further to examine the case of the concentrated central load
for the purpose of comparing his theory with the experimental results from 138 tests presented
herein. It was found convenient to compare the measured deflections at the center and at a point
midway between supports on the support circle with the theory in terms of the dimensionless
deflection functions, B. and Bq. given in eqs (4.02) and (4.04), respectively. This comparison was
made in figures 5 and 6, and good agreement between theoretical and experimental results was
apparent.

It is of some importance to note from figure 5 that both the theoretical and experimental
results indicate that the deflection functions decrease as the annular portion of the plate over-
hanging the support circle increases. It is of further interest to note from figures 1 and 2 that
this constraining effect decreases as the number of supports, m, increases, but does not vanish
for B. when m becomes sufficiently large to produce a support condition equivalent to that of a
simple continuous line support. From this it would appear desirable to consider the effect of the
overhanging portion of the plate in the design and analysis of practical structures of this type for
both conditions of support discussed above.
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Bassali’s expressions for deflection are of such complexity that they are probably unsuitable
for design purposes, and there is no direct solution available from his work for the case of simple
continuous line support. However, the family of curves shown in figure 2 along with the apparent
y—intercepts suggested the simple method of approximating 8. for the simple support condition
as illustrated by eq (4.05). The result of this approximation given in eq (4.07), where t =1, agreed
favorably with that from the classical elementary theory for the case of simple support at the
boundary of the plate. Thus, the assumptions used to develop the approximate solution given in
eqs (4.05) and (4.06) were substantiated.

Further interest in simplified design equations produced the expression for approximating
the theoretical center deflection function, B.. The development of this expression, which approxi-
mates the results of the theoretical expression in eq (4.02), is described by eqs (4.10—4.13), and
presented in eq (4.14). As stated previously the largest difference between the results of the ap-
proximate solution and the theoretical solution computed within the limitations inherent in eq
(4.14) was 1.26 percent. Since such good agreement exists between the approximate and theoreti-
cal results, eq (4.14) should prove useful for design purposes. It should be noted here that setting
‘m=3=0 in eq (4.14) produces the approximate expression for 8. when there is a condition of
simple continuous line support at ¢&. This case was discussed earlier and illustrated in eq (4.05).

A comparison of expressions for the theoretical center deflection functions, 8. and 8'., given
in eqs (4.02) and (4.16), respectively, indicated that the approximate solution for B. given in eq
(4.14) could be modified to approximate B'; of eq (4.16) as indicated in eqs (4.17) and (4.18). Since
Y is obtained‘directly from the theory, no further disparity is expected between the theoretical and
the approximate ', values.

9. Conclusions

1. In view of the good agreement between the theoretical and experimental results from the
138 tests reported herein, Bassali’s theory adequately predicts the deflection of the plates over the
range of geometries investigated.

2. Both the theoretical and experimental results show that the deflection of the plate within
the support circle is constrained by the annular portion of the plate which overhangs the support
circle. This constraint is found to decrease as the overhang is decreased, and to increase as the
number of supports are decreased. Since this constraining effect is not negligible for a plate
overhanging a support circle containing many supports, it is an important consideration in the
design and analysis of thin plate structures, and especially so when the number of supports are
fewer than six.

3. The simplified equations for deflection functions presented herein may be used for design
purposes within the stated limitations of the equations.
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