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Bassali 's general theory for the fl exure of the thin c irc ular elast ic pl a te supported at a n a rbitrary 
numbe r of points and subjec ted to transverse load ove r an ecce ntri c circle is specialized to the case 
of a centrally loaded plate s upporte d at points equally s paced on a c ircle concentric with th e ce nte r. 
Simplified me thods for approximating the results predicted by the more complicated theore tical ex· 
pressions for defl ec tion are presented along with the expe rim ental result s from 138 tes ts . Both the 
ex perimental results a nd the simplified equations a re co mpa red with the th eory and agreement is 
fo und to be good. 
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1. Introduction 

The determination of the defl ec tion of a centrally loaded circular plate supported at points 
equally spaced on a circle concentric with the center has long been an important structural analysis 
proble m. In the past the analysis of thi s problem was us ually limited by the assumption that the 
point supports were numerous enough to cons titute a simple co ntinuous line support. Nadai [1] J 

presented a theory for the deformation of a circular plate supported at several points with central 
point load or uniform load whic h was an improveme nt in that it recognized the errors involved in 
the aforeme ntioned assumption. Unfortunately, Nadai's point supports were located along the 
circumference of the plate. To some exte nt thi s limited the utility of the theory, as this method 
of support is unusually diffic ult to realize in practical s tructures . 

More recently, Bassali [2] has given the solution of the problem of fl exure of a thin circ ular 
elastic plate supported at an arbitrary number of points which may be located anywhere within 
the pla te periphery, and loaded over a circular area lying anywhere within the boundary of the 
plate. Implicit in the work of Bassali is the solution of the problem of the centrally loaded plate 
supported at points equally spaced on a circle concentric with a central load. It may be noted . 
that the theory accounts for the cons training effec t of an annular region of the plate which overhangs 
the support circle and is otherwise free from restraint. 

This paper deals with the s pecializ~ti~n of that part of the Bassali theory necessary to s·olve 
the particular problem described above, and presents the rather tedious theoretical expressions 
for the deflec tion at the center of the plate and at a point midway between supports located along 
the support circle. Since these expressions require considerable e ffort to evaluate, simplified 
methods of approximating the center de flection may be desirable for design purposes. Therefore 
simplified expressions for center de fl ection, based on the results of the exact theory, are given. 
Experime ntal results are then compared with those obtained analyt ically, and good agreement 
betwe e n the two is found for the range of geometries tested. 

*Present address: National Science Foundation, Room 305, Washington. D.C. 
1 Figures in brac kets indicate the litera ture references "at the end of this paper. 
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1 .1. List of Symbols 

x, y rectangular Cartesian coordinates 

r = V x2 + y2, radi al polar coordinate 
o arctan (y/x), polar coordinate angle 
z = re iO = x + iy, complex coordinate of point (r, 0) or (x, y) 
z = x - iy, conjugate complex coordinate 
c radius of the plate 
b radius of transversely loaded area of plate 
a span radius, of circle on which support points lie 
h thickness of the plate 
m number of support points (m ~ 3) 
0' = 27T/m, polar angle between support points 
Os = sO', polar angle subtended by the sth support point (s = 1,2, .. . , m) 
C/>S = 0- 8s 

Zs 
I 

Zs 

Zs 
Z; 
Pl 

b' 
p 

q 
q' 

I rs 
R.(r,8) 
R;(r, 8) 

~ 
~s 
~s 

~k 
V 

K 

E 
D 
W1 

Ws 
Wl(Z) 
W2(Z) 

WOe 

C 

= aeiOs 

inverse of Zs with respect to C : zszs = c2 

=Z-Zs 
( I 

=Zs-Z 

= porn-z' transverse load intensity over 0 ,;;:; r';;:; b 
(n = 2, produces uniformly distributed load) 

= 0, transverse load intensity over b,;;:; r';;:; c 
= 27Tpobn/n, total load on the plate 
= Po/m, reaction at z" 

=bVn/(n+2) 
=r/c 
=a/c 
=b/c 
=b'/c 
=c2/a 
= IZsl, distance from z to Zs 

= IZ; I, distance from z to z; 
=z/c=peiO 

= zs/c = tei8s 

= te-iOs, complex conjugate of ~s 

= Zk/C = teika 

Poisson's ratio 
= (3 + v)/(v -1) 
modulus of elasticity 
= Eh3 /12(1- v2), the flexural rigidity 
deflection due to load, eq (1.01) 
deflection due to point load Ps 

deflection of the plate within Izl ,;;:; b 
deflection of the plate within b ,;;:; Iz I ,;;:; c 
= Wl(O), deflection at the center of the plate 
deflection at any point on support circle (r = a) 
deflection at (r= a) and cps = (1 ,-2s)7T/ m" s = 1,2, ... ,m where b ,;;:; a 
=wo(O) 
the edge of the plate: the circle r = c 
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Co the boundary of the loaded area of the plate: the circle r = b 
f3c dimensio nless deflection function defin ed by eq (4.02) 
f3~. dim e nsionless deflection function defin ed by eqs (4.16) and (4.18) 
f3« dim e nsionless deflection function defin ed by eq (4.04) 
if; dim e nsionless parameter defined by eq (4 .17). 

2 . Survey of Bassali 's Procedure 

No exte nsive recapitulation of Bassali's paper [2] need be given here. Indeed, the theory is 
of such co mplexi ty that the mere presentation of the expressions for deflection is itself a lengthy 
process . It s uffi ces to s umm arize the meth od used by BassaJi and to note that hi s res ult s we re 
obtained through th e use of the welJ·known theory of Mu skhe li s hvili r3l. 

The cente r of a circul ar plate of radius c is taken to be at the origin of a Cartesian coordinate 
system, and the central plan e of the plate to li e in the xy plane. The plate is assume d to carry a 
transverse load over the region 2 0 ,;;; r ';;; b.3 The inte nsity of thi s load is 

P =p I = por" - 2 (n ~ 2) (1.01) 

(n = 2 produces uniform load). The transverse load intensity is P = P2 = 0 over the re mainder of 
the plate. The total load on the plate is Po= 27Tpob"/n. The plate is take n to be supported a t 
points equ a lly s paced al ong the c irc le r = a (b ,;;; a ';;; c) . viz , at Zs= ae isa (s = 1.2 . .... Ill). From 

co nditions or s tati c equilibrium and symme try th e reac tive force is the same at each support point 
zs, and is P s = PO/ Ill. 

To obtain the defl ection it is necessary to find the parti cular solutions for the plate equation, 
for eq (1.01), and for the point loads PO/Ill. The former is easily seen by inspection to be 

(1.02) 

It is welJ known from th e theory of plates [4] that for the isolated point load P8 at Zs 

(1.03) 

Bassali co nsiders the plate to be comprised of two separate plates . One of these is de fin ed 
by the loaded c ircular area (0 ,;;; r ';;; b) , and the other is the annular plate (b ,;;; r ';;; c) with the point 
loads Ps• The solution of th e equation for the plate defl ec tion with the load PI is the n the sum of 
eq (1.02) and the solution of the bih armonic equation; th e solution for th e annular plate is eq (1.03), 
summed over all of the point s upports , plus the solution of the biharmonic equation. Boundary 
conditions for the free edge r =c , together with kine matic and dynami c conditions of continuity 
along r = b [5] th e n make it possible to obtain the de fl ec tion, w, for any point on the plate. 

3. Deflection of the Circular Plate 

The defl ec tion of the plate within the loaded region, I z I ,;;; b, obtained from Bassali' s work is 

Po [ 1 11/ R (1) 4(rn + 2 -bn + 2)] WI =Wo+-- (,.2 + b12) In q-- L R ~ In _ 8+ 1- - (r2 - b2)+ . 
871D Ill s=1 C n n(n+2)2b" 

2Ba ssa lj's so lution is more genera l. in that , the loaded area and s upports ma y be arbitraril y located anywhere within the plat e periphe ry. 

3For the reader 's convenience a lis t of symbols is give n in sec tion ] .1. 
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J 
I 

while in the region b ~Izl~ c it is 

Po [ 1 In R8] W2=WO+-- (r2+b'2) In p-- 2: R21n-
81TD m 8 = 1 8 C 

where 

and 

R'Z 
-f:; = 1 - 2pt cos CPs + p 2t2 • 
rs 

(2.02) 

(2.03) 

(2.04) 

(2.05) 

(2.06) 

The quantity L",(Q which appears in eq (2.03) plays an important role in the deflection, and is 
defined by 

and where cp(~s~) is defined as the dilogarithm [6, 7, 8] 

- (fs' dr 
cp(~s~)=-Jo In (1-7)7' l~s~ l< 1. (2.08) 

This function possesses the absolutely and uniformly convergent expansion [8] 

(2.09) 

Since ~s~ = ptei<l's, eq (2.09) can be written as 

(2.10) 

and if ~=~k, k=l, 2, ... , m, eq (2.10) becomes 

(2.11) 

From eqs (2.07) and (2.10) the real part of LIII(Q can be written 

00 (pt)" In 1 In 

Re {Lm(m =- 2: 7 2: cos ncps +"2 2: (1- pt cos cps) In (1- 2pt cos cps + p2t2 ) 

n= l s= 1 s= 1 

m pt sin cp 
- pt 2: sin cps arctan 1 s . 

s=1 - pt cos cps 
(2.12) 
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When ~ = ~k = teika, eq (2.12) becomes 

11 m 
Re {L"'(~k)} =- - <p(t2m ) + - L (1- t2 cos so') In (1- 2t2 cos So' + t4) 

m 2 s=1 

In t 2 sin So' 
- t2 " sin So' arctan 1 2 • L.. -t cos so' 

s=1 

(2.13) 

For the purposes of this investigation it suffices to consider the case in which the support 
points lie outside the loaded area, i.e., q ~ t. Since the central plane of the undeformed plate 
is taken to lie in the xy plane, Yl = Y2 = 0 in eq (2.03). Further, if the deflection is taken to vanish 
at a support point Zk, then 

(2.14) 

This, along with eqs (2.02) and (2.03) serve to determine Y:J: 

(2.15) 

It is a notational convenience to define Am(t) and Bm(t) as 

?A () - 1 ~ R2( 0) [ 1 Rs ( 0) 1 R; (a, Ok)] a- m t = - L.. s a, k K n - a, k - n --,- ( 0) 
m s= J C rs a, k 

and 

Using eqs (2.04), (2.05), (2.06), and (2.13) the definitions of A ",(t) and B",(t) may be written as follows: 

m 
mAm(t) = L (1- cos sa)[K In 2t2(1- cos so') -In (1- 2t2 cos So' + t4)] (2.16) 

8 = 1 

1 In 

mt2B",(t) = 2. L (1- t2 cos so') In (1- 2t2 cos So' + t4) 

s= l 

1 '" . t 2 sin So' 
- - <p(t2/n) - t 2 L sm So' arctan . 

m 8=1 1 - t 2 cos So' 
(2.17) 

U sing these definitions, eq (2.15) can be rewritten as 4 

- Po [2{A()+(1 2)B()} (2+b'2)1 (1-t2) (a2+Kb I2
)] Y3 - 87TKD a III t - K m t - K ant - K + 1 . (2.18) 

The deflection of the plate is given by eqs (2.01) and (2.02), where Wo of eq (2.03) is obtained by 
inserting Yl = Y2 = 0 and the value of Y3 given by eq (2.18). 

The deflections at the center of the plate and along the support circle are of particular interest. 
At the center r = p = O, so that R 8 =a, Rs/c=t, and R;/r;=1, hence eq (2.01) yields 

4 Bassali's equation for Y3 is in error in that he has + K(a2 - b' l) In t where eq (2.18) has - K(a2 + b'l) In t. His expression for Am(t) is also in error, since the first 

t 2 as well as the s in both logarithmic terms of eq (2.16) are absent in Bassali's work. 
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- ~[bI21 - 21 -(1-!)b2 - 4b2 J wc-woc+ 87TD n q ant n n(n + 2)2 (2.19) 

where 

_ Po [a2 + Kb ' 2 2{A () (_ 2)B ()} _ (2 b'2) 1 _ (1- t2) (a2 + Kb I2)] (2.20) 
WOe - 87TKD K + 1 + a III t + 1 K m t K a + n t K + 1 

This latter res ults from noting that eq (2.07) gives LIn(O) = 0 and substituting this, and Y:l from eq 
(2.18) in eq (2.03) . The replacement of WOe in eq (2.19) by the right-hand member of eq (2.20) 

gives 

b12 I t2(a2 + Kb '2
) b'2 (n + 3)J 

+K n q+ K+l -K (n+2)' (2.21) 

On the support circle p=t (or r=a), so that eqs (2.04) and (2.06) yield 

(2.22) 

(2.23) 

from which it follows that on the support circle eqs (2.02) and (2.03) become 

P a 2 { (qI2) m } W2(t, 8) = wo(t, 8) + 8 0 D mK 1 + 2 In t - K L (1- cos CPs) In [2t2(1- cos CPs)] 
7TK m t s~ 1 

and 

Wo(t, 8) 
Poa2 [111 m(l- t2) ( Kq12) (K2 -1) . . L (1- cos CPs) In (1- 2t2 cos CPs + t 4)+ + 1 1 +-2 +--2- Re {L m(t e' I1J }· 

87TKDm s~l K t t 

The value of Ya in the latter is 

which is a slightly different form of eq (2.18). These expressions combine to yield 

Poa2 {111 (K2-1). 
W2(t, 8) = 8 D L (1- cos CPs) In (1- 2t2 cos cps + t4 ) + --- Re {L",(te'°)} 

7TmK s ~ 1 t2 

'" } -K ~ (I-cos CPs) In [2t2(I- cos CPs)] +m[A",(t)+(I-K2)Bm(t)] . (2.24) 

It is of interest to note that q' does not appear in eq (2.24), so that the deflection along the support 
circle is independ ent of the radius of the central loaded area as long as b ~ a. 
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3.1 . The Concentrated Central Load 

In this partic ularly important case the relevant form of wis w~ of eq (2 .02), and b= b' = q= q'= O 
must be inserted in this and in eq (2.03) to produce the expression for the defl ec tion. The fin al 

result is 

Po ( 1 mRs) w=wo+-- r2 In p-- L R~ In-
87TD m s~ l S C 

(3.01) 

where 

(3.02) 

and 

(3.03) 

For comparison with experiment it is necessary to have the deflection at the center of the plate. 
In thi s instance p = 0, so that eqs (2.04), (2.06), and (2.12) yield 

R' 
Rs= a, --f-= I , and Re {L(O)} = 0. 

rs 

Co mbining eqs (3.01), (3.02), a nd (3.03) for this case gives 

wc = w(0) = 8~O:~ [Am(t)+(I - K2)Bm(t)+ K:21-2K In t} (3.04) 

The configuration for which the supports are at the edge of the centrally loaded plate is also 
of interes t. The expression for cente r defl ection is obtai ned by se tting t = 1 in eq (3.04). The 
result is 

(3.05) 

where 

III sa ( sa) mAn/I ) = 4(K - 1) ~ s in 2 2 1n 2 sin 2 (3.06) 

(3.07) 

7T2 
The last term in eq (3.07) comes from the fact that cp(l) ="6 [6]. 

The case represented by eq (3.05) was considered by Nadai. In order to compare results 
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with Nadai's work Bassali calculated Wei for m = 3 (using IJ = 1/4) and obtained 

Poa2 

Wei = 0.754 Eh3 

which coincides with the value obtained by Nadai. 5 

4. Simplified Approximation of the Deflection Formulas 

(3.08) 

The deflection equations presented in the preceding section are of such complexity that it 
is a lengthy process to write the expressions for deflection at any point on the plate. Therefore, 
a more simple and direct way of presenting the theoretical equations is devised. To illustrate 
this, attention is directed to the expressions for deflections at two points: the center of the plate 
and the point on the support circle midway between adjacent supports. 

Inspection of eqs (3.01), (3.02), and (3.03) shows that by the substitution of D = Eh3/12(1- 1J2) 
the deflection for concentrated central loading can be written in the form W = Poa2/Eh3 times a 
dimensionless function of p , (), t, IJ, and m. In particular, for the center deflection eq (3.04) 
gives 

(4.01) 

where the center deflection function is 

(4.02) 

Similarly, the deflection at the point on the support circle midway between consecutive 
support points may be written 

(4.03) 

where the deflection function is 

1 III { 7T 1 { 7T } +-~ l-cos-(1-2s)rln 1-2t2 cos-(1-2s)+t4 

m 8= 1 m J m 

K In { 7T } { 7T }] - m S~I 1- cos m (1- 2s) In 2t2 1- cos m (1- 2s) . (4.04) 

This is obtained by inserting () = 27T/m in eq (2.24), i.e., the angular coordinate of the point on the 
support circle midway between () = 0 and () = 27T/m. 

5 1t shou ld be noted thai the erroneous term obtained by Bassa li in Y;I will have no effect on eq (3.05) since both that term and the correct one given in eq (2. 18) 
van ish when l = I. Even though it is beyond the scope of interes t of this pape r, it is noted here that an error also exists in Bassali' s expression for 'Y3 for the case 
q ~ t. As in the case q ~ t above, the erroneous term vanishes when l = 1. Further, there is evidence that the error noted in Bassali ' s express ion for A",(t) is merely 

typographical. since he gives the correc t result in eqs (3.06) and (3.07). 
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FIGU RE 1. Relationship of theoretical deflection func­
t ions to number of supports. 

I'm' 
FIGU RE 2. Approximation of f3c when m ~ 00 . 

In fi gure 1 /3c and /3 d given by eqs (4.02) and (4.04) , respec tively, are plotted against m, with t 
as a parame ter. The value of v was take n to be 0. 3. Examination of thi s fi gure shows th at the 
de flection func tions c hange rapidly with m for m < 6. However , very little c ha nge in the defl ec­
tion func tions for m > 6 was indicated by eqs (4.02) and (4.04). Thus the error involved in assum­
ing (in accord with the practice mentioned earli er) that multiple point supports cons titute co ntin­
uous line support c hanges rapidly as m beco mes s maller than 6, but c hanges very little for m > 6. 
As illustrated in fi gure 1 /3a approaches zero as m increases. Further , it is expected that when m 
becomes sufficie ntly large the support circle will tend to ac t as a continuous line support. 

U nfortunately the defl ec tion function, /3c, can not be evaluated direc tly from eq (4.02) by 
inserting m = 00 to represent the case of the simple continuous line support. However, the solu­
tion of eq (4 .02) for thi s case can be approximated in the following manner. Theoreti cal values 
of /3c were computed from eq (4.02) for m = 3, 4, 5, and 6 with t and v as parame ters. Figure 2 
presents typical results in the form of a family of c urves for v = 0.3 with t as a parame ter. F or 
each t these c urves are assumed to be of the form 

(4.05) 

where ao, aI , and a2 are constants. The me thod of least squares was used to evaluate the con­
stants . To illustrate, when t = 1 and v = 0.3 eq (4.05) becomes 

/3c = 0.551 + 4. 172m- 3 + 17.493m- s. (4.06) 

Equation (4.06) is a mathe matical expression of the t = 1 curve shown in figure 2. Thus at m = 00, 

/3c= 0.551 , and from eq (4.01) the center deflection becomes 

Poa2 
We = 0.551 Eh3 ' (4.07) 
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Comparing these results with those of the well-known expression for deflection [4] 

(3+ v)Pa2 

Wmax = 167T(1 + v)D 

and supplying D = Eh3 j12(1 - v2) where v = 0.3, the center deflec tion becomes 

Poa2 

Wmax = 0.551 Eh3 • 

The agreement of eqs (4.07) and (4.09) lends credence to the assumptions used to develop the 
approximate solution illustrated by eq (4.05). 

Since it is evident that the evaluation of the theoretical deflection functions presented earlier 
requires considerable effort, it follows that the equations may have limited practical usefulness . 
. It was for this reason that a simplified method of approximating the more important deflection 
function, {3c, (center deflection) was devised. 

The development of the simplified approximate solution was accomplished through a trial 
process of plotting and comparing the theoretical values of {3c against functions of the variables 
t, m, and v in eq (4.02) and applying the least squares method of fitting curves to the theoretical 
results. Various forms of equations were tried, including the exponential and power forms. 
However, the' most satisfactory was the consecutive applications of linear least squares in the 
following sequence: for each value of m and van equation was written in the form 

(4.10) 

where symbols a and b with subscripts do not refer to the previously defined radii , a, and b; then 
equations were written for ao and bo for each value of m in the forms 

(4.11) 

finally, equations were written for the symbols in eq (4.11) in the forms 

(4.12) 

Combining this group of linear equations and substituting them into eq (4.10) gave 

(4. 13) 

or 

{3c =- 0.0642 - 2.1900m- 3 + (0.5687 + 3.2542m- 3) (1- v2) 

+ [- 0.3793 + 11.0513m - 3 + (0.5223 - 7.8535m - 3)(1 - V 2)]t:l . (4.14) 
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Sin ce th e s implified method of computing Pc given in eq (4.14) was developed through the 
curve fittin g process described above, thi s eq uation re flects the arbitrarily selected limit at ions of 
the parameters . These limitations were as follows : 

0.25 ~ lJ ~ 0.33 0.50 ~ t ~ 1.00 m = 3, 4, 5, 6, and 00. 

The largest disparity between the results from eqs (4.14) and (4.02) 6 computed within the above 
stated limitations was 1.26 percent. 

It is interesting to compare the expressions for ce nter deflection when the load is applied 
uniformly (n = 2) to the plate through a centrally located circ ular area described by radius band 
for center deflection when bis permitted to s hrink to zero. Making use of the definition of a de­
flection function, p, eq (2.21) can be written as 

(4.15) 

where 

---2K In t- - ln t Kq2 5 Kq2 J 
2t2 4 2t2 

(4.16) 

W e and Pc for the co ncentrated load at the center of the plate are given by eqs (4.01) and (4.02), 
respectively. By taking the difference between eqs (4.16) and (4.02) all of the terms in eq (4.16) 
co ntaining q can be collec ted into a separate express ion and written as 

3(1- lJ2) q2 [ t2 q 5J 1jJ = - --+In ---
47T t2 K + 1 t 4 

(4.17) 

when b ~ a. This maneuver makes it possib le to ex press p;. as 

(4. 18) 

but what is more important, it presents an opportunity to ex te nd the utility of th e s implified ap­
proximate solution for Pc given in eq (4.14) to approximate the value of p;. within the stated limi­

tations of eq (4.14). 

5. Test Specimens 

A total of eight thin plate specimens were made for use in the experimental portion of thi s 
investigation . All of these flat circ ular speci mens were made from bare sheets of 7075- T6 alumi­
num alloy. The modulus of elas ticity for each s hee t of aluminum was determined from tests of 
four tensile coupons . In all cases the direc tion of roll of the sheets was noted and two tensile 
specimens were orie nted parallel and two perpendicul ar to the direc tion of roll. There were only 
small random differences be tween the moduli of elas ticity with respec t to the direction of roll. 
Therefore the ave rage of the moduli parallel and perpe ndicular to the direction of roll of the sheet 
was se lec;ted to re prese nt the moduli of e las ti c it y of th e plate specimens fabricated from the 
sheet. The physical properti es of th e plates are given in table 1. For computational purposes 
the Poisson's ratio for all of the s pecime ns was assumed to be 0.3. 

6 Computations of deflection for m = frJ we re based on the approximation iUustrated by eq (4.05 ). 
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TABLE 1. Physical properties of plate specimens 

Modulus 
Specimen Thickness Radius of 

h c elasticity 
E 

in in psi 
A .. 0.125 5.125 10.0 X 10' 
B .. .125 4.625 10.0 X 10' 
C. .125 4.375 10.0 X 10' 
D ........ ... .161 5.125 10.8 X 10' 
E ........... .161 4.625 10.8 X 10' 
F ..... ... ... .161 4.375 10.8 X 10' 
G .. .250 5.125 9.2 X 10' 
H .. .132 5.125 10.0 X 10' 

The direction of roll was also noted on the plate specimens, and made to correspond to the 
00 to 1800 orientation of the plates. The dimensions of the specimens are given in table 1. Fur­
ther examination of table 1 will reveal that Specimens A, B, and C were fabricated from the same 
0.125 in. thick sheet, and Specimens D, E, and F were fabricated from a sheet 0.161 in. thick. 
Specimens G and H were fabricated from separate sheets of 0.250 in. and 0.132 in. thicknesses, 
respectively. 

6. Test Methods 

The specimens were supported by 1f4 in. diam threaded studs having a machine finished 
spherical shape on the end that bore against the specimens. These supports were equipped with 
lock nuts and inserted into tapped holes in the steel base block shown in figure 3. This base was 
185f8 in. square and 53/8 in. thick with a 33/4 in. diam center hole. Positioning the support studs 
in this base made it possible to orient the supports to close tolerances for the cases of 3, 4, and 5 
equally spaced supports at the span radii listed in table 2. 

Deflection measurements were made with dial gages having a least division of 0.0001 in. 
These gages were mounted on the heavy steel base block described above using it as a datum plane. 

Two different methods of applying load to the specimens were used. The diagrammetric 
sketches shown in figure 3 depict these methods. The dead weight loading technique was found 
to be the most convenient to use. It was necessary to drill and tap a 1/ 4-20 hole in the center of 
seven of the eight specimens to facilitate load application. A small eye bolt was screwed into 
this hole and locked into position to receive the loading pan. It was felt that this small disconti­
nuity would not seriously effect the load-deflection characteristics of the specimens, and the 
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t==:J--- 20 Ib WEIGHTS 
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fiGURE 3. Methods used to apply load to test specimens. 
38. Load applied by dead weight. 

3b. Load applied by testing machine. 
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advantage of convenien tly applying known load increme nts would outweigh the disadvantage of 
loading through the screw threads. To verify thi s assumption Specimen H was made as a com­
panion to Specime ns A, D, and G except that it did not have the small tapped center hole and 
was loaded in a tes ting machine frame through a 600-pound capacity elastic load measuring device 
as shown in figure 3. 

The tes t procedure in both methods of load application was the same. The load was applied 
in 20-pound increments with the cente r de Aection and defl ec tion midway between s upports a t 
r= a being recorded for each increment of load. 

TABLE 2. Span radii of equally spaced point supports 

Number of supports 
S pecimen 

3 4 5 

in in in 
A&O ..... 5.00 5,00 

4.50 
4.25 4.25 
3.50 3.50 
3.25 
3.00 3.00 
2.31 

B&E .. . .. 4.50 4.50 
4.25 4.25 
3.63 3.63 
3.50 3.50 
2.75 2.75 
2.3 1 

C&F .... 4.25 
3.50 
3.00 
2.63 
2.3 1 

G ...........•. 5.00 5.00 5.00 
4.50 4.50 
4.25 4.25 
3.50 3.50 3.50 
3.25 
3.00 

H ........... .. 5.00 
4.25 
3.50 
3.00 

7. Experimental Results 

The experimental de Aection data of the plate tes ts are given in table 3 as the deAection fun c­
tions, /3c and /3d, defined by eqs (4.02) and (4.04), respectively. These experime ntal de flection 
func tions were co mputed from eqs (4.01) and (4.03) using the deAection sensitivity, w/Po, as de ter· 
mined from the test data. Typical load-defl ection data are shown in fi gure 4. The reciprocals 
of the slopes of these c urves are the deflec tion sensitivities in inches per pound . As me ntioned 
previously the plates were tested on 3, 4, and 5 equally spaced point supports with the range of 
span radii as shown in table 2. Table 3 is arranged to s how the support conditions as well as the 
experimental results for all of the plate specime ns . 

Comparisons of the experime ntal and theoretical deflection functions are given in figure 5. 
This figure presents three coordinate systems representing the cases m = 3,4, and 5. The deflec­
tion function s are s hown as the ordinate and t, is the abscissa. The theoretical relationships 
between /3 and t from eqs (4.02) and (4.04) for a Poisson's ratio of v = 0.3 are represented by the 
solid lines. As indicated in the figure there was good agreement between the experimental and 
theoretical results. 
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TABLE 3. Experimental deflection jilllctions, f3 c Clnd i3<1 -Conlinu eci 

Num ber of s upport s 
Ratio of 

Speci. Span span to speci-
men radii men radii 3 4 5 

a , 
/3, /3, /3, /3, p, /3, 

---
in 

G 5.00 .9756 .6688 .2992 .5548 .1181 .5376 .0739 
5.00 .9756 .6677 .3078 .5559 .1192 .5255 .0648 
4.50 .8780 .6113 .2391 .4967 .0558 
4.50 .8780 .5993 .2328 .4953 .0514 
4.25 .8292 .5949 .2245 .5021 .0769 
4.25 .8292 .5830 .2221 .4989 .0793 
3.50 .6829 .5497 .1766 .504 1 . 1170 .4854 .0573 
3.50 .6829 .5509 .1743 .4936 .11 58 .4690 .0585 
3.25 .6341 .5521 .1357 
3.25 .6341 .5426 .1479 

H 5.00 .9756 .6675 .3066 
5.00 .9756 . 6644 .3066 . 
4.25 .8292 .5800 .2069 
4.25 .8292 . 5764 .2020 . 
3.50 .6829 .5478 .1429 
3.50 .6829 .5343 .1435 
3.00 .5854 .5201 .1162 
3.00 .5854 .5 199 .1209 
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FIGURE 4. Typical load versus deflection test data . 
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FIGURE 5. Comparison of theoretical and experimental defiectionfunctions. 

Since the maximum deflection, represented by /3c, is usually of more interest, a direct com­
parison of the experimental and theoretical /3c values is made in figure 6 with an indication of the 
order of magnitude of error involved. 

All of the experimental data represented by circular symbols in figure 6 is presented in table 3, 
and re presents the full range of this experimental investigation for m = 3. The solid circular 
symbols labeled A and H were identified to show the effect of a tapped center hole in Specimen A 
on the load-de flection characteristics as compared with Specimen H which did not have a center 
hole and was approximately the same thickness. It can be seen from the data that the effect was 
so small that the disparity of experimental points from all of the other specimens was greater 
than that for companion Specimens A and H. The triangular symbols in figure 6 represent results 
reported by Nadai [1] on three very thin glass plates. 
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FIGURE 6, Experimental and theoretical center deflection 
functions. 
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8. Discussion 

Bassali obtained the solution for the problem of fl exure of a thin circ ular elastic plate supported 
at se veral arbitrarily located points (the boundary of the plate was free), and transversely loaded 
over an ecce ntri cally located c irc ular area (the load was symmetrically di stributed with respect 
to the center of the loaded area). The general solution provided by Bassali was specialized for 
this inves tigation of the problem of the concentrically loaded plate s upported a t points equally 
spaced on a circle con centri c with the central load, and located in the unloaded area , i.e., q ~ t. 

As noted previously, two expressions for defl ec tion are required ; W I being the de fl ection of the 
plate within the loaded region (r ~ b), and W2 the deflec tion in the unloaded region (r ~ b). The 
deflec tion of the plate obtained from Bassali 's work is given in eqs (2.01) and (2.02), where Wo is 
obtained from eq (2.03) by inserting YI = Y2 = 0 and the value of Y3 given by eq (2.18). It was noted 
that certain e rrors were appare nt in Bassali 's work (see footnotes 4 and 5), but these were of a 
minor nature a nd s tand corrected in eqs (2 .16) and (2 .18) of this paper for the case q ~ t . 

Bassali's work was specialized further to examine the case of the concentrated central load, 
for the purpose of comparing his theory with the experimental results from 138 tests presented 
herein. It was found convenient to compare the measured deflections at the center and at a point 
midway between supports on the support circle with the theory in terms of the dime nsionless 
deflection fun ctions, {3(' and {3d. given in eqs (4.02) and (4.04), res pectively. This co mparison was 
made in figures 5 and 6, and good agreement be tween theore tical and experime ntal results was 
apparent. 

It is of some importance to note from fi gure 5 that both the theore tical and experimental 
results indicate that the defl ection func tions decrease as the annular portion of the plate over­
hanging the s upport c ircle increases. It is of further interest to note from figures 1 and 2 that 
this constraining e ffect decreases as the number of supports, m, increases, but does not vanish 
for {3c when m becomes sufficiently large to produce a support condition equivalent to that of a 
simple continuou s line support. From this it would appear desirable to consider the effect of the 
overhanging portion of the plate in the design and analysis of practical structures of this type for 
both conditions of support discussed above. 
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Bassali's expressions for deflection are of such complexity that they are probably unsuitable 
for design purposes, and there is no direct solution available from his work for the case of simple 
continuous line support. However, the family of curves shown in figure 2 along with the apparent 
y- intercepts suggested the simple method of approximating {3e for the simple support condition 
as illustrated by eq (4.05). The result of this approximation given in eq (4.07), where t = 1, agreed 
favorably with that from the classical elementary theory for the case of simple support at the 
boundary of the plate. Thus, the assumptions used to develop the approximate solution given in 
eqs (4.05) and (4.06) were substantiated. 

Further interest in simplified design equations produced the expression for approximating 
the theoretical ce nter deflection function, {3e. The development of this expression, which approxi· 
mates the results of the theoretical expression in eq (4.02), is describe d by eqs (4.10:-4.13), and 
presented in eq (4.14). As stated previously the largest difference between the results of the ap· 
proximate solution and the theoretical solution computed within the limitations inherent in eq 
(4.14) was 1.26 percent. Since such good agreement exists between the approximate and theoreti· 
cal results, eq (4.14) should prove useful for design purposes. It should be noted here that setting 

'm - 3 =0 in eq (4.14) produces the approximate expression for {3e when there is a condition of 
simple continuous line support at t. This case was discussed earlier and illustrated in eq (4.05). 

A comparison of expressions for the theoretical center deflection functions, {3e and {3' e, given 
in eqs (4.02) and (4.16), respectively, indicated that the approximate solution for {3e given in eq 
(4.14) could be modified to approximate [3'e of eq (4.16) as indicated in eqs (4.17) and (4.18). Since 
tJ; is obtained 'directly from the theory, no further disparity is expected between the theoretical and 
the approximafe [3' e values . 

9. Conclusions 

1. In view of the good agreement between the theoretical and experimental results from the 
138 tests reported herein, Bassali's theory adequately predicts the deflection of the plates over the 
range of geometries investigated. 

2. Both the theoretical and experimental results show that the deflection of the plate within 
the support circle is constrained by the annular portion of the plate which overhangs the support 
circle. This constraint is found to decrease as the overhang is decreased, and to increase as the 
number of supports are decreased. Since this constraining effect is not negligible for a plate 
overhanging a support circle containing many supports, it is an important consideration in the 
design and analysis of thin plate structures, and especially so when the number of supports are 
fewer than six. 

3. The simplified equations for deflection functions presented herei n may be used for design 
purposes within the stated limitations of the equations . 
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